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Super-resolution microscopy and
deep learning methods: what can
they bring to neuroscience: from
neuron to 3D spine segmentation
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In recent years, advances in microscopy and the development of novel fluorescent
probes have significantly improved neuronal imaging. Many neuropsychiatric disorders
are characterized by alterations in neuronal arborization, neuronal loss—as seen in
Parkinson’s disease—or synaptic loss, as in Alzheimer's disease. Neurodevelopmental
disorders can also impact dendritic spine morphogenesis, as observed in autism spectrum
disorders and schizophrenia. In this review, we provide an overview of the various
labeling and microscopy techniques available to visualize neuronal structure, including
dendritic spines and synapses. Particular attention is given to available fluorescent probes,
recent technological advances in super-resolution microscopy (SIM, STED, STORM,
MINFLUX), and segmentation methods. Aimed at biologists, this review presents both
classical segmentation approaches and recent tools based on deep learning methods,
with the goal of remaining accessible to readers without programming expertise.

KEYWORDS

super-resolution (SR), deep learning, neuron, dendrite, dendritic spine, labeling,
segmentation (image processing), probe

Neuronal morphology and synaptopathies

Neuronal cells are communicating through billions of synapses. Axons can contact dendrite
directly (shaft synapse) or established contact with a dendritic membrane protrusion called
dendritic spine (Bucher et al., 2020) (Figure 1A). Dendritic spines are highly dynamic structures,
full of actin, changing their shape and numbers during development, ageing and learning (Rao and
Craig, 2000; Zhang and Benson, 2000; Konietzny et al., 2017; Bucher et al.,, 2020). They are
filamentous during development [called filopodia (Herms and Dorostkar, 2016), Figure 1B] and
can then either retract to form stubby-type spines (without neck) (Harris, 1999) or develop a head
(Hotulainen and Hoogenraad, 2010; Kashiwagi and Okabe, 2021) during or after learning. Spine
with heads can be categorized into “Thin” (long spine with small heads) or “mushroom” (short
spine with larger head and restricted neck) (Harris, 2020). Such changes affect synaptic function
and plasticity at the cellular level. For the past decades, the importance of spines shape in
neuropathological disorder-related disease has emerged with the development of biochemical,
imaging and analysis tools. In particular, changes in dendritic spine shape and number is associated
with a large number of brain disorders that involve deficits in information processing and cognition
(Forrest et al., 2018). Recent evidence supports altered synaptic connectivity and plasticity within
developmental stages in children and adolescents (ASD, Autism Spectrum Disorders and
schizophrenia) but also in ageing associated disease (Alzheimer’s disease with memory deficit)
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FIGURE 1

Neuronal and spine morphologies revealed using various microscopy modalities illustrating resolution gain needed for spine imaging. (A—-C)
Morphology of communication between two neurons (A). A neuron is made up of a cell body, an axon, and several dendrites. The axon can divide in
collaterals branches that can contact several other neurons and release neurotransmitter at synaptic sites. Synapses are dedicated contact sites
between soma or dendrites that receives information from neighboring axons. Synapse can be present at the very end of the axon (at the presynaptic
terminal) or can establish “contact en passant” along the axon. On the dendrite, the synaptic zone is called post-synaptic. Blue Neuron is sending
information via his axon and green neuron is receiving information on different dendritic spines (B) leading to the formation of synapses (C). (D,E)
Correlative images of hippocampal neurons after 21 days in vitro labeled with MemBright Cy3.5 probe (D1-D3) were acquired on Zeiss Elyra PS1

(Continued)
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FIGURE 1 (Continued)

equipped with Airyscan and SIM allowing correlative images of various microscopy modalities while (E1—E3) were imaged on Leica confocal STED
3DX. The same sample and region was used for both (D,E). The inset display a magnified portion of the dendrite harboring one thin (left) and
mushroom spine (right). Deconvolution was done using Classic Maximum Likelihood Estimation in Huygens software. Scale bar: 5 pm. (F) 3D STORM
imaging of dendritic spines class was done using Alexa488-Phalloidin that labels spine heads and neck. All STORM localizations, were pooled and
external envelope was reconstructed using Delauney triangulation. In contrast to membrane labeling, here spine head is underestimated since actin is
not filling all spine head volume especially close to the PSD. Various spine types are shown with colored arrows. Stubby spine (with no neck) is in
green, mushroom spine (with short neck and big head) is in blue, thin spine (with long neck and small head) is in red, and a bifid spine is in yellow.

(Glantz and Lewis, 2000; Selkoe, 2002; Tackenberg et al., 2009; Hutsler
and Zhang, 2010). Specifically, accumulating neuropathological evidences
points toward synapse and dendritic spine loss in schizophrenia (Garey
etal,, 1998) and Alzheimer’s disease (Boros et al., 2017; Forrest et al., 2018;
Rao et al,, 2022), whereas ASD displays an increased spine number and
immature spine shape (Hutsler and Zhang, 2010). Hence dendritic spines
could be seen as a common substrate to study neuropsychiatric disorders
involving cognitive deficits.

Imaging neurons and dendritic spines
with cytosolic and membrane probes

Neuronal morphology has traditionally been visualized using
confocal microscopy after transfection of cytosolic GFP, multicolor
brainbow variants (Livet et al., 2007) or biolistic delivery of DilCys, a
lipophilic dye diffusing in the entire membrane (see Okabe, 2020;
Wouterlood, 2023 for reviews). DID which is an oil version of DiIC18 has
also been used on hippocampal neurons in culture. However, variability
in intensity levels between cells, complicated quantitative segmentation
(Collot et al., 2019). Spine morphogenesis could be monitored using
with  actin-GFP
(Supplementary Figure SIA). On fixed samples, spines are efficiently
labeled with fluorescent phalloidin, a toxin that binds specifically to
F-actin (Supplementary Figures SIB-D). When using phalloidin or
cytosolic GFP, dendritic spine necks (red arrows) typically exhibit lower
fluorescence compared to spine heads (green arrow), making them more

spinning-disk ~ live  imaging reporters

difficult to visualize and quantify. The use of new variant of membranous
GFP [Addgene 117,858 (Wu et al., 2018); Supplementary Figures SI1E,F]
improved neck detection. Live Membrane can also be stained indirectly
using fluorescent Wheat Germ Agglutinin that are lectins binding to
carbohydrates present at the cell surface. However, this labelling is
dependent on carbohydrate distribution which can be sometimes
expressed in a punctate pattern complexifying neuronal segmentation
(Collot et al., 2019). More recently, we developed the MemBright™ probes
(Collot etal., 2019) that are lipophilic fluorescent dyes labeling any plasma
membrane after 5min incubation in cell culture media
(Supplementary Figures S1B-D in red). MemBright™ offers the key
advantage of labeling all cell types without requiring transfection, making
it suitable for both live and fixed samples. By uniformly integrating into
the plasma membrane, it enables clear visualization of both spine necks
and heads (Supplementary Figures SIB-D, red arrows and
Supplementary Figures S1G-I), facilitating accurate
neuronal segmentation.

The advent of super-resolution microscopy has revolutionized
neuroimaging by enabling 3D-visualization of nanoscopic nervous
system components. Techniques such as Structured Illumination
Microscopy (SIM) and Airyscan technology now routinely achieve
resolutions of approximately 100 to 140 nm, respectively (see

Figures 1D2,D3 and Glossary for detailed optical principle and
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comparison of super-resolution techniques with resolution and
applications). These enhanced resolutions, combined with improved
signal-to-noise ratios, enable the visualization of small structures—such
as pre- or post-synaptic protein clusters and small organelles like
endosomes. Such fine structures can then be assessed for their synaptic
localization using Ripley’s Function. We developed Icy SODA plugin
(Lagache et al., 2018) to detect coupling between non overlapping pre and
post synaptic proteins and accurately measure their coupling distances.
SIM microscopy, with its wide field of view, enables large-scale screening
of synaptic structures. From just 15 SIM images, we were able to analyze
over 45,000 synapsin clusters and determine their associations with post-
synaptic markers such as PSD95 (mean distance: 107 + 73 nm) and
Homer (138 + 89 nm). The combination of SIM with ICY SODA plugin
thus provides a powerful method for molecular mapping of synapse,
facilitating the rapid identification of potential synaptopathies (Breton
et al., 2024; De Koninck et al., 2024).

For live-cell imaging, Airyscan’s inline acquisition technology
provides image quality far superior to that of spinning disks and
operates 4 to 5 times faster than conventional confocal microscopy,
enabling dynamic monitoring of nanoscale synaptic components over
time. Airyscan can provide isotropic pixels paving the way to
improved 3D spine morphology reconstruction (Figure 1D2 and
Supplementary Figures S1B-I).

3D-STED microscopy (Figures 1E2,E3 & Glossary) is particularly
well-suited for tissue imaging, enabling resolution of synaptic contacts
even in depth. Unlike SIM, it is less prone to reconstruction ringing-
artifacts surrounding clusters. The primary limitation in tissue imaging,
lies in the scattering nature of neural tissue, which restricts the depth
of light penetration. This constraint can be overcome by implementing
a tissue clearing step, which facilitates light propagation in thick
samples (ranging from 0.5 to 1 mm in thickness). We recently
employed such a combined approach (Cauzzo et al., 2024), clearing
thick brain sections from transgenic mice expressing cytosolic GFP in
Purkinje cells. This enabled us to perform correlative imaging across
scales—from low-magnification mosaic imaging (20x, covering several
millimeters in width) to high-magnification 3D-STED imaging (93x).
This multiscale strategy allowed us to correlate cellular population
organization, neuronal dendritic arborization, and the morphology of
dendritic spines, including necks as narrow as a 100 nm.
with
localization precisions of 10-30 nm for STORM and as low as 2-3 nm

Single-molecule localization microscopy (SMLM),
for MINFLUX, provides nanoscopic resolution previously reserved to
electron microscopy. It enabled detailed visualization of actin-spectrin
networks around clathrin-coated pits (Bingham et al., 2023; Wernert
et al., 2024) and dendritic spines (Breton et al., 2024; Saladin et al.,
2024). 3D-STORM imaging using MemBright or fluorescent
phalloidin, combined with Delaunay triangulation (see Glossary), can
reveal spine neck constrictions characteristic of mushroom and thin
spines (Figure 1F). Recently, MINFLUX has even tracked dynein
stepping in live neurons (Schleske et al., 2024).
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Neuronal and dendritic spine
segmentation pipeline

Much emphasis has been put in the past decades on the correlation
between structural changes (termed as synaptic plasticity) and
neurodegenerative diseases. Dendritic complexity can be evaluated
with the total dendritic length along with the number and distribution
of their branching points. Pyramidal cell contains roughly 30,000
synapses and dendritic total length is 3 times longer in human cortex
(14.5 mm) than in macaque (6.2 mm) or mice (5.3 mm)(Mohan et al.,
2015). Pyramidal cells in the human prefrontal cortex have 72% more
dendritic spines than macaques and four times more than squirrel
monkeys or the mouse motor cortex (DeFelipe, 2011). Spine density
can range from 1-4 spine/pm in rat and mice hippocampal neurons
(Papa et al., 1995; Nwabuisi-Heath et al, 2012) up to 15/pm in
cerebellum (Napper and Harvey, 1988). Thus, precise, high-throughput
quantification of spine morphology is critical.

Spine segmentation pipelines generally fell into two categories:
rule-based or data-driven approaches. Computational methods that
can segment and quantitate dendritic spines in either 2D or 3D
imaging have been exhaustively reviewed in 2020 (Okabe, 2020),
we will try here to complete this view with the last recent approaches.

Rule-based pipelines rely on features established by image analysts
(or neurobiologists) regarding dendritic spines characteristics. Most
segmentation pipelines adopted a two-step strategy: first segmenting
the entire dendrite tree and then extracting the spines.

Dendrite segmentation can rely on intensity thresholding, such as
global Otsu (Li et al., 2022), multilevel thresholding (Kashiwagi et al.,
2019) or adaptive thresholding (Ekaterina et al., 2023). Platforms like
Vaa3D offer diverse segmentation methods with user-friendly
visualization interface (Peng et al., 2010).

Uniform staining quality significantly enhanced the performance
of threshold-based approaches. When image quality is insufficient for
reliable segmentation, preprocessing steps such as smoothing or
denoising can be required (Smirnov et al., 2018; Das et al., 2021;
Argungah et al., 2022). Targeting the inherent signal heterogeneity in
confocal and two-photon images, the SmRG algorithm integrated
Region Growing (RG) procedure with a mixture model describing the
signal statistics (Callara et al., 2020). This allows SmRG to calculate
local thresholds for iteratively growing segmented structure, thus
enabling the 3D segmentation of complex neurons.

Dendritic spine segmentation
strategies

One strategy uses the differences in pixel intensity between
dendritic spines and shaft after staining (see Figures 2A,B). The
implementation of intensity-based criteria varies among segmentation
approaches. For example, the Spot Spine assumes spine heads have
stronger signals, locating and segmenting them by finding local
intensity maxima (Gilles et al., 2024). In contrast, 3dSpAn can handle
cases where spine are weaker (light blue in Figure 2B) than the shaft
(Figure 2B, dark blue). It iteratively isolates spine structures by applying
multi-scale morphological opening operations (Das et al., 2021).

Skeletonization is another strategy for spine segmentation
(Figure 2C). By using the fact that spines are considerably shorter than
dendritic shaft, Rusakov et al. and SpineTool skeletonized the dendritic
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structure and identified short branches as potential spines (Rusakov
and Stewart, 1995; Ekaterina et al., 2023). In contrast, Spine]J
(Figure 2D) infers a graph structure from the generated skeleton
(Levet et al., 2020). Then it identifies spine by analyzing nodes
topological properties (e.g., leaf nodes and their connectivity patterns).

Other strategies first reconstructed the dendritic shaft and then
considered external protrusions as spine candidates. Kashiwagi et al.
(2019) proposed to fit the dendritic shaft using elliptical cross-sections
(Figure 2E). Protrusions extending beyond the reconstructed shaft are
regarded as candidate spines and are subsequently filtered according
to geometric characteristics (volume or axial elongation).

A key advantage of rule-based methods is their strong
interpretability, without the need for annotation, making them ideal
when annotated datasets are scarce. However, since these methods rely
on fixed logic, ensuring consistency in imaging conditions
(microscopy modality, laser intensity, magnification and numerical
aperture...) is crucial for optimal performance.

Data-driven pipelines, which include traditional machine learning
methods [e.g., clustering methods like K-means (MacQueen, 1967;
Jain et al., 1999)] see Glossary and deep learning methods [like the
widely used U-Net for semantic segmentation (Ronneberger et al.,
2015)], have been effectively applied in dendritic spines analysis.

Xiao et al. trained a fully convolutional network (FCN, see
Glossary) to achieve automated detection of dendritic spines in 2D
images (Xiao et al., 2018). Regarding 3D dendritic spine segmentation,
Vidaurre-Gallart et al. elegantly developed a dataset of in vitro
confocal images from healthy human tissue and trained a 3D U-Net
model for segmentation (Vidaurre-Gallart et al., 2022). They created
an image user interface allowing post-processing, such as reconnecting
isolated dendrites and applying the watershed algorithm to resolve
overlapping dendritic spines.

Some other tools like DeepD3 offers capabilities for both training and
prediction and provides dendritic spine and dendrite segmentation
(Fernholz et al., 2024). The deep learning framework utilizes a diverse
dataset derived from two-photon and confocal imaging techniques,
incorporating both in vivo and in vitro data, and supporting various
fluorophores (tdTomato, Alexa-594, EGFP). DeepD3 employs an enhanced
U-Net architecture with a dual-decoder network, generating separate
segmentation masks for dendrites and spines. Post-processing includes
filtering small segments, dilating dendritic maps to ensure that spine
candidates are close to dendrites, and applying methods like flood-filling (or
threshold-based 3D connected component analysis) for region of interest
detection, with adjustable parameters to refine segmentation results. A
graphical user interface is provided for both training and prediction.

In addition to develop new segmentation models, the extension of
existing deep learning tools plays an important role in enhancing the
accessibility of these technologies for neuroscientists. As an example,
Schiinemann et al. (2025) employed the Zeiss arivis Cloud platform to
train and deploy a model for human dendritic spine morphology analysis.
Similarly, the recent RESPAN pipeline (Garcia et al., 2024) integrates
CSBDeep (Weigert et al., 2018) for image restoration (improving signal
and contrast) with nnU-Net (Isensee et al.,, 2021) for spine segmentation,
offering a combined workflow solution.

Other data-driven techniques such as clustering algorithms,
operating without manual annotation, are also crucial. These
approaches leverage intrinsic data properties to discern structures,
offering distinct advantages for complex biological datasets where
extensive annotation is prohibitive notably in nanoscale imaging.
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List of existing tool for spines and neurons segmentation. Schematic overview of dendritic spines segmentations using different ruled based

approaches (A—E) or data driven modalities (F-H). Deep learning methods can use semantic segmentation (F) or instance segmentation (G).

(H) SENPAI Tool for neuron and spine segmentation is using both ruled based and data driven approaches. In the end, neurons in a dense population
will be segmented as an individual cell (blue and magenta).
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Some techniques such as the multiphoton confocal microscopy allow
the visualization of very dense neurons arborization. The resolution/SNR
are sufficient to resolve spine head but mitigate spine neck detection.
Previously, we developed some algorithm to infer neck central line using
geodesic distances (Jain et al., 2021). However, since neck width was
proposed to be related to electrical resistance, investing much effort in
super-resolution technique would make neck detection more accurate
and biologically relevant. The use of the 3D-STED microscopy,
overcoming the diffraction of light, enables the characterization of these
small protrusions. Segmenting these neurons requires the use of
algorithms but only a few of them are able to deal with a complex cell
packing (Li et al., 2019; Milligan et al., 2019; Callara et al., 2020).

We recently develop a new framework called SENPAI (SEgmentation
of Neurons using PArtial derivative Information) that extract information
of single neurons at micro and nanoscale within brain tissue. As a proof
of concept, we considered L7-GFP transgenic mice that express cytosolic
GFP within cerebellar Purkinje cells. SENPAI is working with a two-step
segmentation and parcellation process which gives back the morphology
at the nanoscale when combined with super-resolution.

SENPAI constitute a topological informed data driven approach to
neuronal reconstruction. We used k-means clustering (Figure 2H) on raw
or 3D Gaussian smoothed image to retrieve, respectively, tiny details
(spine neck) or higher structures (dendrites & spine heads). To decipher
border of the object (neuron or spine), we used a k-means scalable
algorithm exploiting spatial derivatives of intensity. Indeed, the
fluorescence is smoothly decreased at the neuronal border. We took
advantage of intensity second derivatives that are negative within the
inner edge of this intensity transition. Classes with positive second
derivatives were considered as background whereas neuronal shape of
interest is found in highest average intensity classes that present negative
second derivatives in the 3 directions (Figure 2H).

The second step of SENPAT is the parcellation of the segmented image
which exploits topographic distances. To separate neurons from the entire
neuronal population, SENPAI uses the 3D watershed transform relying on
cell body seeds used as neuronal core. This separation is applied on the
previous segmentation mask, making the connection between dendritic
branch and the related cellular body seed colorizing them into a single
neuronal entity. In high-resolution datasets when spine necks are not
detectable, the same strategy is used to assign small spines to a specific
dendritic branch, which serves as the neuronal core. Thus, our SENPAI
pipeline can isolate and extract neuron’s morphology (Figure 2H, pink
neuron) from neuronal branches to dendritic spines even in a dense
arborization context like in brain tissue.

Discussion

Enhancing segmentation performance:
architectural and non-architectural
strategies

Both rule-based and data-driven methods have made significant
progress in 3D dendritic spine segmentation, each offering unique
advantages in terms of interpretability and robustness.

Data-driven approaches, especially deep learning, enable different
levels of segmentation. Semantic segmentation (Figure 2F & Glossary)
classifies all spine pixels into a single category (spine) (Long et al., 2015);
instance segmentation (Figure 2G) further identifies and distinguishes
each individual spine instance (He et al, 2017); and panoptic
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segmentation integrates both, distinguishing individual spine instances
while assigning a semantic label to every pixel, including the dendritic
shaft, background, and other cellular structures (Kirillov et al., 2019).

Moving forward, combining the strengths of both approaches,
such as refining lightweight semantic segmentation models with
efficient, rule-based post-processing strategies, remains a promising
direction. These hybrid methods strike a favorable balance between
computational cost and segmentation accuracy, while offering strong
potential for generalization across diverse datasets.

To further improve the accuracy of semantic segmentation models,
DeepD3 has demonstrated that modifying model architectures can lead to
significant performance gains (Fernholz et al., 2024). Its customized
network design demonstrates superior performance over the conventional
U-Net model, highlighting the effectiveness of architectural optimization.

Improvements in segmentation quality depend not only on model
architecture but also on non-architectural factors—such as image
preprocessing, training procedures, inference strategies, and post-
processing techniques—which play crucial roles. A representative
example is the nnU-Net framework, which, although based on the
standard U-Net architecture, adapts key non-architectural parameters
using rule-based strategies (Isensee et al., 2021). These include image
cropping based on object size and optimizing resampling resolutions
based on voxel spacing. Such adaptive mechanisms have enabled
nnU-Net to achieve leading performance across multiple 3D medical
image segmentation tasks, underscoring the importance of these
non-architectural aspects in performance optimization.

The vision and reality of instance
segmentation: from ideal goals to feasible
path

Semantic segmentation allows classifying pixels as belonging to
spines or not. A further level of complexity involves distinguishing
individual spines from one to another. To achieve this, instance
segmentation can be used to identify distinct spine instances within the
‘spin€’ semantic class. For example, the Segmentation Anything Model
(SAM) (Kirillov et al., 2023), a pre-trained instance segmentation model
trained on 11 million 2D natural images, has demonstrated robust
generalization capabilities. Subsequently, the Medical SAM Adapter
(Med-SA) was developed by fine-tuning approximately 2% of the SAM
model’s parameters (~13 million), effectively adapting the model to 17
different medical imaging modalities and enabling 3D image
segmentation (Wu et al., 2025). These results indicate SAM’s strong
potential for cross-domain adaptation and 3D instance segmentation.

However, despite their promise, the practical application of instance
segmentation models remains challenging. For instance, training Med-SA
requires substantial computational resources (four NVIDIA A100 GPUs
with 80 GB of memory each). Such hardware is not readily accessible to
most researchers or laboratories, especially when compared to the limited
resources available on free platforms like Google Colab, which typically
offer a single, less powerful GPU (NVIDIA T4) with around 16 GB of
memory. Furthermore, the scale of existing 3D datasets for dendritic
spine segmentation is significantly smaller than those available in the
medical imaging domain. For comparison, the BraTS2021 dataset (Baid
etal,, 2021) used for training Med-SA includes 1,280 3D samples, whereas
spine segmentation datasets are considerably more limited. These
challenges in computational resources and data availability constrain the
feasibility of adopting instance segmentation models in current research.
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TABLE 1 Multi-bioimage analysis platforms provided 3D annotation.

10.3389/fninf.2025.1630133

Platform and version  Icy 2.5.2 3D Slicer 5.6.2 Napari 0.4.19 Imaris
License Type Open-source Open-source Open-source Commercial
Development Stage Completed Completed Napari-nD-annotator under Completed

active development

Operating System

Windows, macOS, Linux

Windows, macOS, Linux

Windows, macOS, Linux

Windows, macOS

Installation Method

Direct installer

Direct installer

Install Napari, then install
plugin or additional Python
packages

Direct installer

Supported Microscopy Image

Formats

Native support for most
microscopy formats (e.g., CZI,
LIF, TIFE, ND2)

Native support TIFF; Medical
imaging formats (e.g., DICOM)

Native support for TIFF;
extended microscopy formats

(CZI, LIF) require plugins

Native support for most
microscopy formats (e.g., CZI,
LIE, TIFE ND2)

Fine 3D Annotation Methods

Manual contour drawing on XY

Manual contour drawing with

Manual contour drawing on XY

Manual contour drawing on XY

slices slice interpolation; 3D spherical | slices with slice interpolation slices
brush available
3D Rendering of Images and Supported Real-time rendering during Supported Real-time rendering during
Annotations annotation annotation
Initial Coarse Annotation Thresholding, HK Mean Thresholding Thresholding Thresholding
Methods clustering
Error Correction Methods Eraser 3D eraser, 3D scissors Eraser 3D eraser

As a result, most existing pipelines continue to rely on semantic
segmentation, where pixels are labeled as belonging to any spine without
distinguishing between individual instances. While effective for detecting
the presence of spines, semantic segmentation typically produces a single
collective mask, making it difficult to separate adjacent spines, especially
when they are densely distributed or intertwined. Given this limitation,
rule-based post-processing methods remain essential for refining
segmentation results and achieving the necessary isolation of individual
spines. Therefore, optimizing semantic segmentation pipelines in
combination with effective post-processing remains a vital and pragmatic
focus for advancing dendritic spine analysis. Achieving instance
segmentation in the future will depend on continued breakthroughs in
models and algorithms, broader access to computational resources, and
expansion of datasets. In contrast, achieving panoptic segmentation also
requires labeling strategies that can clearly show the microenvironment
around dendritic spines, such as nearby axons. Membrane labeling
techniques can help by providing the information needed enabling precise
semantic annotation of each pixel within an image.

High-quality updated annotation and
model adaptation with evolving
microscopy technologies

Despite the availability of powerful pre-trained models, annotation
and retraining with new datasets is unavoidable. This is primarily due to
the continuous advancement in imaging technologies and labelling
techniques, which introduce characteristics that differ from those present
in the original training sets. As a result, pre-trained models may
experience performance degradation when applied to novel datasets. The
typical workflow for 3D annotation and model training involves:
converting and preprocessing microscopy data, performing semantic
annotation with specialized tools, organizing the data into a model-
compatible format, and training deep learning models on the annotated
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dataset (Supplementary Figure S2). Both the quantity and quality of
annotated data play critical roles. However, generating precise 3D
annotations are time-consuming processes involving meticulous layer-by-
layer and pixel-by-pixel inspection.

3D annotation platforms

Several bioimage analysis platforms with 3D annotation
capabilities have been developed, each offering distinct advantages, as
exemplified in Table 1.

3D annotation requires broad support for the import and export of
varjous image formats. For example, the Icy platform provides wild
compatibility with microscopy image formats, thereby offering
considerable flexibility during annotation (De Chaumont et al., 2012).
Efficient initial pre-annotation methods can substantially reduce the
manual workload. For instance, the HK-Mean method implemented in
Icy enables threshold-based preliminary segmentation to expedite this
process (Dufour et al., 2008). However, despite the use of automated
approaches, substantial manual verification and refinement are still
required, rendering the process time-consuming. To accelerate 3D
annotations, tools that support efficient interpolation and large-area
corrections are highly valuable. A commonly used approach for 3D
annotation involves contour-based manual labeling on individual slices.
Tools such as Napari and 3D Slicer support automatic interpolation
between unannotated slices, thereby improving annotation efficiency
(Fedorov et al., 2012; Chiu and Clack, 2022). Notably, 3D Slicer extends
the brush tool into a 3D sphere, which enables more efficient volumetric
labeling thus speeding up the manual workload.

All platforms provide basic erasing functions, while 3D Slicer
additionally supports direct 3D object clipping, enabling precise
correction operations. 3D Slicer offers volumetric visualization,
facilitating prompt correction, and thereby improving the overall
efficiency and accuracy of the annotation process.
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In the next years, we may expect that combining semantic
segmentation with ruled-based approaches on multi-scale imaging
will provide nice information both on neuronal dendritic tree
complexity and dendritic spines morphology which are crucial to
decipher many neuropsychiatric diseases.
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Glossary
Related to Advanced Microscopy

Reconstruction ringing-artifacts - A type of image distortion that
appears as spurious ripples or oscillations around sharp edges or high-
intensity spots in a reconstructed image. This often occurs due to
limitations in the mathematical algorithms (like the Fourier
transform) used to process the raw microscopy data, especially when
high-frequency information is lost or truncated.

Delaunay triangulation - A computational geometry method for
connecting a set of discrete points (or localizations) into a mesh of
triangles. Triangles are chosen so that the circumcircle of the triangle
should not include any points of neighboring triangles.

Ripley’s function - A spatial statistical method. It is used to assess
whether a set of points is clustered, regularly spaced, or randomly
distributed. It evaluates the number of neighboring points within a
given radius around each point, and compares this to what would
be expected under complete spatial randomness. Commonly used in
cell biology and neuroscience to analyze the spatial organization of
cells, synapses, or molecules.

SODA - SODA stands for Standard Object Distance Analysis. This is
a free plugin running on Icy software that use Ripley’s function to
analyse spatial distribution of spots or STORM localizations. When
used with 2 channel pictures of single molecule Localization
microscopy, SODA can indicate whether green molecules are
randomly distributed or if they are statistically associated with red
molecules. SODA can also be used to check if one protein is associated
or not to synapse using a pre or post-synaptic marker (See Lagache
et al. Nature Comm 2018 for details or Breton et al. Neurophotonics
2024 for review).

Super-resolution microscopy - A family of light microscopy
techniques that circumvent the diffraction limit of light using physical
or computational methods to achieve a spatial resolution higher than
that of conventional light microscopes (typically <200 nm). This
includes SIM, STED, STORM, PALM, SMLM, MINFLUX.

Airyscan - A detector technology for confocal laser scanning
microscopy. It replaces the conventional single-point pinhole with an
area detector to capture more spatial information. This information is
then computationally processed to reconstruct an image with higher
resolution and a better signal-to-noise ratio than standard confocal.
This technique can be applied to both cultured cells and tissue
samples. Resolution typically ranges from 120 to 140 nm. This
technique gives higher resolution than confocal but less than “Super-
resolution techniques” Although the resolution is slightly lower
compared to SIM, the signal homogeneity is particularly advantageous,
as it greatly facilitates image segmentation and quantification.

SIM (Structured Illumination Microscopy) - A super-resolution
technique. It illuminates the sample with a patterned light (e.g.,
stripes) causing interference with the sample. By analyzing the " Moiré
pattern” created by the interaction of this pattern with the sample's
structure, a higher-resolution image is computationally reconstructed
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from multiple raw images. Resolution typically ranges between 100
and 120 nm. This technique is highly effective in neuronal cell
cultures. Its application in tissue samples is possible but more
challenging, as artifacts may arise with increasing imaging depth.

STED (Stimulated Emission Depletion) - A super-resolution
technique. It uses two lasers: an excitation laser to illuminate a spot of
fluorescent molecules, synchronized with by a donut-shaped
"depletion” laser that deactivates fluorescence in the outer region of
the spot, effectively shrinking the point spread function. Resolution
typically ranges from 40 to 80 nm. This technique can be applied to
both cultured cells and tissue samples. However, imaging thick
specimens may require clearing to minimize light scattering and
improve acquisition quality.

STORM (Stochastic Optical Reconstruction Microscopy) - A
single-molecule localization-based super-resolution technique. It uses
photo switchable fluorescent probes, stochastically activating only a
small, sparse subset of them in each camera frame. By precisely
localizing these individual molecules and combining thousands of
such frames, a high-resolution image is reconstructed. Resolution
typically ranges from 10 to 50 nm. This technique can be applied to
both cultured cells and tissue samples. However, imaging thick
specimens is challenging (due to blinking buffer penetration for
STORM, or oligos penetrations for PAINT) and light scattering.

MINFLUX (MINimal emission FLUXes) - A super-resolution
technique that combines the principles of STED and single-molecule
localization. It uses a donut-shaped excitation beam (dark in the
center and bright around it) to probe fluorescence at different
positions. By fitting photon count distributions obtained from
multiple targeted excitation positions surrounding the fluorophore,
the system triangulates the molecule’s location with high precision and
low photobleaching due to reduced excitation intensity. It can achieve
1-3 nm precision and is fast enough to track molecules live. Most
published applications concerns cell culture up to now.

SNR (Signal-to-Noise Ratio) - A measure of signal quality. It
compares the level of a desired signal to the level of background noise.
A high SNR indicates a clean and reliable measurement.

PSF (Point-Spread Function) - This is a mathematical function that
describes how the image of a single point is distorted by a microscopy
system. For example, a fluorescent spherical bead with a physical
diameter of 100 nm appears larger than 200 nm in fluorescence
microscopy. The three-dimensional image of such a bead—commonly
referred to as the point spread function (PSF)—reveals that the
distortion is typically anisotropic in conventional microscopy, with
greater deformation along the Z-axis than in the X and Y directions.

Related to Image Segmentation & Deep Learning Topic

HK-Mean - This segmentation method applies N-class thresholding
based on K-Means clustering of the image histogram. It then performs
object extraction in a bottom-up manner, guided by user-defined
minimum and maximum object size constraints. Conventional
thresholding typically employs two classes, with black representing the
background and white denoting the object of interest. By using
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HK-Means clustering, for example, it becomes possible to perform
thresholding with four classes: white, black, and two intermediate
grey levels.

FCN (Fully Convolutional Network) - A type of neural network
model where all layers perform convolutions. Unlike traditional
networks that have fixed-size outputs, FCNs can process input images
of any size and produce an output map of a corresponding size (e.g., a
segmentation mask). This makes them ideal for pixel-level tasks like
identifying all cells in an image.

U-Net - A widely-used neural network model for biomedical
image segmentation, named for its U-shaped architecture. The U
shape is composed of 2 parts: the stem (the U center that extract
interesting characteristics) and the decoders that extend resolution
by up-sampling. Its design cleverly combines an understanding of
the overall image context with the preservation of fine details,
allowing it to achieve highly precise segmentation even with
limited training data. This makes it particularly effective in fields
like medicine and biology where large annotated datasets are
often rare.

Dual-decoder network - An efficient neural network architecture
designed to perform two related output tasks simultaneously from a
single image. It operates in two steps: first, a shared Encoder analyzes
the image to extract key feature information, performing an
"understanding” role. Then, two separate Decoders use this shared
information to construct different output maps. For instance, one
decoder can generate the precise boundaries of cells (a boundary
map), while the second decoder simultaneously generates a map
identifying different cell types (a class map).

Panoptic segmentation - An image segmentation goal. It doesn't just
distinguish "cell" from "background" (semantic segmentation), but
also identifies each individual cell instance. The final result: every pixel
in the image is labeled as either background or as belonging to a
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specific instance, like "cell 1", "cell 2", etc. This is crucial for accurate

counting and single-cell analysis.

SAM (Segmentation Anything Model) - A foundation model for image
segmentation. It was pre-trained on a massive general-purpose dataset
containing 11 million images and over 1 billion segmentation masks. This
extensive training equips it with powerful "zero-shot" segmentation
capabilities, allowing it to segment virtually any unseen object in an
image, often prompted by minimal user input like a single click or a box.

Med-SA (Medical SAM Adapter) - An efficient method for adapting
the general-purpose SAM for medical image analysis. It enables the
model to process various types of 3D medical data—a task the original
2D SAM cannot perform.

Med-SA fine-tuning - "Fine-tuning" means taking a smart model
(here, Med-SA) that has already been trained on a vast amount of
general medical images, and then giving it specialized training on our
own smaller, specific dataset (e.g., our images of a particular neuron
type). This allows the model to quickly adapt and become an expert
on our unique analysis task without starting from scratch.

GPU memory - This refers to the dedicated, high-speed memory on
a Graphics Processing Unit (GPU). In deep learning, GPUs perform
massive parallel computations. GPU memory acts as the GPU's
"workbench'; its size determines the size and complexity of the images
and neural network models that can be processed at once. Large GPU
memory is critical for handling high-resolution 3D images or
large models.

Dataset scale - Refers to the amount of data used for training and
testing a model. It can be measured in various ways, such as the total
number of images, the total number of annotated objects, or the total
data storage size (e.g., Gigabytes, Terabytes). The scale of the dataset
directly impacts the complexity of the computational methods that
can be applied and the robustness of the resulting model.
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