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In recent years, advances in microscopy and the development of novel fluorescent 
probes have significantly improved neuronal imaging. Many neuropsychiatric disorders 
are characterized by alterations in neuronal arborization, neuronal loss—as seen in 
Parkinson’s disease—or synaptic loss, as in Alzheimer’s disease. Neurodevelopmental 
disorders can also impact dendritic spine morphogenesis, as observed in autism spectrum 
disorders and schizophrenia. In this review, we provide an overview of the various 
labeling and microscopy techniques available to visualize neuronal structure, including 
dendritic spines and synapses. Particular attention is given to available fluorescent probes, 
recent technological advances in super-resolution microscopy (SIM, STED, STORM, 
MINFLUX), and segmentation methods. Aimed at biologists, this review presents both 
classical segmentation approaches and recent tools based on deep learning methods, 
with the goal of remaining accessible to readers without programming expertise.

KEYWORDS

super-resolution (SR), deep learning, neuron, dendrite, dendritic spine, labeling, 
segmentation (image processing), probe

Neuronal morphology and synaptopathies

Neuronal cells are communicating through billions of synapses. Axons can contact dendrite 
directly (shaft synapse) or established contact with a dendritic membrane protrusion called 
dendritic spine (Bucher et al., 2020) (Figure 1A). Dendritic spines are highly dynamic structures, 
full of actin, changing their shape and numbers during development, ageing and learning (Rao and 
Craig, 2000; Zhang and Benson, 2000; Konietzny et al., 2017; Bucher et al., 2020). They are 
filamentous during development [called filopodia (Herms and Dorostkar, 2016), Figure 1B] and 
can then either retract to form stubby-type spines (without neck) (Harris, 1999) or develop a head 
(Hotulainen and Hoogenraad, 2010; Kashiwagi and Okabe, 2021) during or after learning. Spine 
with heads can be categorized into “Thin” (long spine with small heads) or “mushroom” (short 
spine with larger head and restricted neck) (Harris, 2020). Such changes affect synaptic function 
and plasticity at the cellular level. For the past decades, the importance of spines shape in 
neuropathological disorder-related disease has emerged with the development of biochemical, 
imaging and analysis tools. In particular, changes in dendritic spine shape and number is associated 
with a large number of brain disorders that involve deficits in information processing and cognition 
(Forrest et al., 2018). Recent evidence supports altered synaptic connectivity and plasticity within 
developmental stages in children and adolescents (ASD, Autism Spectrum Disorders and 
schizophrenia) but also in ageing associated disease (Alzheimer’s disease with memory deficit) 
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FIGURE 1

Neuronal and spine morphologies revealed using various microscopy modalities illustrating resolution gain needed for spine imaging. (A–C) 
Morphology of communication between two neurons (A). A neuron is made up of a cell body, an axon, and several dendrites. The axon can divide in 
collaterals branches that can contact several other neurons and release neurotransmitter at synaptic sites. Synapses are dedicated contact sites 
between soma or dendrites that receives information from neighboring axons. Synapse can be present at the very end of the axon (at the presynaptic 
terminal) or can establish “contact en passant” along the axon. On the dendrite, the synaptic zone is called post-synaptic. Blue Neuron is sending 
information via his axon and green neuron is receiving information on different dendritic spines (B) leading to the formation of synapses (C). (D,E) 
Correlative images of hippocampal neurons after 21 days in vitro labeled with MemBright Cy3.5 probe (D1–D3) were acquired on Zeiss Elyra PS1 

(Continued)

https://doi.org/10.3389/fninf.2025.1630133
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Nazac et al.� 10.3389/fninf.2025.1630133

Frontiers in Neuroinformatics 03 frontiersin.org

(Glantz and Lewis, 2000; Selkoe, 2002; Tackenberg et al., 2009; Hutsler 
and Zhang, 2010). Specifically, accumulating neuropathological evidences 
points toward synapse and dendritic spine loss in schizophrenia (Garey 
et al., 1998) and Alzheimer’s disease (Boros et al., 2017; Forrest et al., 2018; 
Rao et al., 2022), whereas ASD displays an increased spine number and 
immature spine shape (Hutsler and Zhang, 2010). Hence dendritic spines 
could be seen as a common substrate to study neuropsychiatric disorders 
involving cognitive deficits.

Imaging neurons and dendritic spines 
with cytosolic and membrane probes

Neuronal morphology has traditionally been visualized using 
confocal microscopy after transfection of cytosolic GFP, multicolor 
brainbow variants (Livet et al., 2007) or biolistic delivery of DiIC₁₈, a 
lipophilic dye diffusing in the entire membrane (see Okabe, 2020; 
Wouterlood, 2023 for reviews). DID which is an oil version of DiIC18 has 
also been used on hippocampal neurons in culture. However, variability 
in intensity levels between cells, complicated quantitative segmentation 
(Collot et al., 2019). Spine morphogenesis could be monitored using 
spinning-disk live imaging with actin-GFP reporters 
(Supplementary Figure S1A). On fixed samples, spines are efficiently 
labeled with fluorescent phalloidin, a toxin that binds specifically to 
F-actin (Supplementary Figures S1B–D). When using phalloidin or 
cytosolic GFP, dendritic spine necks (red arrows) typically exhibit lower 
fluorescence compared to spine heads (green arrow), making them more 
difficult to visualize and quantify. The use of new variant of membranous 
GFP [Addgene 117,858 (Wu et al., 2018); Supplementary Figures S1E,F] 
improved neck detection. Live Membrane can also be stained indirectly 
using fluorescent Wheat Germ Agglutinin that are lectins binding to 
carbohydrates present at the cell surface. However, this labelling is 
dependent on carbohydrate distribution which can be  sometimes 
expressed in a punctate pattern complexifying neuronal segmentation 
(Collot et al., 2019). More recently, we developed the MemBright™ probes 
(Collot et al., 2019) that are lipophilic fluorescent dyes labeling any plasma 
membrane after 5 min incubation in cell culture media 
(Supplementary Figures S1B–D in red). MemBright™ offers the key 
advantage of labeling all cell types without requiring transfection, making 
it suitable for both live and fixed samples. By uniformly integrating into 
the plasma membrane, it enables clear visualization of both spine necks 
and heads (Supplementary Figures S1B–D, red arrows and 
Supplementary Figures S1G–I), facilitating accurate 
neuronal segmentation.

The advent of super-resolution microscopy has revolutionized 
neuroimaging by enabling 3D-visualization of nanoscopic nervous 
system components. Techniques such as Structured Illumination 
Microscopy (SIM) and Airyscan technology now routinely achieve 
resolutions of approximately 100 to 140 nm, respectively (see 
Figures  1D2,D3 and Glossary for detailed optical principle and 

comparison of super-resolution techniques with resolution and 
applications). These enhanced resolutions, combined with improved 
signal-to-noise ratios, enable the visualization of small structures—such 
as pre- or post-synaptic protein clusters and small organelles like 
endosomes. Such fine structures can then be assessed for their synaptic 
localization using Ripley’s Function. We developed Icy SODA plugin 
(Lagache et al., 2018) to detect coupling between non overlapping pre and 
post synaptic proteins and accurately measure their coupling distances. 
SIM microscopy, with its wide field of view, enables large-scale screening 
of synaptic structures. From just 15 SIM images, we were able to analyze 
over 45,000 synapsin clusters and determine their associations with post-
synaptic markers such as PSD95 (mean distance: 107 ± 73 nm) and 
Homer (138 ± 89 nm). The combination of SIM with ICY SODA plugin 
thus provides a powerful method for molecular mapping of synapse, 
facilitating the rapid identification of potential synaptopathies (Breton 
et al., 2024; De Koninck et al., 2024).

For live-cell imaging, Airyscan’s inline acquisition technology 
provides image quality far superior to that of spinning disks and 
operates 4 to 5 times faster than conventional confocal microscopy, 
enabling dynamic monitoring of nanoscale synaptic components over 
time. Airyscan can provide isotropic pixels paving the way to 
improved 3D spine morphology reconstruction (Figure  1D2 and 
Supplementary Figures S1B–I).

3D-STED microscopy (Figures 1E2,E3 & Glossary) is particularly 
well-suited for tissue imaging, enabling resolution of synaptic contacts 
even in depth. Unlike SIM, it is less prone to reconstruction ringing-
artifacts surrounding clusters. The primary limitation in tissue imaging, 
lies in the scattering nature of neural tissue, which restricts the depth 
of light penetration. This constraint can be overcome by implementing 
a tissue clearing step, which facilitates light propagation in thick 
samples (ranging from 0.5 to 1 mm in thickness). We  recently 
employed such a combined approach (Cauzzo et al., 2024), clearing 
thick brain sections from transgenic mice expressing cytosolic GFP in 
Purkinje cells. This enabled us to perform correlative imaging across 
scales—from low-magnification mosaic imaging (20x, covering several 
millimeters in width) to high-magnification 3D-STED imaging (93x). 
This multiscale strategy allowed us to correlate cellular population 
organization, neuronal dendritic arborization, and the morphology of 
dendritic spines, including necks as narrow as a 100 nm.

Single-molecule localization microscopy (SMLM), with 
localization precisions of 10–30 nm for STORM and as low as 2–3 nm 
for MINFLUX, provides nanoscopic resolution previously reserved to 
electron microscopy. It enabled detailed visualization of actin–spectrin 
networks around clathrin-coated pits (Bingham et al., 2023; Wernert 
et al., 2024) and dendritic spines (Breton et al., 2024; Saladin et al., 
2024). 3D-STORM imaging using MemBright or fluorescent 
phalloidin, combined with Delaunay triangulation (see Glossary), can 
reveal spine neck constrictions characteristic of mushroom and thin 
spines (Figure  1F). Recently, MINFLUX has even tracked dynein 
stepping in live neurons (Schleske et al., 2024).

equipped with Airyscan and SIM allowing correlative images of various microscopy modalities while (E1–E3) were imaged on Leica confocal STED 
3DX. The same sample and region was used for both (D,E). The inset display a magnified portion of the dendrite harboring one thin (left) and 
mushroom spine (right). Deconvolution was done using Classic Maximum Likelihood Estimation in Huygens software. Scale bar: 5 μm. (F) 3D STORM 
imaging of dendritic spines class was done using Alexa488-Phalloidin that labels spine heads and neck. All STORM localizations, were pooled and 
external envelope was reconstructed using Delauney triangulation. In contrast to membrane labeling, here spine head is underestimated since actin is 
not filling all spine head volume especially close to the PSD. Various spine types are shown with colored arrows. Stubby spine (with no neck) is in 
green, mushroom spine (with short neck and big head) is in blue, thin spine (with long neck and small head) is in red, and a bifid spine is in yellow.

FIGURE 1 (Continued)
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Neuronal and dendritic spine 
segmentation pipeline

Much emphasis has been put in the past decades on the correlation 
between structural changes (termed as synaptic plasticity) and 
neurodegenerative diseases. Dendritic complexity can be evaluated 
with the total dendritic length along with the number and distribution 
of their branching points. Pyramidal cell contains roughly 30,000 
synapses and dendritic total length is 3 times longer in human cortex 
(14.5 mm) than in macaque (6.2 mm) or mice (5.3 mm)(Mohan et al., 
2015). Pyramidal cells in the human prefrontal cortex have 72% more 
dendritic spines than macaques and four times more than squirrel 
monkeys or the mouse motor cortex (DeFelipe, 2011). Spine density 
can range from 1–4 spine/μm in rat and mice hippocampal neurons 
(Papa et  al., 1995; Nwabuisi-Heath et  al., 2012) up to 15/μm in 
cerebellum (Napper and Harvey, 1988). Thus, precise, high-throughput 
quantification of spine morphology is critical.

Spine segmentation pipelines generally fell into two categories: 
rule-based or data-driven approaches. Computational methods that 
can segment and quantitate dendritic spines in either 2D or 3D 
imaging have been exhaustively reviewed in 2020 (Okabe, 2020), 
we will try here to complete this view with the last recent approaches.

Rule-based pipelines rely on features established by image analysts 
(or neurobiologists) regarding dendritic spines characteristics. Most 
segmentation pipelines adopted a two-step strategy: first segmenting 
the entire dendrite tree and then extracting the spines.

Dendrite segmentation can rely on intensity thresholding, such as 
global Otsu (Li et al., 2022), multilevel thresholding (Kashiwagi et al., 
2019) or adaptive thresholding (Ekaterina et al., 2023). Platforms like 
Vaa3D offer diverse segmentation methods with user-friendly 
visualization interface (Peng et al., 2010).

Uniform staining quality significantly enhanced the performance 
of threshold-based approaches. When image quality is insufficient for 
reliable segmentation, preprocessing steps such as smoothing or 
denoising can be  required (Smirnov et  al., 2018; Das et  al., 2021; 
Argunşah et al., 2022). Targeting the inherent signal heterogeneity in 
confocal and two-photon images, the SmRG algorithm integrated 
Region Growing (RG) procedure with a mixture model describing the 
signal statistics (Callara et al., 2020). This allows SmRG to calculate 
local thresholds for iteratively growing segmented structure, thus 
enabling the 3D segmentation of complex neurons.

Dendritic spine segmentation 
strategies

One strategy uses the differences in pixel intensity between 
dendritic spines and shaft after staining (see Figures  2A,B). The 
implementation of intensity-based criteria varies among segmentation 
approaches. For example, the Spot Spine assumes spine heads have 
stronger signals, locating and segmenting them by finding local 
intensity maxima (Gilles et al., 2024). In contrast, 3dSpAn can handle 
cases where spine are weaker (light blue in Figure 2B) than the shaft 
(Figure 2B, dark blue). It iteratively isolates spine structures by applying 
multi-scale morphological opening operations (Das et al., 2021).

Skeletonization is another strategy for spine segmentation 
(Figure 2C). By using the fact that spines are considerably shorter than 
dendritic shaft, Rusakov et al. and SpineTool skeletonized the dendritic 

structure and identified short branches as potential spines (Rusakov 
and Stewart, 1995; Ekaterina et  al., 2023). In contrast, SpineJ 
(Figure  2D) infers a graph structure from the generated skeleton 
(Levet et  al., 2020). Then it identifies spine by analyzing nodes 
topological properties (e.g., leaf nodes and their connectivity patterns).

Other strategies first reconstructed the dendritic shaft and then 
considered external protrusions as spine candidates. Kashiwagi et al. 
(2019) proposed to fit the dendritic shaft using elliptical cross-sections 
(Figure 2E). Protrusions extending beyond the reconstructed shaft are 
regarded as candidate spines and are subsequently filtered according 
to geometric characteristics (volume or axial elongation).

A key advantage of rule-based methods is their strong 
interpretability, without the need for annotation, making them ideal 
when annotated datasets are scarce. However, since these methods rely 
on fixed logic, ensuring consistency in imaging conditions 
(microscopy modality, laser intensity, magnification and numerical 
aperture…) is crucial for optimal performance.

Data-driven pipelines, which include traditional machine learning 
methods [e.g., clustering methods like K-means (MacQueen, 1967; 
Jain et al., 1999)] see Glossary and deep learning methods [like the 
widely used U-Net for semantic segmentation (Ronneberger et al., 
2015)], have been effectively applied in dendritic spines analysis.

Xiao et  al. trained a fully convolutional network (FCN, see 
Glossary) to achieve automated detection of dendritic spines in 2D 
images (Xiao et al., 2018). Regarding 3D dendritic spine segmentation, 
Vidaurre-Gallart et  al. elegantly developed a dataset of in  vitro 
confocal images from healthy human tissue and trained a 3D U-Net 
model for segmentation (Vidaurre-Gallart et al., 2022). They created 
an image user interface allowing post-processing, such as reconnecting 
isolated dendrites and applying the watershed algorithm to resolve 
overlapping dendritic spines.

Some other tools like DeepD3 offers capabilities for both training and 
prediction and provides dendritic spine and dendrite segmentation 
(Fernholz et al., 2024). The deep learning framework utilizes a diverse 
dataset derived from two-photon and confocal imaging techniques, 
incorporating both in  vivo and in  vitro data, and supporting various 
fluorophores (tdTomato, Alexa-594, EGFP). DeepD3 employs an enhanced 
U-Net architecture with a dual-decoder network, generating separate 
segmentation masks for dendrites and spines. Post-processing includes 
filtering small segments, dilating dendritic maps to ensure that spine 
candidates are close to dendrites, and applying methods like flood-filling (or 
threshold-based 3D connected component analysis) for region of interest 
detection, with adjustable parameters to refine segmentation results. A 
graphical user interface is provided for both training and prediction.

In addition to develop new segmentation models, the extension of 
existing deep learning tools plays an important role in enhancing the 
accessibility of these technologies for neuroscientists. As an example, 
Schünemann et al. (2025) employed the Zeiss arivis Cloud platform to 
train and deploy a model for human dendritic spine morphology analysis. 
Similarly, the recent RESPAN pipeline (Garcia et al., 2024) integrates 
CSBDeep (Weigert et al., 2018) for image restoration (improving signal 
and contrast) with nnU-Net (Isensee et al., 2021) for spine segmentation, 
offering a combined workflow solution.

Other data-driven techniques such as clustering algorithms, 
operating without manual annotation, are also crucial. These 
approaches leverage intrinsic data properties to discern structures, 
offering distinct advantages for complex biological datasets where 
extensive annotation is prohibitive notably in nanoscale imaging.
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FIGURE 2

List of existing tool for spines and neurons segmentation. Schematic overview of dendritic spines segmentations using different ruled based 
approaches (A–E) or data driven modalities (F–H). Deep learning methods can use semantic segmentation (F) or instance segmentation (G). 
(H) SENPAÏ Tool for neuron and spine segmentation is using both ruled based and data driven approaches. In the end, neurons in a dense population 
will be segmented as an individual cell (blue and magenta).
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Some techniques such as the multiphoton confocal microscopy allow 
the visualization of very dense neurons arborization. The resolution/SNR 
are sufficient to resolve spine head but mitigate spine neck detection. 
Previously, we developed some algorithm to infer neck central line using 
geodesic distances (Jain et al., 2021). However, since neck width was 
proposed to be related to electrical resistance, investing much effort in 
super-resolution technique would make neck detection more accurate 
and biologically relevant. The use of the 3D-STED microscopy, 
overcoming the diffraction of light, enables the characterization of these 
small protrusions. Segmenting these neurons requires the use of 
algorithms but only a few of them are able to deal with a complex cell 
packing (Li et al., 2019; Milligan et al., 2019; Callara et al., 2020).

We recently develop a new framework called SENPAI (SEgmentation 
of Neurons using PArtial derivative Information) that extract information 
of single neurons at micro and nanoscale within brain tissue. As a proof 
of concept, we considered L7-GFP transgenic mice that express cytosolic 
GFP within cerebellar Purkinje cells. SENPAI is working with a two-step 
segmentation and parcellation process which gives back the morphology 
at the nanoscale when combined with super-resolution.

SENPAI constitute a topological informed data driven approach to 
neuronal reconstruction. We used k-means clustering (Figure 2H) on raw 
or 3D Gaussian smoothed image to retrieve, respectively, tiny details 
(spine neck) or higher structures (dendrites & spine heads). To decipher 
border of the object (neuron or spine), we  used a k-means scalable 
algorithm exploiting spatial derivatives of intensity. Indeed, the 
fluorescence is smoothly decreased at the neuronal border. We  took 
advantage of intensity second derivatives that are negative within the 
inner edge of this intensity transition. Classes with positive second 
derivatives were considered as background whereas neuronal shape of 
interest is found in highest average intensity classes that present negative 
second derivatives in the 3 directions (Figure 2H).

The second step of SENPAI is the parcellation of the segmented image 
which exploits topographic distances. To separate neurons from the entire 
neuronal population, SENPAI uses the 3D watershed transform relying on 
cell body seeds used as neuronal core. This separation is applied on the 
previous segmentation mask, making the connection between dendritic 
branch and the related cellular body seed colorizing them into a single 
neuronal entity. In high-resolution datasets when spine necks are not 
detectable, the same strategy is used to assign small spines to a specific 
dendritic branch, which serves as the neuronal core. Thus, our SENPAI 
pipeline can isolate and extract neuron’s morphology (Figure 2H, pink 
neuron) from neuronal branches to dendritic spines even in a dense 
arborization context like in brain tissue.

Discussion

Enhancing segmentation performance: 
architectural and non-architectural 
strategies

Both rule-based and data-driven methods have made significant 
progress in 3D dendritic spine segmentation, each offering unique 
advantages in terms of interpretability and robustness.

Data-driven approaches, especially deep learning, enable different 
levels of segmentation. Semantic segmentation (Figure 2F & Glossary) 
classifies all spine pixels into a single category (spine) (Long et al., 2015); 
instance segmentation (Figure 2G) further identifies and distinguishes 
each individual spine instance (He et  al., 2017); and panoptic 

segmentation integrates both, distinguishing individual spine instances 
while assigning a semantic label to every pixel, including the dendritic 
shaft, background, and other cellular structures (Kirillov et al., 2019).

Moving forward, combining the strengths of both approaches, 
such as refining lightweight semantic segmentation models with 
efficient, rule-based post-processing strategies, remains a promising 
direction. These hybrid methods strike a favorable balance between 
computational cost and segmentation accuracy, while offering strong 
potential for generalization across diverse datasets.

To further improve the accuracy of semantic segmentation models, 
DeepD3 has demonstrated that modifying model architectures can lead to 
significant performance gains (Fernholz et  al., 2024). Its customized 
network design demonstrates superior performance over the conventional 
U-Net model, highlighting the effectiveness of architectural optimization.

Improvements in segmentation quality depend not only on model 
architecture but also on non-architectural factors—such as image 
preprocessing, training procedures, inference strategies, and post-
processing techniques—which play crucial roles. A representative 
example is the nnU-Net framework, which, although based on the 
standard U-Net architecture, adapts key non-architectural parameters 
using rule-based strategies (Isensee et al., 2021). These include image 
cropping based on object size and optimizing resampling resolutions 
based on voxel spacing. Such adaptive mechanisms have enabled 
nnU-Net to achieve leading performance across multiple 3D medical 
image segmentation tasks, underscoring the importance of these 
non-architectural aspects in performance optimization.

The vision and reality of instance 
segmentation: from ideal goals to feasible 
path

Semantic segmentation allows classifying pixels as belonging to 
spines or not. A further level of complexity involves distinguishing 
individual spines from one to another. To achieve this, instance 
segmentation can be used to identify distinct spine instances within the 
‘spine’ semantic class. For example, the Segmentation Anything Model 
(SAM) (Kirillov et al., 2023), a pre-trained instance segmentation model 
trained on 11 million 2D natural images, has demonstrated robust 
generalization capabilities. Subsequently, the Medical SAM Adapter 
(Med-SA) was developed by fine-tuning approximately 2% of the SAM 
model’s parameters (~13 million), effectively adapting the model to 17 
different medical imaging modalities and enabling 3D image 
segmentation (Wu et  al., 2025). These results indicate SAM’s strong 
potential for cross-domain adaptation and 3D instance segmentation.

However, despite their promise, the practical application of instance 
segmentation models remains challenging. For instance, training Med-SA 
requires substantial computational resources (four NVIDIA A100 GPUs 
with 80 GB of memory each). Such hardware is not readily accessible to 
most researchers or laboratories, especially when compared to the limited 
resources available on free platforms like Google Colab, which typically 
offer a single, less powerful GPU (NVIDIA T4) with around 16 GB of 
memory. Furthermore, the scale of existing 3D datasets for dendritic 
spine segmentation is significantly smaller than those available in the 
medical imaging domain. For comparison, the BraTS2021 dataset (Baid 
et al., 2021) used for training Med-SA includes 1,280 3D samples, whereas 
spine segmentation datasets are considerably more limited. These 
challenges in computational resources and data availability constrain the 
feasibility of adopting instance segmentation models in current research.
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As a result, most existing pipelines continue to rely on semantic 
segmentation, where pixels are labeled as belonging to any spine without 
distinguishing between individual instances. While effective for detecting 
the presence of spines, semantic segmentation typically produces a single 
collective mask, making it difficult to separate adjacent spines, especially 
when they are densely distributed or intertwined. Given this limitation, 
rule-based post-processing methods remain essential for refining 
segmentation results and achieving the necessary isolation of individual 
spines. Therefore, optimizing semantic segmentation pipelines in 
combination with effective post-processing remains a vital and pragmatic 
focus for advancing dendritic spine analysis. Achieving instance 
segmentation in the future will depend on continued breakthroughs in 
models and algorithms, broader access to computational resources, and 
expansion of datasets. In contrast, achieving panoptic segmentation also 
requires labeling strategies that can clearly show the microenvironment 
around dendritic spines, such as nearby axons. Membrane labeling 
techniques can help by providing the information needed enabling precise 
semantic annotation of each pixel within an image.

High-quality updated annotation and 
model adaptation with evolving 
microscopy technologies

Despite the availability of powerful pre-trained models, annotation 
and retraining with new datasets is unavoidable. This is primarily due to 
the continuous advancement in imaging technologies and labelling 
techniques, which introduce characteristics that differ from those present 
in the original training sets. As a result, pre-trained models may 
experience performance degradation when applied to novel datasets. The 
typical workflow for 3D annotation and model training involves: 
converting and preprocessing microscopy data, performing semantic 
annotation with specialized tools, organizing the data into a model-
compatible format, and training deep learning models on the annotated 

dataset (Supplementary Figure S2). Both the quantity and quality of 
annotated data play critical roles. However, generating precise 3D 
annotations are time-consuming processes involving meticulous layer-by-
layer and pixel-by-pixel inspection.

3D annotation platforms

Several bioimage analysis platforms with 3D annotation 
capabilities have been developed, each offering distinct advantages, as 
exemplified in Table 1.

3D annotation requires broad support for the import and export of 
various image formats. For example, the Icy platform provides wild 
compatibility with microscopy image formats, thereby offering 
considerable flexibility during annotation (De Chaumont et al., 2012). 
Efficient initial pre-annotation methods can substantially reduce the 
manual workload. For instance, the HK-Mean method implemented in 
Icy enables threshold-based preliminary segmentation to expedite this 
process (Dufour et al., 2008). However, despite the use of automated 
approaches, substantial manual verification and refinement are still 
required, rendering the process time-consuming. To accelerate 3D 
annotations, tools that support efficient interpolation and large-area 
corrections are highly valuable. A commonly used approach for 3D 
annotation involves contour-based manual labeling on individual slices. 
Tools such as Napari and 3D Slicer support automatic interpolation 
between unannotated slices, thereby improving annotation efficiency 
(Fedorov et al., 2012; Chiu and Clack, 2022). Notably, 3D Slicer extends 
the brush tool into a 3D sphere, which enables more efficient volumetric 
labeling thus speeding up the manual workload.

All platforms provide basic erasing functions, while 3D Slicer 
additionally supports direct 3D object clipping, enabling precise 
correction operations. 3D Slicer offers volumetric visualization, 
facilitating prompt correction, and thereby improving the overall 
efficiency and accuracy of the annotation process.

TABLE 1  Multi-bioimage analysis platforms provided 3D annotation.

Platform and version Icy 2.5.2 3D Slicer 5.6.2 Napari 0.4.19 Imaris

License Type Open-source Open-source Open-source Commercial

Development Stage Completed Completed Napari-nD-annotator under 

active development

Completed

Operating System Windows, macOS, Linux Windows, macOS, Linux Windows, macOS, Linux Windows, macOS

Installation Method Direct installer Direct installer Install Napari, then install 

plugin or additional Python 

packages

Direct installer

Supported Microscopy Image 

Formats

Native support for most 

microscopy formats (e.g., CZI, 

LIF, TIFF, ND2)

Native support TIFF; Medical 

imaging formats (e.g., DICOM)

Native support for TIFF; 

extended microscopy formats 

(CZI, LIF) require plugins

Native support for most 

microscopy formats (e.g., CZI, 

LIF, TIFF, ND2)

Fine 3D Annotation Methods Manual contour drawing on XY 

slices

Manual contour drawing with 

slice interpolation; 3D spherical 

brush available

Manual contour drawing on XY 

slices with slice interpolation

Manual contour drawing on XY 

slices

3D Rendering of Images and 

Annotations

Supported Real-time rendering during 

annotation

Supported Real-time rendering during 

annotation

Initial Coarse Annotation 

Methods

Thresholding, HK Mean 

clustering

Thresholding Thresholding Thresholding

Error Correction Methods Eraser 3D eraser, 3D scissors Eraser 3D eraser
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In the next years, we  may expect that combining semantic 
segmentation with ruled-based approaches on multi-scale imaging 
will provide nice information both on neuronal dendritic tree 
complexity and dendritic spines morphology which are crucial to 
decipher many neuropsychiatric diseases.
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Glossary

Related to Advanced Microscopy

Reconstruction ringing-artifacts - A type of image distortion that 
appears as spurious ripples or oscillations around sharp edges or high-
intensity spots in a reconstructed image. This often occurs due to 
limitations in the mathematical algorithms (like the Fourier 
transform) used to process the raw microscopy data, especially when 
high-frequency information is lost or truncated.

Delaunay triangulation - A computational geometry method for 
connecting a set of discrete points (or localizations) into a mesh of 
triangles. Triangles are chosen so that the circumcircle of the triangle 
should not include any points of neighboring triangles.

Ripley’s function - A spatial statistical method. It is used to assess 
whether a set of points is clustered, regularly spaced, or randomly 
distributed. It evaluates the number of neighboring points within a 
given radius around each point, and compares this to what would 
be expected under complete spatial randomness. Commonly used in 
cell biology and neuroscience to analyze the spatial organization of 
cells, synapses, or molecules.

SODA - SODA stands for Standard Object Distance Analysis. This is 
a free plugin running on Icy software that use Ripley’s function to 
analyse spatial distribution of spots or STORM localizations. When 
used with 2 channel pictures of single molecule Localization 
microscopy, SODA can indicate whether green molecules are 
randomly distributed or if they are statistically associated with red 
molecules. SODA can also be used to check if one protein is associated 
or not to synapse using a pre or post-synaptic marker (See Lagache 
et al. Nature Comm 2018 for details or Breton et al. Neurophotonics 
2024 for review).

Super-resolution microscopy - A family of light microscopy 
techniques that circumvent the diffraction limit of light using physical 
or computational methods to achieve a spatial resolution higher than 
that of conventional light microscopes (typically <200 nm). This 
includes SIM, STED, STORM, PALM, SMLM, MINFLUX.

Airyscan - A detector technology for confocal laser scanning 
microscopy. It replaces the conventional single-point pinhole with an 
area detector to capture more spatial information. This information is 
then computationally processed to reconstruct an image with higher 
resolution and a better signal-to-noise ratio than standard confocal. 
This technique can be  applied to both cultured cells and tissue 
samples. Resolution typically ranges from 120 to 140  nm. This 
technique gives higher resolution than confocal but less than “Super-
resolution techniques”. Although the resolution is slightly lower 
compared to SIM, the signal homogeneity is particularly advantageous, 
as it greatly facilitates image segmentation and quantification.

SIM (Structured Illumination Microscopy) - A super-resolution 
technique. It illuminates the sample with a patterned light (e.g., 
stripes) causing interference with the sample. By analyzing the " Moiré 
pattern" created by the interaction of this pattern with the sample's 
structure, a higher-resolution image is computationally reconstructed 

from multiple raw images. Resolution typically ranges between 100 
and 120  nm. This technique is highly effective in neuronal cell 
cultures. Its application in tissue samples is possible but more 
challenging, as artifacts may arise with increasing imaging depth.

STED (Stimulated Emission Depletion) - A super-resolution 
technique. It uses two lasers: an excitation laser to illuminate a spot of 
fluorescent molecules, synchronized with by a donut-shaped 
"depletion" laser that deactivates fluorescence in the outer region of 
the spot, effectively shrinking the point spread function. Resolution 
typically ranges from 40 to 80 nm. This technique can be applied to 
both cultured cells and tissue samples. However, imaging thick 
specimens may require clearing to minimize light scattering and 
improve acquisition quality.

STORM (Stochastic Optical Reconstruction Microscopy) - A 
single-molecule localization-based super-resolution technique. It uses 
photo switchable fluorescent probes, stochastically activating only a 
small, sparse subset of them in each camera frame. By precisely 
localizing these individual molecules and combining thousands of 
such frames, a high-resolution image is reconstructed. Resolution 
typically ranges from 10 to 50 nm. This technique can be applied to 
both cultured cells and tissue samples. However, imaging thick 
specimens is challenging (due to blinking buffer penetration for 
STORM, or oligos penetrations for PAINT) and light scattering.

MINFLUX (MINimal emission FLUXes) - A super-resolution 
technique that combines the principles of STED and single-molecule 
localization. It uses a donut-shaped excitation beam (dark in the 
center and bright around it) to probe fluorescence at different 
positions. By fitting photon count distributions obtained from 
multiple targeted excitation positions surrounding the fluorophore, 
the system triangulates the molecule’s location with high precision and 
low photobleaching due to reduced excitation intensity. It can achieve 
1-3 nm precision and is fast enough to track molecules live. Most 
published applications concerns cell culture up to now.

SNR (Signal-to-Noise Ratio) - A measure of signal quality. It 
compares the level of a desired signal to the level of background noise. 
A high SNR indicates a clean and reliable measurement.

PSF (Point-Spread Function) - This is a mathematical function that 
describes how the image of a single point is distorted by a microscopy 
system. For example, a fluorescent spherical bead with a physical 
diameter of 100  nm appears larger than 200  nm in fluorescence 
microscopy. The three-dimensional image of such a bead—commonly 
referred to as the point spread function (PSF)—reveals that the 
distortion is typically anisotropic in conventional microscopy, with 
greater deformation along the Z-axis than in the X and Y directions.

Related to Image Segmentation & Deep Learning Topic

HK-Mean - This segmentation method applies N-class thresholding 
based on K-Means clustering of the image histogram. It then performs 
object extraction in a bottom-up manner, guided by user-defined 
minimum and maximum object size constraints. Conventional 
thresholding typically employs two classes, with black representing the 
background and white denoting the object of interest. By using 
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HK-Means clustering, for example, it becomes possible to perform 
thresholding with four classes: white, black, and two intermediate 
grey levels.

FCN (Fully Convolutional Network) - A type of neural network 
model where all layers perform convolutions. Unlike traditional 
networks that have fixed-size outputs, FCNs can process input images 
of any size and produce an output map of a corresponding size (e.g., a 
segmentation mask). This makes them ideal for pixel-level tasks like 
identifying all cells in an image.

U-Net - A widely-used neural network model for biomedical 
image segmentation, named for its U-shaped architecture. The U 
shape is composed of 2 parts: the stem (the U center that extract 
interesting characteristics) and the decoders that extend resolution 
by up-sampling. Its design cleverly combines an understanding of 
the overall image context with the preservation of fine details, 
allowing it to achieve highly precise segmentation even with 
limited training data. This makes it particularly effective in fields 
like medicine and biology where large annotated datasets are 
often rare.

Dual-decoder network - An efficient neural network architecture 
designed to perform two related output tasks simultaneously from a 
single image. It operates in two steps: first, a shared Encoder analyzes 
the image to extract key feature information, performing an 
"understanding" role. Then, two separate Decoders use this shared 
information to construct different output maps. For instance, one 
decoder can generate the precise boundaries of cells (a boundary 
map), while the second decoder simultaneously generates a map 
identifying different cell types (a class map).

Panoptic segmentation - An image segmentation goal. It doesn't just 
distinguish "cell" from "background" (semantic segmentation), but 
also identifies each individual cell instance. The final result: every pixel 
in the image is labeled as either background or as belonging to a 

specific instance, like "cell 1", "cell 2", etc. This is crucial for accurate 
counting and single-cell analysis.

SAM (Segmentation Anything Model) - A foundation model for image 
segmentation. It was pre-trained on a massive general-purpose dataset 
containing 11 million images and over 1 billion segmentation masks. This 
extensive training equips it with powerful "zero-shot" segmentation 
capabilities, allowing it to segment virtually any unseen object in an 
image, often prompted by minimal user input like a single click or a box.

Med-SA (Medical SAM Adapter) - An efficient method for adapting 
the general-purpose SAM for medical image analysis. It enables the 
model to process various types of 3D medical data—a task the original 
2D SAM cannot perform.

Med-SA fine-tuning - "Fine-tuning" means taking a smart model 
(here, Med-SA) that has already been trained on a vast amount of 
general medical images, and then giving it specialized training on our 
own smaller, specific dataset (e.g., our images of a particular neuron 
type). This allows the model to quickly adapt and become an expert 
on our unique analysis task without starting from scratch.

GPU memory - This refers to the dedicated, high-speed memory on 
a Graphics Processing Unit (GPU). In deep learning, GPUs perform 
massive parallel computations. GPU memory acts as the GPU's 
"workbench"; its size determines the size and complexity of the images 
and neural network models that can be processed at once. Large GPU 
memory is critical for handling high-resolution 3D images or 
large models.

Dataset scale - Refers to the amount of data used for training and 
testing a model. It can be measured in various ways, such as the total 
number of images, the total number of annotated objects, or the total 
data storage size (e.g., Gigabytes, Terabytes). The scale of the dataset 
directly impacts the complexity of the computational methods that 
can be applied and the robustness of the resulting model.
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