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Introduction: Neuroinflammation, a pathophysiological process involved 
in numerous disorders, is typically imaged using [11C]PBR28 (or TSPO) PET. 
However, this technique is limited by high costs and ionizing radiation, restricting 
its widespread clinical use. MRI, a more accessible alternative, is commonly used 
for structural or functional imaging, but when used using traditional approaches 
has limited sensitivity to specific molecular processes. This study aims to develop 
a deep learning model to generate TSPO PET images from structural MRI data 
collected in human subjects.
Methods: A total of 204 scans, from participants with knee osteoarthritis (n = 15 
scanned once, 15 scanned twice, 14 scanned three times), back pain (n = 40 
scanned twice, 3 scanned three times), and healthy controls (n = 28, scanned 
once), underwent simultaneous 3 T MRI and [11C]PBR28 TSPO PET scans. A 3D 
U-Net model was trained on 80% of these PET-MRI pairs and validated using 
5-fold cross-validation. The model’s accuracy in reconstructed PET from MRI 
only was assessed using various intensity and noise metrics.
Results: The model achieved a low voxel-wise mean squared error 
(0.0033 ± 0.0010) across all folds and a median contrast-to-noise ratio of 
0.0640 ± 0.2500 when comparing true to reconstructed PET images. The 
synthesized PET images accurately replicated the spatial patterns observed in 
the original PET data. Additionally, the reconstruction accuracy was maintained 
even after spatial normalization.
Discussion: This study demonstrates that deep learning can accurately 
synthesize TSPO PET images from conventional, T1-weighted MRI. This 
approach could enable low-cost, noninvasive neuroinflammation imaging, 
expanding the clinical applicability of this imaging method.
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1 Introduction

The translocator protein (TSPO) is an 18-kDa protein primarily expressed on the outer 
mitochondrial membrane of multiple cell types, and is implicated in multiple physiological 
and pathological processes (Nutma et al., 2021). It was initially identified as the “peripheral-
type benzodiazepine receptor” (Braestrup and Squires, 1977). However, further studies have 
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revealed that TSPO is extensively distributed throughout various 
organs in the body, including the brain. In the central nervous system, 
its expression levels are very low in healthy conditions but become 
dramatically upregulated primarily by microglia and/or astrocytes in 
the context of neuroinflammatory conditions. Because of these 
expression properties, as well of our ability to image this protein using 
molecular imaging techniques such as [11C]PBR28 positron emission 
tomography (PET) imaging, TSPO has been extensively investigated 
as an in-vivo biomarker for neuroinflammation in various 
neuropathologies, such as neurodegenerative, psychiatric, chronic 
pain and other conditions (Loggia et al., 2015; Alshelh et al., 2022; 
Guida et al., 2022; Albrecht et al., 2019). However, the clinical utility 
of TSPO PET is hampered by its high costs, radiation exposure, and 
infrastructure requirements. Magnetic Resonance Imaging (MRI), in 
contrast, offers a safer and more widely accessible alternative. Previous 
studies have shown that MRI can detect structural and metabolic 
alterations associated with neuroinflammation (Albrecht et al., 2016; 
Quarantelli, 2015).

Leveraging this, multiple deep learning-based approaches have 
been developed to synthesize PET from MRI data to improve 
diagnostic performance, particularly in Alzheimer’s disease. Early 
approaches utilized 3D convolutional neural networks (CNNs) (Li 
et al., 2014) to learn nonlinear cross-modal mappings, outperforming 
conventional imputation techniques such as K-nearest neighbors. 
Models such as the 3D U-Net (Sikka et al., 2021) further improved 
spatial fidelity through skip connections and non-local feature 
aggregation. Generative Adversarial Networks (GANs) have since 
gained popularity for this task, with architectures like CycleGAN (Pan 
et al., 2021) employing cycle-consistency losses to learn bidirectional 
mappings, and pix2pix (Isola et  al., 2017; Jung et  al., 2018) using 
paired data with adversarial and L1 losses to generate sharper 
reconstructions. Additional innovations include normalization-aware 
adversarial U-Nets (Hu et al., 2019), which enhance learning through 
normalization strategies, and flow-based models such as Dual-Glow 
(Sun et al., 2019), offering efficient and invertible transformations. 
Recent models have introduced further refinements: BMGAN (Hu 
et  al., 2020) incorporates bidirectional mappings and medical 

supervision; GANDALF (Shin et al., 2020) integrates classification 
feedback directly into the training process to improve diagnostic 
utility; and FREA-UNet (Emami et al., 2020) employs frequency-
aware attention mechanisms to enhance PET realism and anatomical 
fidelity. Building on these advances, Theodorou et al. developed a 3D 
diffusion-based model (MRI2PET) that incorporates style transfer 
pre-training and a Laplacian pyramid loss to synthesize AV45-PET 
from T1-weighted MRI using unpaired data. Their approach boosted 
the AUROC for classification of Alzheimer’s disease, mild cognitive 
impairment, and cognitively normal individuals from 0.688 ± 0.014 
to 0.780 ± 0.005 on the ADNI dataset (Theodorou et  al., 2025). 
Similarly, Zhang et al. proposed BPGAN, a 3D GAN framework using 
a multi-convolution U-Net generator with gradient profile and 
structural similarity (SSIM) losses. Their model demonstrated 
improved PET synthesis quality and increased Alzheimer’s diagnostic 
accuracy by approximately 1% when synthetic PET was used in 
combination with MRI, compared to MRI alone (Zhang et al., 2022). 
Despite these advances, conventional MRI has low specificity for 
molecular-level processes. Inspired by the success of deep learning in 
medical image synthesis and translation, we  here investigate the 
feasibility of generating TSPO PET images from T1-weighted MRI 
scans. Prior studies have shown the effectiveness of conditional GANs 
for generating CT from MRI (Wang et al., 2023), PET from MRI using 
E-GAN (Bazangani et al., 2022), and Florbetapir PET for Alzheimer’s 
diagnosis (Sikka et  al., 2021). These methods have also enabled 
synthesis of high-dose PET from low-dose scans, reducing radiation 
exposure without compromising diagnostic quality (Sikka et al., 2021; 
Zhang et al., 2022; Sun et al., 2022). Our study aims to develop a deep 
learning model for PET image synthesis from T1-weighted MRI, using 
a 3D U-Net architecture (Figure 1) (Çiçek et al., 2016). We choose a 
3D U-Net structure over, e.g., GANs or diffusion models due to its 
robust training behavior, ability to capture diverse data distributions, 
and suitability for limited training datasets. The model’s encoder-
decoder structure facilitates the interpretation of imaging features and 
simplifies the synthesis process, making it a valid choice for PET 
synthesis from MRI. We therefore propose a tracer-specific modality 
conversion model based on U-Net, capable of generating synthetic 

FIGURE 1

A visual description of our approach. During training, the model learns to synthesize PET images from MRI, minimizing the discrepancies between 
original and reconstructed images. During inference, the model can generate new synthetic PET images from structural T1w MRI images.
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brain PET images from T1-weighted MRI scans. This approach, if 
successful and validated, would offer a cost-effective, non-invasive 
method for imaging neuroinflammation, providing new insights into 
MRI features relevant to glial activation and related processes. Our 
work demonstrates the feasibility of synthesizing TSPO PET images 
from structural MRI images, hence significantly contributing to the 
non-invasive characterization of neuroinflammation.

2 Materials and methods

This section outlines our experimental setup. The code, developed 
in Python 3.9, leverages deep learning libraries such as Pytorch and 
Monai (Cardoso et al., 2022). All computations were conducted on a 
server with four NVIDIA A100 GPUs (80GB RAM each) and 2 TB of 
System RAM.

2.1 Dataset

A total of 204 scans, from participants with knee osteoarthritis 
(n = 15 scanned once, 15 scanned twice, 14 scanned three times), back 
pain (n = 40 scanned twice, 3 scanned three times), and healthy 
controls (n = 28, scanned once) were included for this study. They 
underwent simultaneous 3 T MRI and TSPO PET neuroimaging with 
[11C]PBR28. During cross validations (see below) when an individual 
had multiple scans, care was taken to segregate all scans from that 
individual either in the training or in the test split. Each participant 
received 9–15 mCi of [11C]PBR28 intravenously, and was scanned 
using a Siemens Biograph mMR for 90 min. From each scan, a 
Stanrdardised Uptake Value (SUV) map was reconstructed using 
60–90 min post-injection data, which were attenuation-corrected 
using a T1-weighted structural data (multi-echo magnetization-
prepared rapid acquisition with gradient echo (MPRAGE); TR/TE1/
TE2/TE3/TE4 = 2530/1.64/3.5/5.36/7.22 ms, flip angle = 7°, voxel 
size = 1 mm isotropic) and the PseudoCT approach (Izquierdo-Garcia 
et al., 2014).

2.2 Pre- and post-processing

Our preprocessing pipeline, including alignment, skull stripping, 
and normalization, was performed using FSL (Jenkinson et al., 2012). 
Coregistration aligned both modalities to the same native space. Skull 
stripping, performed next, isolated the brain to eliminate non-brain 
signals. MRI volumes were normalized to a [0, 1] scale using robust 
scaling (1st and 99th percentiles) via MONAI, while PET volumes 
were normalized to SUV units based on individual minimum and 
maximum intensities. This approach harmonized intensities across 
subjects, thereby facilitating convergence in model training. 
Additionally, genotype data (high-affinity and mixed-affinity binder 
status), which affects [11C]PBR28 binding was used to adjust PET 
binding variability using FSL by regressing out the effect of genotype 
before further analysis (Owen et al., 2012). We implemented a 5-fold 
cross-validation strategy, dividing the 204 cases into five subsets. Each 
fold uses 80% of the data for training and 20% for testing, rotating 
across all subsets. To ensure data independence and avoid data 
leakage, we took special care when handling repeated acquisitions 

from the same subjects. Specifically, we  ensured that all scans 
belonging to a given subject (i.e., repeated scans) were assigned to the 
same fold—either in the training, validation, or test set. Moreover, the 
distribution of different diagnostic groups was stratified across folds 
as evenly as possible to maintain balance during training and testing. 
The model’s objective (see “2.3 Model” section) was to synthesize 
TSPO SUV maps from structural MRI, while the reconstruction 
performance was evaluated against real PET images in the test set (see 
“2.4 Model Evaluation” section). This validation approach ensures 
robust assessment of the model’s capability to generalize from MRI to 
PET in our diverse patient cohort. To ensure a comprehensive and 
robust assessment of the synthesized PET image quality and the 
efficacy of our deep learning model (see below), a linear registration 
to MNI space and a nonlinear warping were applied to all T1 MRI 
images together with the true and synthesized PET images. This 
consistent registration enabled a thorough and standardized 
evaluation of the synthesized PET images against the true PET targets, 
using intensity, asymmetry, noise, and regional metrics as detailed 
below. Furthermore, under the hypothesis that the reconstruction 
process could filter out unstructured noise, we  also compared 
reconstructed PET images to smoothed real PET images (4 mm full 
width half maximum (FWHM) kernel Gaussian filter).

2.3 Model

The 3D U-Net architecture was specifically adapted for the task of 
synthesizing PET images from MRI inputs. The core of the model’s 
design is a depthwise separable convolution-based encoder, which 
incorporates four downsampling layers. This approach minimizes the 
number of parameters in the model, thereby enhancing computational 
efficiency and facilitating the handling of three-dimensional data 
while reducing risk of overfitting. Each layer in the encoder and 
decoder pathways is comprised of 32 channels, optimizing the model’s 
capacity to capture a wide range of features in 3D medical images 
while conserving RAM usage.

Depthwise separable convolutions, a key component in our 
model, partition the standard convolution operation into two stages: 
depthwise convolutions and pointwise convolutions. This strategy, as 
discussed by Chollet (2017), drastically lowers the parameter count, 
thereby allowing for the inclusion of more channels in each layer 
without a proportional increase in computational demand. This 
technique is therefore instrumental in achieving high efficiency in 
feature extraction from volumetric data.

Moreover, the final layer of the encoder integrates a self-attention 
mechanism, thereby augmenting the model’s capability to understand 
global contextual relationships alongside local feature extraction. This 
enhancement is key for capturing long-range dependencies across the 
volumetric space of the input data and is hypothesized to aid in 
capturing underlying biological and anatomical structures.

On the decoder side, the architecture uses transpose convolutions 
for the purpose of upsampling, effectively restoring the spatial 
resolution that is reduced during downsapling. Skip connections, 
bridging corresponding layers in the encoder and decoder, are 
employed to reintroduce high-resolution details and features into the 
reconstructed images, ensuring that the latter can exploit the intricate 
details present in the original MRI scans. The training of the model 
was conducted over 50 epochs, using the Adam optimizer. The loss 
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function we employed is a hybrid formulation that combines binary 
cross-entropy (BCE) and MSE, defined as follows in Equation 1:

	 ( ) ( ) ( )ˆ ˆL ·BCE , 1 ·MSE ,y y y yα α= + −
	 (1)

where y denotes the true PET images, ŷ , represents the synthesized 
PET images, and α is a weighting factor that balances the contribution 
of each component to the total loss set as 0.5 in our experiments. This 
dual loss function is designed to ensure fidelity both in terms of the 
visual similarity and the voxel intensity distributions between the 
synthesized and true PET images, thus addressing both qualitative and 
quantitative aspects of the image synthesis task. In designing the 3D 
U-Net for PET image synthesis, several architectural choices were made 
to balance the expressiveness of the model and mitigate the risk of 
overfitting. First, the use of depthwise separable convolutions in both 
the encoding and decoding paths reduces the number of parameters by 
decoupling the spatial and channel-wise convolutions. This significantly 
lowers the model’s computational complexity while retaining the ability 
to extract meaningful spatial patterns, particularly important given the 
limited dataset. Additionally, group normalization was employed in all 
convolutional blocks, which is more stable for smaller batch sizes, 
helping to regularize training without the need for very large mini-
batches. Moreover, multi-head self-attention layers were selectively 
added at higher resolutions to allow the model to capture long-range 
dependencies in the input data. These attention layers enhance the 
model’s ability to understand complex global relationships across 
volumetric inputs, which is critical for synthesizing detailed functional 
brain images. To further combat overfitting, skip connections are used 
between corresponding encoding and decoding layers, facilitating 
gradient flow and reintroducing high-resolution details into the output 
images. Finally, the model’s hybrid loss function (combining binary 
cross-entropy and mean squared error) is designed to encourage both 
structural and voxel-level fidelity in the synthesized image.

2.3.1 Model architecture
The model is a 3D convolutional neural network based on a U-Net-

like encoder-decoder structure, designed to process volumetric data of 
shape 96 × 96 × 96. The architecture incorporates residual learning, self-
attention mechanisms, and optional depthwise separable convolutions 
to improve representational capacity while maintaining computational 
efficiency given the relatively limited training sample size. The overall 
structure consists of an initial projection layer, four levels of encoder and 
decoder blocks with skip connections, a central bottleneck, and a final 
reconstruction stage. Group normalization and Swish activation 
functions are used throughout the network to enhance training stability. 
The encoder comprises a series of DownBlock modules, each containing 
a residual block followed by an optional attention block. Between 
resolution levels, spatial downsampling is applied via strided 3D 
convolutions. The number of channels is progressively increased across 
resolution levels, following a multiplicative schedule. The bottleneck 
(MiddleBlock) processes the most compact feature representation 
through two residual blocks and an attention mechanism. The decoder 
mirrors the encoder in structure and employs UpBlock modules that 
concatenate the corresponding skip connections from the encoder. 
Upsampling is achieved via transposed 3D convolutions. The network 
concludes with a group normalization layer, a Swish activation, and a 
final 3D convolutional layer that projects the output back to a single 

channel. A Sigmoid activation constrains the final output to the [0, 1] 
range, suitable for applications such as segmentation or reconstruction. 
The complete architecture contains approximately 490,401 trainable 
parameters. Table 1 summarizes the major components of the model 
and their respective configurations.

2.4 Model evaluation

To rigorously assess our model’s performance in PET image 
synthesis, we  employed a comprehensive framework comprised of 
various quantitative metrics, which are computed both at voxel level and 
at parcellation level. The latter, region-of-interest (ROI)-wise analysis 
was conducted using the cortical and subcortical Harvard-Oxford 
atlases (Desikan et al., 2006). Voxel-wise analysis incorporated the MSE 
to gage reconstruction accuracy, with percentage difference maps 
highlighting spatial error distribution. We also employed a metric called 
normalized difference (NormDiff) defined in Equation 2:

	
( )

( )
−

=
+

Reconstructed TrueNormDiff Reconstructed True 	
(2)

This metric evaluates relative errors, disregarding absolute 
intensity levels and has the advantage of being bounded between −1 
and 1. Additionally, we included CNR was calculated due to its clinical 
relevance in diagnostic imaging. In this paper, the following definition 
of CNR was adopted as expressed in Equation 3:

	
( ) ( )

( )
−

=
+

1 2
1 2

mean ROI mean ROICNR std ROI ROI 	
(3)

TABLE 1  Summary of the 3D U-Net model architecture.

Module Output 
shape

Layer type Parameters

Input −1, 1, 96, 96, 96 - -

Image projection −1, 32, 96, 96, 96 Conv3D 896

Encoder stage 1 −1, 32, 96, 96, 96 2 × Residual + 

Downsample

~4.2 K

Encoder stage 2 −1, 32, 48, 48, 48 2 × Residual + 

Downsample

~4.2 K

Encoder stage 3 −1, 32, 24, 24, 24 2 × Residual + 

Downsample

~4.2 K

Encoder stage 4 −1, 32, 12, 12, 12 2 × Residual + 

Attention

~4.2 K

Bottleneck −1, 32, 12, 12, 12 Residual + Attention 

×2

~8.5 K

Decoder stage 1 −1, 32, 12, 12, 12 Attention + Residual ~8.5 K

Decoder stage 2 −1, 32, 24, 24, 24 Upsample + Residual ~8.5 K

Decoder stage 3 −1, 32, 48, 48, 48 Upsample + Residual ~8.5 K

Decoder stage 4 −1, 32, 96, 96, 96 Upsample + Residual ~8.5 K

Final Conv −1, 1, 96, 96, 96 Conv3D 1,089

Output −1, 1, 96, 96, 96 Sigmoid 0

Total 490,401
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Since CNR varies locally, to produce a reliable global estimate for 
each image pair we proceeded as follows: we sampled ROI1 and ROI2 
times (size: 4x4x3 voxels) at random 1,000 times in each PET image, 
computed CNR for each ROI, and compared the median CNR 
between the original and the reconstructed image.

2.5 Statistical analysis

To assess agreement between reconstructed and smoothed 
normalized SUV values, Bland–Altman analysis was performed, 
calculating mean differences and limits of agreement (±1.96 standard 
deviations). Pearson correlation coefficients with associated p-values 
were computed to evaluate linear relationships between reconstructed 
and smoothed SUVs region-wise. For group comparisons, subjects 
were divided into “Low SUV” and “High SUV” groups based on the 
median smoothed SUV value within each region. Differences in 
reconstructed SUV values between these groups were tested using the 
non-parametric Mann–Whitney U test. Statistical significance was 
considered at p < 0.05, and significant differences were annotated 
accordingly in the figures.

3 Results

Table 2 shows the average normalized SUV evaluated in the 
original, smoothed original and reconstructed images and Figure 2 
presents the result of the reconstruction for a representative subject 
from the test set. In particular, the first row displays original 
intensity- normalized structural MRI and PET images, while the 
second row presents our reconstructed images (left) and the original 
PET image post Gaussian smoothing. Figures 3, 4 show the results 
of the region of interest (ROI)-wise analysis of the average 
normalized SUV signal in the smoothed and reconstructed images. 
Except for a single statistically significant difference observed in the 
left cerebral white matter in the CLB group, no significant 
differences were found between the original (smoothed) and 
reconstructed PET data (Figure 3). Figure 4A shows boxplots of 
reconstructed SUV values stratified by median splits of the 
smoothed SUV within each region. After removing outliers, 
statistically significant differences between “Low SUV” and “High 
SUV” groups were observed only in a subset of regions: the left 
cerebral white matter, left thalamus, and the lateral ventricles. 
Among these, all showed p-values below 0.05 except for the right 
lateral ventricle, which demonstrated a trend-level difference. As 
shown in Table  3, several regions—including the left thalamus, 
caudate, pallidum, amygdala, and lateral ventricles—showed lower 
p-values when this same analysis was stratified by genotype (MAB 
or HAB) compared to the full cohort. This suggests that accounting 
for genotype reduces inter-subject heterogeneity and enhances the 

sensitivity to detect preserved SUV differences in the reconstructed 
images. Because the Ala147Thr polymorphism affects binding 
affinity (Owen et  al., 2012), this observation further boosts the 
confidence that our method is genuinely sensitive to TSPO PET 
signal. None of the other regions exhibited statistically significant 
effects and are now shown. Figure  4B presents scatter plots of 
reconstructed versus smoothed SUV values for the same regions, 
highlighting positive associations and partial preservation of SUV 
magnitude information in the reconstructions. Figure 4C displays 
Bland–Altman plots for these regions, showing that most differences 
fall within ±1.96 standard deviations, indicating overall agreement. 
Notably, larger deviations were observed at the extremes of the SUV 
range, consistent with a regression-to-the-mean effect in the 
reconstruction. Together, these results suggest that while T1-based 
reconstruction using the applied 3D-UNet method may not fully 
capture all TSPO-binding related information, it retains some 
degree of normalized SUV magnitude information. Furthermore, 
the observed genotype-specific improvements in regional 
differentiation further support the relevance of stratified analyses 
in MRI-to-PET prediction frameworks. Figure  5 shows the 
normalized difference, mean squared error (MSE), percentage 
difference analysis and contrast-to-noise ratio metrics evaluated in 
the smoothed and reconstructed images. As also detailed in Table 4, 
we achieved a low MSE of 0.0034 ± 0.0010 (to be compared with the 
input and output values which span the interval [0, 1]) for raw 
synthesized PET, indicating minimal voxel-wise intensity error. 
Smoothing the synthesized PET images further reduces 
MSE. NormDiff, as defined in the 4.4 Section, showed a mean close 
to zero, confirming an unbiased reconstruction of PET SUV maps. 
Smoothing the synthesized images further lowered this measure, 
suggesting that our model could potentially also function as a signal 
enhancing smoothing filter. CNR, as defined in the 2.4 Section, 
calculations yielded similar average values across raw and smoothed 
synthesized images, demonstrating the preservation of spatial 
characteristics in synthesized PET.

The mean percentage difference between synthesized and true 
PET was modest, with a slightly more negative bias observed after 
applying the smoothing filter. Additionally, we tested and compared 
the correlation (in terms of Pearson Coefficient) between 
reconstructed and smoothed SUV signal and reconstructed SUV and 
T1-MRI signal. As shown in Figure 6, our data show that the true 
TSPO PET signal exhibits generally low correlation with T1-weighted 
MRI values, suggesting it is not directly proportional to the anatomical 
signal. Together with that, the synthesized PET images also show 
relatively low correlations with T1, though slightly higher than the 
original PET, implying that the model does not simply replicate 
anatomical features but learns more complex patterns beyond direct 
structural mapping. Finally, the training and validation loss curves 
demonstrate a consistent decline and stabilization, indicating effective 
learning without evident overfitting (Figure  7). These results 
collectively underscore the model’s ability to synthesize PET images 
with high accuracy and minimal bias, reflected in low global error 
magnitudes and preserved intensity characteristics. The efficacy of the 
model is further evidenced by the consistent quality of PET synthesis 
across subsets, even after spatial normalization to MNI space, 
highlighting its robustness. Furthermore, we demonstrated that the 
model captures subject-specific TSPO binding patterns rather than 
general anatomical features.

TABLE 2  Normalized standardized uptake values (SUV) in the original, 
synthesized and smoothed PET images expressed as mean and standard 
deviation values.

Normalized 
SUV

Original 
image

Synthesized 
image

Smoothed 
image

Mean ± std 0.1419 ± 0.400 0.1548 ± 0.0452 0.1418 ± 0.0398
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FIGURE 2

Examples of a random subject from the test set. The first row displays original intensity- normalized structural MRI and PET images, the second row 
presents our reconstructed images (left) and the original PET image post Gaussian smoothing (fwmh = 4 mm), (right).

FIGURE 3

Results of ROI-wise analysis, which compared original to reconstructed PET images in terms of average normalized SUV in subcortical regions of 
healthy controls (HC) and subjects with back pain (CLB) and knee osteoarthritis (KOA). No statistically significant difference was found between original 
and reconstructed SUV in all the analyzed subcortical regions.
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4 Discussion

Neuroinflammation is being increasingly recognized for its role 
in a multitude of brain conditions; as such, monitoring this process 
may prove valuable in many clinical contexts. However, PET-based 
imaging of neuroinflammation -currently the best tool at our disposal- 
is hindered by high costs, and the need to expose patients to ionizing 
radiation. In contrast, MRI, which is safer and more widely available, 
could in principle offer an accessible alternative with its capability to 
detect neuroinflammation signal. We  developed a deep learning 
model for PET image synthesis from T1-weighted MRI to transform 
widely available MRI scans into informative PET-like 
neuroinflammation patterns. While a direct comparison with previous 
PET synthesis studies is complicated by differences in target tracers, 
datasets, and evaluation strategies, we identified a relevant benchmark 
study by Pan et  al. that reports percentage mean squared error 
(%MSE) values for several generative models trained on the ADNI 
dataset. Their architectures included GAN variants such as CycleGAN, 
VixGAN, L1GAN, and FGAN, with reported %MSEs ranging from 
3.05% (standard GAN) to 1.80% (FGAN) (Pan et  al., 2021). Our 
model achieved a %MSE of 3.4% for raw synthesized TSPO PET and 
3.1% after smoothing. Although slightly higher, these values are in line 
with prior work, especially considering the different clinical targets 

(TSPO vs. amyloid or FDG), which likely exhibit greater inter-subject 
variability and lower anatomical congruence. Moreover, our use of a 
3D U-Net offers a stable training performance, with its efficiency with 
small datasets and ability to capture diverse data distributions. In 
addition, the encoder-decoder design of the U-Net model allows an 
easy interpretation of the extracted imaging features simplifying the 
synthesis process, yet achieving comparable reconstruction accuracy. 
Our quantitative evaluation demonstrated high fidelity in PET 
reconstruction, with low voxel-wise error and minimal bias. 
We obtained a low voxel-wise mean squared error (0.0033 ± 0.0010) 
across all folds together with a median contrast-to-noise ratio of 
0.0640 ± 0.2500. Region-wise analysis showed no significant 
differences between original and reconstructed PET, except in a single 
ROI, and the model preserved key intensity and contrast features. 
Importantly, reconstructed images were significantly more similar to 
the subject’s own original PET than to those of other individuals, 
indicating that the model captures subject-specific TSPO binding 
rather than generic anatomical patterns (Table  5). These findings 
support the model’s robustness and its potential for individualized 
PET synthesis from MRI. The results of this study have important 
implications for neuroinflammation imaging and chronic pain 
management. We introduced a novel and non-invasive method that 
could transform current diagnostic and therapeutic strategies for 

FIGURE 4

Region-wise comparison between Reconstructed and Smoothed (true) normalized SUV after outliers removal. (A) Region-wise boxplots of 
reconstructed normalized SUVs, grouped by whether corresponding smoothed SUV values are below (Low SUV Group) or above (High SUV Group) the 
regional median; (B) Scatter Plots of normalized reconstructed vs. smoothed SUV values. The Pearson correlation coefficient together with the 
associated p-value is shown on top of each plot. (C) Bland Altman Plots of normalized reconstructed vs. smoothed SUV values. The blue line indicates 
the mean difference between the two measurements, while the red lines represent the limits of agreement (±1.96 standard deviations from the mean 
difference).
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chronic pain conditions offering an opportunity to monitor 
neuroinflammation in chronic pain patients more frequently with a 
reduced cost. This could not only facilitate personalized treatment but 
also the acquisition of large-scale studies, potentially leading to a 
better understanding of the complex mechanisms of chronic pain and 
to the discovery of new therapeutic targets. Our model estimates 
spatial patterns of TSPO PET signal which align with existing research 
indicating variable which is thought to reflect glial density in different 
pain pathologies (Loggia et al., 2015), suggesting MRI’s promise in 
capturing such variations.

In this study, we used the SUV as the standardized measure of 
PET tracer uptake. However, the debate on the optimal PET 
quantification methods remains ongoing (Keyes, 1995) and different 
metrics are frequently employed across studies. For example, the SUV 
ratio (SUVr) could be explored in future applications to allow for a 
more precise analysis of tracer binding in the brain by comparing it 
with a reference region (Yoder et  al., 2015). Additionally, moving 
beyond TSPO tracers to newer markers like P2X7, COX-2 could 
significantly enhance our understanding of microglial activation, 
paving the way for a multi-tracer PET synthesis approach (Yiangou 

et  al., 2006) which would significantly enhance the availability of 
neuroinflammation assessment across centers. Although T1-weighted 
MRI does not directly capture molecular information such as TSPO 
binding, our model successfully reconstructs PET images with strong 
image-level similarity to the originals. This suggests that the model 
may be  leveraging structural and volumetric features that are 
indirectly associated with neuroinflammatory processes, particularly 
in patient populations where such changes are more pronounced. 
TSPO expression reflects glial activation, which is not explicitly visible 
on conventional MRI; thus, the model’s performance likely relies on 
learning statistical correlations between anatomy and PET signal 
distributions. These findings highlight the need for caution in 
interpreting biological specificity. To improve physiological relevance, 
future research should explore the integration of additional MRI 
modalities—such as FLAIR, diffusion-weighted imaging, or perfusion 
MRI—which may better capture the underlying inflammatory 
processes, especially in regions like the cerebellum where discrepancies 
were observed.

Additionally, exploring the model’s applicability to other 
neuroinflammatory conditions beyond chronic pain could broaden 
its impact, making it a versatile tool in neurology and psychiatry.

4.1 Limitations and future directions

While our study demonstrates the feasibility of synthesizing 
TSPO PET images from structural MRI using a 3D U-Net, several 
limitations—both technical and clinical—must be acknowledged. 
First, the training dataset, though relatively large by simultaneous 
PET/MRI standards (n = 204), remains limited for deep learning 
applications and is derived from a single-center cohort. This may 
affect the model’s generalizability across scanners, imaging protocols, 
and patient populations. However, our deep model adopts modern 
U-Net components—such as residual blocks and attention layers—
that are known to improve performance in volumetric tasks, while 
replacing standard convolutions with depthwise separable 
counterparts to reduce the total number of trainable parameters 
without sacrificing accuracy. This architectural design was guided by 
the need to balance expressive power with parameter efficiency, 
given that our training dataset is relatively limited in size. 
Furthermore, the dataset is not publicly available, restricting 
opportunities for external replication. However, it will be  made 
available upon direct request to the senior authors and is expected 
to be publicly released in the near future. Together with that, future 
efforts will prioritize validation using multi-center, multi-vendor 
datasets and explore secure data-sharing approaches, such as 
anonymization or federated learning frameworks, to enhance 
reproducibility and robustness. Second, the model relies solely on 
T1-weighted MRI as input. While T1 captures structural anatomy, it 
lacks specificity for molecular or inflammatory markers like TSPO 
expression. The model likely learns statistical associations between 
anatomy and PET signal distributions rather than direct biophysical 
relationships. These associations could reflect subtle, non-obvious 
patterns or correlates of neuroinflammation—such as atrophy, 
regional vulnerability, or microstructural changes—that are not 
easily detectable by visual inspection but may still carry predictive 
value. We hypothesize that the model may detect true patterns of 
TSPO expression that are embedded in the MRI signal—though not 

TABLE 3  Region-wise p-values for differences in reconstructed 
normalized SUV between low and high original smoothed and 
normalized SUV groups, computed across the entire cohort and stratified 
by genotype.

Region ALL 
p-value

HAB 
p-value

MAB 
p-value

Left Cerebral White 

Matter 0.0047 0.0124 0.0159

Left Cerebral Cortex 0.6282 1 0.7302

Left Lateral Ventricle 0.0513 0.5493 0.4127

Left Thalamus 0.2949 0.1487 0.5556

Left Caudate 0.9452 0.0979 0.4127

Left Putamen 1 0.2451 0.4127

Left Pallidum 0.7308 0.8053 0.5556

Brain-Stem 0.9452 0.8053 0.4127

Left Hippocampus 0.6282 0.4595 1

Left Amygdala 0.8357 0.2451 0.7302

Left Accumbens 0.9452 0.9719 0.4127

Right Cerebral White 

Matter 0.6282 0.9719 0.1111

Right Cerebral Cortex 0.7308 0.9151 0.5556

Right Lateral Ventricle 0.366 0.647 0.5556

Right Thalamus 0.1375 0.0317 0.9048

Right Caudate 0.2343 0.3071 0.4127

Right Putamen 0.5338 0.3786 1

Right Pallidum 0.6282 0.7513 0.5556

Right Hippocampus 0.4452 0.7513 0.4127

Right Amygdala 1 1 0.4127

Right Accumbens 0.6282 0.8053 0.1905

For each subcortical region, we report the p-value from a Mann–Whitney U test comparing 
reconstructed SUV values between subjects with low versus high smoothed (true) SUV, as 
defined by a median split. p-values are shown for the entire dataset (ALL), and separately for 
subjects with MAB and HAB genotypes.
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directly visible to the human eye—by leveraging high-dimensional 
features or structural proxies. While this does not imply a direct 
mapping of physical signal between modalities, it suggests that 
information useful for predicting PET uptake might be inferable 
from structural context, especially when consistent patterns exist 
across subjects. To improve biological interpretability and reduce 
reliance on purely anatomical priors, future work should consider 
integrating additional MRI contrasts, such as FLAIR, diffusion-
weighted imaging, or arterial spin labeling, which may offer greater 
sensitivity to inflammation, perfusion, or microstructural changes. 

Third, while the synthesized images show strong voxel-wise and 
regional similarity to ground-truth PET based on quantitative 
metrics, these measures do not fully capture clinical or biological 
interpretability, and whether they can meaningfully capture 
pathological processes remains to be evaluated. In fact, no structured 
reader studies or diagnostic decision-making tasks were performed. 
This reflects both the proof-of-concept nature of the study and 
current technical limitations. This limitation stems largely from the 
current signal normalization approach: both model input and output 
SUV images are scaled between 0 and 1 (crucial for improving 

FIGURE 5

Results of ROI-wise analysis, which compared original to reconstructed PET images. (A) MSE comparison between synthetic images and original/
smoothed. (B) Normalized Difference (NormDiff) between original and smoothed images. (C) Percentage difference analysis between original and 
smoothed images. (D) Median CNR comparison between original and smoothed images.

TABLE 4  Quantitative metrics comparing synthesized PET to raw and 
smoothed original PET images across the test set.

Evaluation metric Mean ± Standard deviation

MSE 0.0034 ± 0.0010

MSE smoothed 0.0031 ± 0.0010

NormDiff −0.0055 ± 0.0322

NormDiff smoothed 0.0010 ± 0.0311

CNR 0.0647 ± 0.2520

CNR smoothed 0.0647 ± 0.2521

PercDiff −0.0219 ± 0.0658

PercDiff smoothed −0.0226 ± 0.0645

MSE, Mean Squared Error; NormDiff, Normalized Difference; CNR, Contrast to Noise 
Ratio; PercDiff, Percentage Difference.

TABLE 5  Similarity metrics demonstrating subject-specific 
reconstruction of TSPO PET images.

Evaluation metric Mean ± Standard deviation

MSE 0.0049 ± 0.0006

MSE smoothed 0.0044 ± 0.0006

NormDiff −0.0441 ± 0.0576

NormDiff smoothed −0.0440 ± 0.0582

PercDiff −0.0423 ± 0.1250

PercDiff smoothed −0.0401 ± 0.0852

MSE, Mean Squared Error; NormDiff, Normalized Difference; CNR, Contrast to Noise 
Ratio; PercDiff, Percentage Difference.
Average similarity metrics evaluated from the comparison between the reconstructed PET 
image of each subject and the original PET images of all other subjects in the dataset 
(excluding the subject’s own original PET used for reconstruction).
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model training and performance leading to faster convergence and 
better stability), which prevents direct quantitative comparisons 
between patients and controls. Addressing this issue in future work 
will be critical. This includes evaluating non-normalized outputs to 
assess whether group differences emerge in signal magnitude and/
or spatial distribution. Additionally, incorporating expert radiologist 
assessments and task-specific performance benchmarks will be key 
to rigorously evaluating the clinical and diagnostic utility of the 
synthesized PET data. Finally, our use of standardized uptake value 
(SUV) as the reference target may not fully capture the complexity 
of TSPO PET quantification. Alternative measures such as SUV ratio 
(SUVr) or kinetic modeling may enhance physiological relevance in 

future studies. Together, these limitations point to key directions for 
further development: addressing the normalization step, expanding 
datasets, integrating multi-modal imaging inputs, improving model 
interpretability, and embedding clinical validation into the 
evaluation pipeline.

5 Conclusion

This study illustrates the successful synthesis of TSPO PET 
SUV images from structural MRI in chronic pain patients and 
healthy volunteers, marking a significant advance in non-invasive 

FIGURE 6

Region-wise Pearson correlation coefficients between image modalities. Blue bars show the correlation between smoothed (true) and reconstructed 
normalized SUV signal across subcortical regions. Green bars show the correlation between reconstructed PET and T1-weighted MRI signal and 
orange bars show the correlation between smoothed (true) normalized SUV and T1-MRI signal. Asterisks (*) indicate statistically significant correlations 
(p < 0.05).

FIGURE 7

Training and validation loss curves over 5,000 optimization steps for the 3D U-Net model. The model rapidly converges within the first 500 steps and 
continues to improve gradually, with both training and validation losses stabilizing around 0.10, indicating no signs of overfitting and a good 
generalization performance across the dataset.
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neuroimaging. The synthetic PET images generated by our model 
reproduce spatial signal distributions and related contrast 
properties which are extremely close to real PET scans.

In addition, synthesized PET volumes, while smoother than 
the original data, closely resembled Gaussian-smoothed PET scans. 
Given the conventional PET processing commonly includes 
smoothing, it is possible to hypothesize that our model inherently 
filters out unstructured noise, potentially enhancing signal-to-
noise ratio and thereby the sensitivity for detecting subtle 
neuroinflammatory differences. In essence, our findings 
demonstrate that deep learning can effectively transform widely 
available MRI scans into informative PET-like neuroinflammation 
patterns. This approach promises to improve the noninvasive study 
of glial involvement in chronic pain and potentially other 
conditions, offering a novel perspective in medical 
imaging research.
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