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Introduction: Diagnosing Autism Spectrum Disorder (ASD) in verbally

fluent individuals based on speech patterns in examiner-patient dialogues

is challenging because speech-related symptoms are often subtle and

heterogeneous. This study aimed to identify distinctive speech characteristics

associatedwith ASD by analyzing recorded dialogues from the AutismDiagnostic

Observation Schedule (ADOS-2).

Methods: We analyzed examiner-participant dialogues from ADOS-2 Module 4

and extracted 40 speech-related features categorized into intonation, volume,

rate, pauses, spectral characteristics, chroma, and duration. These acoustic and

prosodic featureswere processed using advanced speech analysis tools and used

to trainmachine learningmodels to classify ASD participants into two subgroups:

those with and without A2-defined speech pattern abnormalities. Model

performance was evaluated using cross-validation and standard classification

metrics.

Results: Using all 40 features, the support vector machine (SVM) achieved an F1-

score of 84.49%. After removing Mel-Frequency Cepstral Coe�cients (MFCC)

and Chroma features to focus on prosodic, rhythmic, energy, and selected

spectral features aligned with ADOS-2 A2 scores, performance improved,

achieving 85.77% accuracy and an F1-score of 86.27%. Spectral spread and

spectral centroid emerged as key features in the reduced set, while MFCC 6 and

Chroma 4 also contributed significantly in the full feature set.

Discussion: These findings demonstrate that a compact, diverse set of

non-MFCC and selected spectral features e�ectively characterizes speech

abnormalities in verbally fluent individuals with ASD. The approach highlights

the potential of context-aware, data-driven models to complement clinical

assessments and enhance understanding of speech-related manifestations in

ASD.
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1 Introduction

Autism spectrum disorder (ASD) is a developmental condition that presents

considerable challenges in social interaction, communication, and behavior (Leekam et al.,

2011; Lord et al., 2018, 2020). In the United States, ASD affects approximately 1 in

36 children and 1 in 45 adults, making it a critical public health concern (Maenner,

2020; Dietz et al., 2020). Despite its prevalence, diagnosing ASD is complex, relying
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heavily on subjective assessments of behavior and the clinical

expertise of specialists. These complexities are compounded by

differences in diagnostic standards and healthcare availability

across regions, resulting in delayed diagnoses and limiting

early intervention opportunities for many families (Daniels and

Mandell, 2014). This subjectivity can lead to inconsistencies in

the accuracy and timing of diagnoses across various regions

and populations.

ASD diagnosis is traditionally conducted through clinical

interviews and behavioral observations, often following

standardized tools such as the Autism Diagnostic Observation

Schedule (ADOS) (Lord et al., 1999). ADOS-2 consists of five

modules, each tailored to different age groups and language

abilities, ranging from nonverbal toddlers to verbally fluent

adults. Module 1 is designed for minimally verbal children,

Module 2 for those with some phrase speech, Module 3 for

verbally fluent children and adolescents, Module 4 for verbally

fluent adults, and the Toddler Module for children under 30

months of age. This structured approach allows clinicians to

assess social communication, interaction, and restricted or

repetitive behaviors across diverse developmental stages. However,

these methods require extensive clinician expertise, leading to

potential inconsistencies in diagnosis and accessibility issues

in underserved areas (Matson and Kozlowski, 2011; Elsabbagh

et al., 2012). ADOS-2 assessments require trained clinicians who

can administer structured tasks, score behavioral responses, and

interpret results based on standardized criteria. This specialized

training is costly and time-intensive, contributing to a shortage

of qualified professionals, especially in regions with limited

healthcare resources. Moreover, ASD evaluations are often

expensive, requiring multiple clinical visits, making it difficult

for families in lower-income communities to access timely

assessments. As a result, there is increasing interest in technology-

driven approaches that can enhance diagnostic consistency and

accessibility (Fletcher-Watson and Happé, 2019; Song et al., 2019;

Rezaee, 2025).

One promising approach is the use of speech analysis

for ASD detection. Speech is a fundamental mode of

communication, and research suggests that individuals

with ASD often exhibit distinctive speech characteristics,

including atypical intonation, altered rhythm, abnormal

speech rate, and variations in pitch modulation (Mody and

Belliveau, 2013; Pickles et al., 2009; Vogindroukas et al.,

2022; Martin and Rouas, 2024). These abnormalities can

emerge in development, offering a potential biomarker

for ASD diagnosis (Bonneh et al., 2011). Advances in

computational speech processing enable precise analysis of

these features, paving the way for non-invasive, scalable, and

cost-effective diagnostic tools that could complement existing

clinical methods.

Recent advancements in machine learning have further

expanded the possibilities for ASD diagnosis by enabling

automated detection of behavioral and linguistic patterns

(Wang et al., 2015; Ruan et al., 2021, 2023; Zhang et al.,

2022). For example, machine learning techniques have

been applied to digital behavioral phenotyping (Perochon

et al., 2023) and automated analysis of gestures and facial

expressions from video recordings (Lakkapragada et al., 2022;

Krishnappa Babu et al., 2023). Natural language processing

(NLP) has also been applied to electronic health records to

derive ASD phenotypes (Zhao et al., 2022). Speech features are

increasingly recognized as digital biomarkers in clinical decision

support (Sariyanidi et al., 2025). Advances in representation

learning, such as GANs and self-supervised models, have

demonstrated improved ASD speech recognition performance,

even in data-limited conditions (Sohn et al., 2025; Al Futaisi

et al., 2025). On a different scale, Rajagopalan et al. (2024)

showed that robust prediction can be achieved with minimal

feature sets across large cohorts, while multi-modal approaches

such as facial expression analysis are emerging as valuable

complements to speech-based diagnosis (Mahmood et al.,

2025). Building on these successes, leveraging ML for speech

analysis offers a promising and relatively unexplored direction in

ASD diagnosis.

This study targets verbally fluent individuals assessed with

ADOS-2 Module 4 and classifies participants with vs. without A2-

defined speech abnormalities. Our goal is not to distinguish ASD

from non-ASD; rather, we examine how machine learning can

characterize speech-related abnormalities within this subgroup and

how suchmodels might complement clinical practice. This research

focuses on the following key objectives:

• Comprehensive speech feature extraction: we employed

advanced signal processing techniques to extract 40 distinct

speech features, grouped into prosodic, rhythmic, spectral,

and energy-related categories, to capture subtle ASD-related

speech patterns.

• Machine learning-based classification: we applied machine

learning models to classify participants with vs. without

ADOS-2 A2-defined speech abnormalities, providing an

objective framework for analyzing atypical prosody and

rhythm.

• Complementary clinical insight: Rather than diagnosing

ASD per se, this study evaluates whether acoustic speech

features can support the characterization of speech

abnormalities in verbally fluent individuals with ASD,

serving as a data-driven complement to traditional clinical

assessments.

This study represents a significant methodological

advancement in diagnosis of speech abnormalities in ASD by

integrating machine learning with detailed speech analysis. The

use of a comprehensive set of speech features, combined with

sophisticated machine learning techniques, offers a notable

improvement over traditional diagnostic methods. This approach

holds the potential for more accurate and earlier detection

of ASD, which is critical for timely intervention. Ultimately,

the research aims to contribute to personalized treatment and

management strategies, enhancing outcomes for individuals with

ASD and providing a scalable, objective solution for clinical use.

This work focuses on autistic individuals assessed with ADOS-2

Module 4 (verbally fluent adolescents and adults); accordingly,

findings pertain to this subgroup rather than the autism spectrum

as a whole.
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TABLE 1 Speech abnormalities associated with autism

(intonation/volume/rhythm/rate).

Score Description

0 Appropriately varying intonation, reasonable volume, and normal

rate of speech, with regular rhythm coordinated with breathing.

1 Little variation in pitch and tone; rather flat or exaggerated

intonation, but not obviously peculiar, OR slightly unusual

volume, AND/OR speech that tends to be somewhat unusually

slow, fast, or jerky.

2 Speech that is clearly abnormal for ANY of the following reasons:

slow and halting; inappropriately rapid; jerky and irregular in

rhythm (other than ordinary stutter/stammer), such that there is

some interference with intelligibility; odd intonation or

inappropriate pitch and stress; markedly flat and toneless

("mechanical"); consistently abnormal volume.

7 Stutter or stammer or other fluency disorder (if odd intonation is

also present, code 1 or 2 accordingly).

2 Methods

2.1 Caltech audio dataset

2.1.1 Autism Diagnostic Observation Schedule
(ADOS)

The Autism Diagnostic Observation Schedule, Second Edition

(ADOS-2) (Lord et al., 1999; American Psychiatric Association

et al., 2013) is a widely used standardized instrument for diagnosing

ASD. Module 4 of ADOS-2 is specifically designed for verbally

fluent adolescents and adults, typically aged 16 and older, and

differs from other modules intended for younger or non-verbal

individuals. This study focuses on the A2 score, which assesses

abnormalities in speech patterns, including intonation, volume,

rate, and rhythm. Details for each A2 score level are provided in

Table 1.

2.1.2 ADOS interview audio dataset
The ADOS sessions were conducted sequentially, involving

15 structured scenario tasks designed to elicit responses across a

range of communicative and social interactions (see Table 2). These

tasks allow clinicians to capture meaningful speech and behavioral

data, including intonation and speech rate, for analysis. In this

study, the Caltech Audio Dataset (Zhang et al., 2022) includes 33

verbally fluent participants with ASD (26 male, 7 female), aged 16-

37 years. The average age of ASD participants was 23.45 ± 4.76

years. Nine of these individuals were assessed twice, approximately

six months apart, yielding a total of 42 recording sessions. As

shown in Figure 1, 19 participants exhibited speech abnormalities

(A2 ≥ 1), while 14 participants received an A2 score of 0. Based

on this distribution, the recordings were grouped into ASD with

vs. without speech-related abnormalities. To enhance granularity

and contextual specificity, each session was further segmented into

15 structured scenario tasks, resulting in 42 × 15 = 630 scenario-

level samples, which served as the basic units for subsequent binary

classification analyses.

In addition, although the age range (16-37 years) may overlap

with vocal maturation for some participants, we did not explicitly

TABLE 2 Overview of SCENARIO TASKS in ADOS-2 module 4 diagnosing

process.

Scenario Name Explanation

S1 Construction Task Involves the participant engaging in a

task that requires constructing or

assembling a set structure, testing spatial

and motor skills, rather than

communicative abilities.

S2 Telling a Story from

a Book

Primarily a monologic task where the

participant recounts a story from a

book, differing from spontaneous

dialogic interactions.

S3 Description of a

Picture

Participants describe a picture, testing

their ability to interpret visual

information and articulate a coherent

description.

S4 Conversation and

Reporting

Focuses on the ability to engage in

back-and-forth conversation and to

report on past events.

S5 Current Work and

School

Discusses participants’ current

educational and occupational

engagements.

S6 Social Difficulties

and Annoyance

Elicits experiences of social challenges

and annoyances.

S7 Emotions Requires participants to express and

identify emotions.

S8 Demonstration

Task

Requires the participant to demonstrate

how to use an item or explain a process,

which does not involve interactive

communication with an examiner.

S9 Cartoons Involves interpreting sequences and

explaining cartoon strips.

S10 Break A pause or intermission in the

assessment, involving no

communicative or cognitive tasks.

S11 Daily Living Covers daily routines and personal care

tasks.

S12 Friends,

Relationships, and

Marriage

Discusses personal relationships and

social norms regarding friendships and

marital status.

S13 Loneliness Addresses feelings and situations of

loneliness and isolation.

S14 Plans and Hopes Involves discussing future aspirations

and plans.

S15 Creating a Story Tests creative storytelling abilities in an

unstructured task.

control for or model potential pubertal voice changes. Because our

feature set includes acoustic descriptors (e.g., spectral measures),

such effects cannot be fully ruled out; we therefore acknowledge this

as a limitation and a direction for future, age-stratified analyses.

2.2 Feature extraction for identification of
autism speech disorder

Feature extraction plays a crucial role in the analysis of

speech data, especially in understanding complex disorders like
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FIGURE 1

Distribution of ADOS-2 Module 4 A2 scores across subjects (0 =

normal intonation, 1 = mildly atypical intonation, 2 = markedly

atypical intonation).

ASD. It involves quantifying various aspects of speech that may

reveal traits associated with ASD. For this study, a comprehensive

set of speech features was extracted from recorded dialogues,

grouped based on their relevance to ASD. Prosodic speech

features, including the number of syllables, pauses, rate of speech,

articulation rate, speaking duration, original duration, balance, and

frequency, were extracted using the “Myprosody” tool (Shahab,

2025). This tool integrates multiple speech feature extraction

methods, providing a detailed analysis of prosodic elements.

Additionally, features such as Mel-Frequency Cepstral Coefficients

(MFCCs), spectrograms, and chromagrams were extracted using

“pyAudioAnalysis” (Giannakopoulos, 2015), enriching the dataset

with diverse audio representations that are essential for analyzing

ASD-related speech patterns. These features are described below

and summarized in Table 3.

Each category of features captures different characteristics of

speech that are potentially altered in ASD:

- Prosody features such as pitch (fundamental frequency)

variations and speech rate are directly related to the emotional

and syntactical aspects of speech, which are often atypical in

ASD.

- Energy and Zero Crossing Rate provide basic information

about the speech amplitude and frequency, which are useful for

detecting abnormalities in speech loudness and pitch changes.

- Spectral and Chroma features reflect the quality of sound and

harmony in speech. These features are sophisticated and can

detect subtleties in speech that are not apparent through simple

auditory observation.

- MFCCs and their deltas offer a robust representation of

speech based on the human auditory system’s perception

of the frequency scales, essential for identifying nuanced

discrepancies in how individuals with ASD perceive and

produce sounds. By analyzing these features using machine

learning models, we aim to identify patterns that are indicative

of ASD, thereby assisting in the objective and efficient diagnosis

of the disorder.

2.3 Classification models for diagnosis of
speech abnormalities in ASD and analysis

To classify ASD-related speech patterns, we employed six

machine learning algorithms, selected based on their effectiveness

in speech processing and biomedical signal classification. The

classification process follows three major stages:

(1) Model selection based on suitability for structured and

unstructured speech features,

(2) Feature selection and optimization to improve

performance, and

(3) Model interpretability to analyze which speech features

contribute most to classification.

Model selection rationale
Each model was selected based on its unique advantages in

handling high-dimensional, speech-derived features:

• Support Vector Machine (SVM) (Cortes, 1995): Works well in

high-dimensional spaces and can handle non-linear decision

boundaries using Radial Basis Function (RBF) kernels.

• Random Forest (RF) (Breiman, 2001): An ensemble learning

approach that enhances prediction stability by aggregating

multiple decision trees.

• Gradient Boosting (GB) (Friedman, 2001): Sequentially builds

trees to correct errors of previous iterations, optimizing for

complex non-linear relationships.

• Adaptive Boosting (AdaBoost) (Freund and Schapire, 1997):

Assigns higher weights to misclassified samples, improving

generalization while being prone to noise sensitivity.

• K-Nearest Neighbors (KNN) (Fix and Hodges, 1951): A

distance-based classifier, useful when labels have well-

separated clusters in feature space.

• Naïve Bayes (NB) (Rish et al., 2001): A probabilistic model

assuming feature independence, known for fast training and

robust results in speech applications.

Each model was implemented in Python (Scikit-Learn) and trained

using 5-fold cross-validation to assess robustness.

Hyperparameter tuning
Hyperparameters were optimized using grid search and

random search techniques:

• Grid Search: Exhaustive search of pre-defined parameter sets

for SVM, Random Forest, and Boosting models.
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TABLE 3 Detailed categorization of speech features into relevant categories, with explanations and specific feature counts, tailored for comprehensive

speech pattern analysis in clinical assessments such as autism.

No. Category Features Explanation #

1 Intonation Frequency Fundamental frequency, related to the pitch of the voice. 1

MFCCs Mel Frequency Cepstral Coefficients, capture timbral aspects that are crucial for intonation. 13

2 Volume Energy Measures the signal’s loudness. 1

Entropy of Energy Indicates variation in loudness within a frame. 1

3 Rhythm Zero Crossing Rate (ZCR) Reflects the number of times the waveform crosses zero, related to the frequency of the signal. 1

4 Rate Rate of Speech Measures how fast words are spoken. 1

Number of Syllables Counts the syllables, indicating speech density and pace. 1

5 Pause Number of Pauses Total pauses, reflecting speech interruptions and flow. 1

Balance Ratio of speaking to pausing, indicates rhythmic flow. 1

6 Spectral Spectral Centroid Center of gravity, affects perceived pitch and sharpness. 1

Spectral Spread Measures the width of the spectrum, related to the sharpness of sound. 1

Spectral Rolloff The frequency below which 90% of energy lies, indicates the shape. 1

Spectral Flux Measures the changes between frames, indicates rhythm changes. 1

Spectral Entropy Reflects the entropy of spectral distribution, a complexity measure. 1

7 Chroma Chroma A set of 12 coefficients each representing a semitone within an octave, used in harmony analysis. 12

8 Duration Speaking Duration measure speaking time (excluding fillers and pause) 1

Original Duration measure speaking time (including fillers and pause) 1

TABLE 4 Machine learning models and hyperparameter settings for ASD

classification.

Model Hyperparameters

SVM C=0.1, Kernel=RBF, Gamma=scale, Tolerance=1e-3, Max

Iterations=-1

RF Trees=100, Max Depth=None, Min Samples Split=10, Min

Samples Leaf=5, Bootstrap=True

GB Learning Rate=0.1, Trees=100, Max Depth=3, Min Samples

Split=5, Subsample=0.8

AdaBoost Estimators=50, Learning Rate=1.0, Base Estimator=Decision

Stump, Algorithm=SAMME.R

KNN K=5, Distance=Euclidean, Weights=Uniform, Algorithm=Auto,

Leaf Size=30

NB Distribution=Gaussian, Variance Smoothing=1e-9

• Random Search: Used for KNN and AdaBoost, where

sampling over parameter space provides efficient exploration.

Each model’s hyperparameter settings are detailed in Table 4.

The performance of each model was assessed using multiple

metrics, including accuracy, precision, recall, and F1-score,

calculated through cross-validation across the dataset.

In addition, we employed 5-fold GroupKFold cross-validation

to evaluate model performance, ensuring that recordings from the

same participant were not split across folds. This choice was made

to balance bias and variance in model evaluation, given the limited

dataset size.

2.4 Feature importance evaluation

To enhance transparency in ASD classification, we applied

several interpretability techniques to analyze feature contributions.

Shapley Additive Explanations (SHAP) (Lundberg and Lee, 2017)

was employed to estimate the impact of each speech feature

on model predictions. SHAP values were computed for all

samples, allowing us to examine both individual and global feature

influences. SHAP was chosen because it provides consistent,

theoretically grounded attributions that are model-agnostic,

making it especially suitable for comparing feature relevance across

diverse classifiers (e.g., SVM, Random Forest, Gradient Boosting).

Alternative methods such as LIME, permutation importance, or

partial dependence plots (PDP) were considered; however, SHAP

was prioritized due to its ability to capture both local and global

interpretability in a unified framework. We acknowledge that

SHAP is computationally more expensive than these alternatives,

and this aspect is discussed further in the Limitations section.

This approach provided insight into how changes in speech

characteristics affect classification probability, facilitating a better

understanding of model decisions.

For tree-based models such as Random Forest and Gradient

Boosting, feature importance was derived using the Mean Decrease

in Impurity (MDI) metric. This method ranks features based

on their contribution to reducing uncertainty in classification.

Additionally, we applied permutation importance to models that

do not natively provide feature rankings, such as SVMandKNN. By

randomly shuffling each feature and measuring its effect on model

performance, we identified the most influential features for ASD

classification.
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Given that ADOS-2 Module 4 consists of 15 structured tasks,

we conducted a scenario-specific feature analysis to investigate

whether feature importance varies across different conversational

contexts. This analysis involved computing SHAP values separately

for each task, allowing us to assess how models rely on specific

speech features under varying conditions.

To further interpret model decisions, we incorporated

visualization techniques, including SHAP summary plots, feature

importance rankings, and scenario-wise importance heatmaps.

These visual tools help illustrate patterns in speech-related features

and aid in understanding how classification decisions are made. By

integrating multiple interpretability methods, we aimed to ensure

that our models remain transparent and suitable for potential

clinical applications.

The combination of SHAP analysis, feature ranking, and

visualization techniques allows for a comprehensive assessment

of model behavior. These interpretability methods provide

essential insights for refining ASD classification models, validating

the consistency of learned patterns, and supporting future

improvements in automated diagnostic tools.

3 Results

3.1 Experimental setup

To evaluate model performance, we applied a supervised

classification framework using the extracted speech features. All

experiments were conducted in Python (Scikit-learn) with 5-

fold cross-validation to ensure robustness and reduce overfitting.

Models were trained and tested on both feature sets described

in Section 2.3 (the full 40-feature set and the reduced 15-feature

set). We assessed diagnostic performance using four standard

classification metrics:

• Accuracy: The proportion of correctly classified samples out

of all samples.

• Precision: The proportion of predicted positive cases that are

true positives, measuring the reliability of positive predictions.

• Recall (Sensitivity): The proportion of true positive cases

correctly identified, reflecting the ability to capture actual ASD

cases.

• F1-score: The harmonic mean of precision and recall,

balancing the trade-off between false positives and false

negatives.

Formally, given true positives (TP), false positives (FP), false

negatives (FN), and true negatives (TN):

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F1-score = 2×
Precision× Recall

Precision+ Recall

These metrics are widely used in medical classification tasks

and provide complementary perspectives on diagnostic reliability.

Accuracy summarizes overall performance, precision emphasizes

avoiding false positives, recall emphasizes capturing true cases, and

the F1-score balances both aspects.

3.2 Analysis of speech pattern features

To explore the relationships between these features, we

calculated Pearson correlation coefficients, measuring the degree

and direction of linear relationships (see Figure 2). This approach

is crucial for identifying redundancies, interdependencies, and

unique contributions of each feature, which can enhance model

interpretability and performance by mitigating multicollinearity.

Several notable patterns emerge:

• High Correlation Among Rate-Based Features: The rate

of speech and articulation rate are strongly correlated,

confirming that faster speech naturally leads to a greater

number of syllables articulated per unit time. This redundancy

suggests that only one of these features may be necessary for

robust classification.

• Duration and Pause-Related Measures: Speaking duration,

original duration, and balance also show moderate-to-strong

correlations, reflecting the intertwined nature of fluency,

pause frequency, and overall timing. Longer utterances often

correspond with proportionally longer pauses, which are

captured in the balance measure.

• Spectral and Prosodic Overlap: Several spectral features (e.g.,

spectral spread, centroid, and flux) cluster together, indicating

they capture related aspects of energy distribution and spectral

sharpness. This suggests potential dimensionality reduction

opportunities for spectral descriptors.

• Zero Crossing Rate (ZCR):Notably, ZCR exhibits a relatively

high correlation with spectral flux and spectral centroid.

This indicates that temporal fluctuations in signal polarity

are linked to changes in frequency distribution and energy

transitions. Since ZCR is a simple yet computationally

inexpensive measure, its strong correlation with more

complex spectral descriptors suggests it may serve as a

lightweight proxy for certain spectral dynamics in ASD-

related speech analysis.

• MFCC and Chroma Clusters: MFCCs are highly

intercorrelated, as expected given their derivation from

the same cepstral representation. Similarly, the 12 Chroma

features show block-wise correlations, particularly between

adjacent chroma bands, reflecting harmonic relationships

inherent in speech tonality.

These findings highlight redundancy across certain features

(e.g., rate measures, MFCCs, Chroma coefficients) as well as unique

contributions (e.g., ZCR, spectral spread). This informed our

decision to test both a full 40-feature set and a reduced 15-feature

set, ensuring that classification models are not unduly biased by

collinear predictors.
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FIGURE 2

Heatmap of Pearson correlation coe�cients among all extracted speech features. The color scale represents the strength and direction of

correlations (red = strong positive, blue = strong negative).

3.3 Classification and analysis of ASD using
speech features

In this study, two distinct feature sets were used for

classification: (1) all 40 features (including MFCCs and Chroma),

and (2) 15 selected features after excluding MFCCs and Chroma.

It allows us to assess the necessity of spectral features in ASD

detection, especially for cases where computational simplicity is

prioritized.

• Results with all 40 features: Table 5 summarizes model

performances when using all 40 features. Notably, SVM

outperformed other models, achieving the highest F1-score of

84.49%, respectively, underscoring its robustness in capturing

nuanced ASD-related speech patterns across a comprehensive

feature set.

To further justify the choice of 5-fold cross-validation,

we directly compared it with 10-fold GroupKFold using

the same 40-feature set. As shown in Tables 5, 6, the 5-fold

setting yielded slightly higher mean scores in accuracy

and F1 score, while also producing consistently smaller

standard deviations across nearly all metrics. In contrast,

the 10-fold setting led to greater variability, particularly

in recall and F1 score, where the standard deviations

were substantially larger. This instability is likely due to

the smaller test partitions in 10-fold CV, which magnify

the impact of sample heterogeneity given our limited

dataset size. Taken together, these results indicate that

5-fold CV provides a more stable and reliable estimate

of generalization performance in this study, whereas

10-fold CV introduced higher variance and less consistent

outcomes.
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TABLE 5 Comprehensive speech features extracted for analyzing ASD based on 40 features (K = 5).

Model Accuracy Precision Recall F1-Score

SVM 0.8360± 0.1334 0.9039 ± 0.0788 0.7974± 0.1523 0.8449 ± 0.1192

Random Forest 0.8505 ± 0.0899 0.8733± 0.0481 0.8215± 0.1190 0.8423± 0.0724

AdaBoost 0.8253± 0.0815 0.8197± 0.0904 0.8190± 0.1100 0.8153± 0.0842

Naive Bayes 0.7776± 0.0906 0.7542± 0.0833 0.7800± 0.1216 0.7630± 0.0885

KNN 0.8349± 0.0912 0.8153± 0.0411 0.8202± 0.1232 0.8146± 0.0752

Gradient Boosting 0.8415± 0.0751 0.8296± 0.0741 0.8318 ± 0.1094 0.8267± 0.0750

Voting Ensemble 0.8503± 0.0908 0.8718± 0.0538 0.8272± 0.1264 0.8442± 0.0782

Bold values indicate the best mean performance within each column; ties are all shown in bold.

TABLE 6 Comprehensive speech features extracted for analyzing ASD based on 40 features (K = 10).

Model Accuracy Precision Recall F1-Score

SVM 0.8313± 0.1293 0.8993 ± 0.0782 0.7574± 0.1940 0.8123 ± 0.1439

Random Forest 0.8480 ± 0.1404 0.8194± 0.2104 0.7843± 0.2151 0.7834± 0.1936

AdaBoost 0.8415± 0.1443 0.7021± 0.2568 0.7882± 0.2252 0.7309± 0.2291

Naive Bayes 0.8058± 0.1610 0.6806± 0.2494 0.7511± 0.2338 0.7064± 0.2317

KNN 0.8146± 0.1440 0.6760± 0.2293 0.7692± 0.2060 0.7071± 0.2007

Gradient Boosting 0.8446± 0.1369 0.7279± 0.2541 0.7912 ± 0.2262 0.7396± 0.2191

Voting Ensemble 0.8404± 0.1434 0.7698± 0.2489 0.7825± 0.2191 0.7629± 0.2222

Bold values indicate the best mean performance within each column; ties are all shown in bold.

• Results with Selected 15 Features (Excluding MFCCs and

Chroma): Table 7 shows model performances when MFCCs

and Chroma features were excluded, resulting in a reduced

15-feature set. The SVM model performed best under

this configuration, achieving an accuracy of 85.77% and

an F1-score of 86.27%. These results reveal that while

spectral features contribute to model accuracy, a simpler

feature set without MFCCs and Chroma can still provide

competitive performance, making it a viable option for

scenarios prioritizing computational efficiency.

3.4 Analysis of feature importance

Feature importance analysis was conducted to determine which

speech features are most indicative of ASD. The top features were

identified based on Mean Decrease in Impurity (MDI) scores

from Gradient Boosting for the 40-feature set and permutation

importance for SVM in the reduced feature set.

To understand the contributions of each feature in ASD

classification, we analyzed feature importance using the SVM

model with all 40 features. Figure 3 shows the top 10 most

important features.

In the analysis with the full 40-feature set (as shown in

Figure 3), Spectral Spread and Spectral Centroid were the top

features, underscoring the importance of spectral distribution in

identifying ASD-related speech abnormalities. Spectral Flux and

Chroma 4 also contributed significantly, indicating that both

spectral energy distribution and pitch variation are relevant for

SVM-based classification. The high importance ofMFCC 6 for both

models highlights its role in capturing timbral aspects of speech that

are characteristic of ASD.

With this reduced set (Figure 4), Spectral Spread shows

by far the largest average contribution, followed by Spectral

Centroid. Spectral Flux also ranks highly, with ZCR contributing

to a moderate degree. These results suggest that variation in

spectral energy distribution (spread, centroid, flux) constitutes the

most informative set of cues for classifying ADOS-2 A2 speech

abnormalities in this cohort, with additional contributions from

temporal zero-crossing and entropy-based measures.

For the scenario-based analysis, we restricted attention to the

reduced set of 15 features. This choice was made because (1) the

15-feature set achieved comparable or better performance than the

full 40-feature set, and (2) many excluded features (e.g., MFCC,

Chroma) are difficult to interpret in clinical or linguistic terms. By

focusing on interpretable prosodic and energy-related features, the

scenario-level analysis provides insights that are both stable and

meaningful for understanding ASD-related speech abnormalities.

Figure 5 shows the importance of the 15 selected features across

the 15 standardized ADOS scenario tasks, highlighting how feature

relevance varies with interactional context and enhancing model

interpretability.

From Figure 5, several key patterns emerge. For instance,

spectral spread and spectral centroid consistently exhibit relatively

high importance across most scenarios, indicating their stability

and universal significance in diagnosis of speech abnormalities

in ASD across different contexts. Additionally, in Scenario Task

11 and Scenario 13, spectral spread shows particularly high

importance, suggesting that these features may capture critical

ASD-related speech patterns specific to that task.
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TABLE 7 Comprehensive speech features extracted for analyzing ASD without MfCC and chroma.

Model Accuracy Precision Recall F1-Score

SVM 0.8577 ± 0.1133 0.9128 ± 0.0701 0.8213 ± 0.1351 0.8627 ± 0.1052

Random Forest 0.8447± 0.1078 0.8579± 0.0632 0.8195± 0.1390 0.8354± 0.0987

AdaBoost 0.8308± 0.1131 0.8217± 0.0958 0.8109± 0.1476 0.8138± 0.1150

KNN 0.7993± 0.1111 0.7612± 0.0882 0.7885± 0.1502 0.7715± 0.1096

Gradient Boosting 0.7833± 0.0924 0.7553± 0.0706 0.7785± 0.1288 0.7624± 0.0850

Naive Bayes 0.7627± 0.0914 0.7084± 0.0328 0.7604± 0.1374 0.7297± 0.0776

Voting Ensemble 0.8482± 0.1179 0.8683± 0.0898 0.8209± 0.1460 0.8424± 0.1183

Bold values indicate the best mean performance within each column; ties are all shown in bold.

FIGURE 3

Top 10 important features based on full 40-feature set for ASD classification based on SVM.

FIGURE 4

Top 10 important features based on 15-feature set for ASD classification based on SVM.
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FIGURE 5

Mean feature importance across 15 scenario tasks in ADOS interviews for diagnosis of speech abnormalities in ASD.

4 Discussion

This study demonstrates that analyzing specific speech patterns

in examiner-patient dialogues can significantly aid in diagnosing

ASD. By focusing on a comprehensive set of 40 speech-related

features, we examined the roles of intonation, volume, rate, pauses,

spectral characteristics, Chroma, and duration in distinguishing

individuals with ASD. Our findings suggest that a targeted subset of

these features–primarily prosodic and non-spectral characteristics–

may offer more effective and computationally efficient diagnostic

tools. This discussion addresses the implications of these results,

their alignment with existing research, study limitations, and

potential directions for future work.

4.1 Interpretation of key findings

Our results showed that, while the full feature set achieved

strong classification performance, removing MFCC and Chroma

features led to an improvement in both accuracy and F1-score.

The refined model, focusing on prosodic, rhythmic, and selective

spectral features, achieved an accuracy of 85.77% and an F1-score

of 86.27%, highlighting the diagnostic potential of simpler, non-

spectral features in ASD detection. This improvement underscores

the relevance of temporal and prosodic features, such as rate

of speech, speaking duration, spectral spread, and frequency,

which consistently ranked highly in importance. Notably, spectral

spread and frequency emerged as top contributors, supporting the

notion that abnormalities in speech fluency, rhythm, and energy

distribution are pivotal in ASD-related speech analysis.

The inclusion of the Voting Ensemble further demonstrated

that combining multiple classifiers can yield more stable

predictions compared to relying on a single model. While

SVM achieved the highest mean accuracy and F1-score, its

estimates exhibited greater fold-to-fold variability. In contrast, the

Voting Ensemble offered a favorable trade-off between accuracy

and stability, indicating its potential utility in practical applications

where robustness is critical. This highlights the importance

of ensemble-based approaches in complementing individual

classifiers for speech abnormality detection in ASD.

4.2 Comparison with previous research

Our approach aligns with existing research that emphasizes

the role of prosodic features in identifying ASD-related speech

patterns. Previous studies have highlighted irregularities in speech

rate, pauses, and intonation as indicative of ASD (McCann
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and Peppé, 2003; Bone et al., 2015; Holbrook and Israelsen,

2020). However, our findings extend this by quantitatively

demonstrating that reducing reliance on MFCC and Chroma

features–commonly used in general speech analysis–can enhance

ASD-specific diagnostic performance. This contrasts with studies

that focus heavily on spectral features alone and suggests that a

shift toward prosody-based diagnostics may offer a more targeted

approach to capturing ASD-related anomalies in speech.

4.3 Implications for clinical practice

These findings can assist in the assessment of speech

abnormalities in verbally fluent individuals with ASD. While not

intended as a stand-alone diagnostic system for ASD, our approach

may complement existing clinical practices by providing objective,

data-driven measures of prosody and rhythm abnormalities.

Although spectral features alone have achieved high accuracy

in prior studies (Briend et al., 2023), our results highlight that

non-spectral features also capture clinically interpretable aspects of

prosody and rhythm that are directly relevant to the ADOS-2 A2

assessment. Rather than replacing spectral features, non-spectral

features offer complementary value by improving interpretability

and aligning closely with clinical constructs.

Furthermore, the identified importance of features tied

to ADOS-2 Module 4, specifically the A2 score, underscores

the potential for automated analyses to complement clinical

assessment by providing objective, data-driven measures of speech

abnormalities. This aligns with recent calls for more objective, data-

driven approaches in diagnosis of speech abnormalities in ASD to

mitigate subjectivity in clinical practice (Zhang and Li, 2024).

Our scenario-based feature importance analysis (Figure 5,

Table 2) demonstrates that the diagnostic contribution of speech

features is not uniform across tasks. Spectral-domain measures,

particularly Spectral Spread, consistently emerge as more influential

than prosodic timing variables, but their relevance fluctuates

depending on the interactional context. For instance, heightened

importance of spectral features in scenarios such as S11 (Daily

Living) and S13 (Loneliness) suggests that tasks prompting

extended, personally framed, or socially complex responses may

accentuate acoustic variability. These context-sensitive effects

highlight the value of considering task demands when interpreting

speech abnormalities in ASD, and they point toward the

development of context-aware diagnostic models.

4.4 Limitations and future work

Despite promising results, this study has several limitations.

First, the dataset’s size and demographic characteristics may limit

generalizability, as it was based on specific examiner-patient

interactions within the ADOS-2 framework. Further studies with

larger, more diverse samples are necessary to validate the findings

across different populations and settings. Additionally, while

this study focused on specific speech features, there may be

other relevant variables, such as linguistic content and contextual

information, which could enhance diagnostic accuracy if integrated

with the current model.

Building on this study, future research could explore

integrating additional multimodal data sources, such as facial

expressions, gestures, and gaze, which may complement speech

patterns in ASD diagnosis. Such a multimodal approach could

provide a more holistic view of communicative behaviors

associated with ASD, potentially enhancing the accuracy and

robustness of diagnostic models.

Another limitation is the gender imbalance in our dataset

(26 male vs. 7 female participants). This reflects the higher

reported prevalence of ASD in males compared to females, which

is consistent with prior epidemiological findings. However, the

small number of female participants limits the ability to draw

strong conclusions about whether the observed speech-related

patterns generalize across genders. It is possible that prosodic and

spectral features related to ASD manifest differently in female

participants, an aspect that our current dataset is underpowered

to investigate. Future research with more balanced cohorts will be

essential to examine potential gender-specific differences in ASD-

related speech characteristics and to improve the generalizability of

diagnostic models.

In addition, another limitation relates to repeated ADOS-2

sessions in a subset of participants. Approximately 20% of the

recordings came from follow-up sessions conducted about six

months apart with the same individuals. While these sessions

captured different conversational content and thus provided

valuable within-subject variability, they also introduced potential

non-independence of samples. We did not explicitly model or

control for this in the present analysis, which may have influenced

the stability of the classification results. Future research should

address this by using larger independent cohorts or by applying

statistical approaches such asmixed-effects modeling to account for

repeated measures.

Another limitation concerns our feature reduction strategy.

We focused on a theoretically motivated subset of 15 features,

excluding MFCC and Chroma coefficients because of their limited

interpretability in the context of ASD-related speech abnormalities.

While this choice resulted in slightly improvedmodel performance,

it was not a fully data-driven reduction. Future studies could

incorporate systematic feature selection methods (e.g., recursive

feature elimination, LASSO regularization, or correlation-based

filtering) to more rigorously identify and remove uninformative

features from the full set of 40 features, potentially leading to

further performance gains.

Another limitation concerns the relatively large standard

deviations observed in some models (e.g., SVM), which reflect

variability across cross-validation folds. This variability likely stems

from the modest dataset size and the heterogeneity of speech

samples across participants. As a result, model performance may

be sensitive to how training and test sets are partitioned. Future

research with larger and more balanced datasets will be crucial for

improving the stability and generalizability of the models.

Moreover, as the study found variations in feature importance

across different scenario tasks, developing context-sensitive models

could yield further improvements. By tailoring feature weighting

or selection to specific social interaction scenarios, future models
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could better capture the nuanced ways in which ASD manifests

across diverse contexts. Additionally, exploring reinforcement

learning or other adaptive learning techniques could help create

models that dynamically adjust to individual differences in ASD

presentations.

Another limitation is that our dataset included only individuals

assessed with ADOS-2 Module 4, which is restricted to verbally

fluent participants. Consequently, the results may not generalize to

minimally verbal or non-verbal autistic individuals. Future research

should extend this approach to other ADOS modules to capture a

broader range of the autism spectrum. Additionally, the participant

age range (16-37 years) spans adolescence and early adulthood,

which may include individuals undergoing vocal maturation. We

did not explicitly control for or analyze the potential impact of

pubertal voice changes on extracted speech features. As a result,

vocal maturation could have introduced additional variability in the

data, which should be examined in future research with larger and

more age-stratified samples.

In conclusion, this study underscores the potential of prosody-

based and scenario-sensitive approaches in diagnosis of speech

abnormalities in ASD. By reducing reliance on spectral features and

leveraging context-specific analysis, future diagnostic tools may

become more precise and accessible, supporting earlier and more

objective ASD assessments.

5 Conclusion

This study demonstrates that analyzing a targeted set of speech

features, particularly prosodic and non-spectral characteristics,

can effectively support diagnosis of speech abnormalities in ASD.

By examining 40 distinct speech features from examiner-patient

dialogues, we identified a reduced feature set focused on prosodic

and rhythmic attributes, achieving strong diagnostic accuracy and

outperforming models that rely on more complex spectral features.

The identified features, such as spectral spread, Spectral Centroid,

and Spectral Flux, underscore the relevance of non-spectral cues in

capturing ASD-related communication patterns.

These findings suggest that a prosody-focused, streamlined

approach can enhance accessibility and efficiency in ASD

diagnostics. The performance of the reduced feature set highlights

its potential for real-time assessments, supporting quicker and

more objective screening for speech abnormalities in ASD. Moving

forward, integrating context-sensitive models and multimodal data

sources could refine and advance ASD diagnostics, ultimately

contributing to improved intervention strategies for individuals on

the autism spectrum.
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