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Introduction: Diagnosing Autism Spectrum Disorder (ASD) in verbally
fluent individuals based on speech patterns in examiner-patient dialogues
is challenging because speech-related symptoms are often subtle and
heterogeneous. This study aimed to identify distinctive speech characteristics
associated with ASD by analyzing recorded dialogues from the Autism Diagnostic
Observation Schedule (ADOS-2).

Methods: We analyzed examiner-participant dialogues from ADOS-2 Module 4
and extracted 40 speech-related features categorized into intonation, volume,
rate, pauses, spectral characteristics, chroma, and duration. These acoustic and
prosodic features were processed using advanced speech analysis tools and used
to train machine learning models to classify ASD participants into two subgroups:
those with and without A2-defined speech pattern abnormalities. Model
performance was evaluated using cross-validation and standard classification
metrics.

Results: Using all 40 features, the support vector machine (SVM) achieved an F1-
score of 84.49%. After removing Mel-Frequency Cepstral Coefficients (MFCC)
and Chroma features to focus on prosodic, rhythmic, energy, and selected
spectral features aligned with ADOS-2 A2 scores, performance improved,
achieving 85.77% accuracy and an Fl-score of 86.27%. Spectral spread and
spectral centroid emerged as key features in the reduced set, while MFCC 6 and
Chroma 4 also contributed significantly in the full feature set.

Discussion: These findings demonstrate that a compact, diverse set of
non-MFCC and selected spectral features effectively characterizes speech
abnormalities in verbally fluent individuals with ASD. The approach highlights
the potential of context-aware, data-driven models to complement clinical
assessments and enhance understanding of speech-related manifestations in
ASD.
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1 Introduction

Autism spectrum disorder (ASD) is a developmental condition that presents
considerable challenges in social interaction, communication, and behavior (Leekam et al.,
2011; Lord et al,, 2018, 2020). In the United States, ASD affects approximately 1 in
36 children and 1 in 45 adults, making it a critical public health concern (Maenner,
2020; Dietz et al,, 2020). Despite its prevalence, diagnosing ASD is complex, relying

01 frontiersin.org


https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2025.1647194
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2025.1647194&domain=pdf&date_stamp=2025-10-24
mailto:xli48@albany.edu
https://doi.org/10.3389/fninf.2025.1647194
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2025.1647194/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Hu et al.

heavily on subjective assessments of behavior and the clinical
expertise of specialists. These complexities are compounded by
differences in diagnostic standards and healthcare availability
across regions, resulting in delayed diagnoses and limiting
early intervention opportunities for many families (Daniels and
Mandell, 2014). This subjectivity can lead to inconsistencies in
the accuracy and timing of diagnoses across various regions
and populations.

ASD diagnosis is traditionally conducted through clinical
interviews and behavioral observations, often following
standardized tools such as the Autism Diagnostic Observation
Schedule (ADOS) (Lord et al., 1999). ADOS-2 consists of five
modules, each tailored to different age groups and language
abilities, ranging from nonverbal toddlers to verbally fluent
adults. Module 1 is designed for minimally verbal children,
Module 2 for those with some phrase speech, Module 3 for
verbally fluent children and adolescents, Module 4 for verbally
fluent adults, and the Toddler Module for children under 30
months of age. This structured approach allows clinicians to
assess social communication, interaction, and restricted or
repetitive behaviors across diverse developmental stages. However,
these methods require extensive clinician expertise, leading to
potential inconsistencies in diagnosis and accessibility issues
in underserved areas (Matson and Kozlowski, 2011; Elsabbagh
et al,, 2012). ADOS-2 assessments require trained clinicians who
can administer structured tasks, score behavioral responses, and
interpret results based on standardized criteria. This specialized
training is costly and time-intensive, contributing to a shortage
of qualified professionals, especially in regions with limited
healthcare resources. Moreover, ASD evaluations are often
expensive, requiring multiple clinical visits, making it difficult
for families in lower-income communities to access timely
assessments. As a result, there is increasing interest in technology-
driven approaches that can enhance diagnostic consistency and
accessibility (Fletcher-Watson and Happé, 2019; Song et al., 2019;
Rezaee, 2025).

One promising approach is the use of speech analysis
for ASD detection.
communication, and research suggests
with ASD often exhibit distinctive

including

a fundamental mode of
that
speech characteristics,
rhythm,
speech rate, and variations in pitch modulation (Mody and
Belliveau, 2013; Pickles et al., 2009; Vogindroukas et al,
2022; Martin and Rouas,
emerge in development, potential
for ASD diagnosis 2011).

computational speech processing enable precise analysis of

Speech is
individuals
altered abnormal

atypical intonation,

2024). These abnormalities can
offering a biomarker
(Bonneh et al, Advances in
these features, paving the way for non-invasive, scalable, and
cost-effective diagnostic tools that could complement existing
clinical methods.

Recent advancements in machine learning have further
expanded the possibilities for ASD diagnosis by enabling
automated detection of behavioral and linguistic patterns
(Wang et al., 2015; Ruan et al., 2021, 2023; Zhang et al,
2022). For
been applied to digital behavioral phenotyping (Perochon

example, machine learning techniques have

et al, 2023) and automated analysis of gestures and facial
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expressions from video recordings (Lakkapragada et al., 2022;
Krishnappa Babu et al, 2023). Natural language processing
(NLP) has also been applied to electronic health records to
derive ASD phenotypes (Zhao et al., 2022). Speech features are
increasingly recognized as digital biomarkers in clinical decision
support (Sariyanidi et al., 2025). Advances in representation
learning, such as GANs and self-supervised models, have
demonstrated improved ASD speech recognition performance,
even in data-limited conditions (Sohn et al., 2025; Al Futaisi
et al, 2025). On a different scale, Rajagopalan et al. (2024)
showed that robust prediction can be achieved with minimal
feature sets across large cohorts, while multi-modal approaches
such as facial expression analysis are emerging as valuable
complements to speech-based diagnosis (Mahmood et al,
2025). Building on these successes, leveraging ML for speech
analysis offers a promising and relatively unexplored direction in
ASD diagnosis.

This study targets verbally fluent individuals assessed with
ADOS-2 Module 4 and classifies participants with vs. without A2-
defined speech abnormalities. Our goal is not to distinguish ASD
from non-ASD; rather, we examine how machine learning can
characterize speech-related abnormalities within this subgroup and
how such models might complement clinical practice. This research
focuses on the following key objectives:

e Comprehensive speech feature extraction: we employed
advanced signal processing techniques to extract 40 distinct
speech features, grouped into prosodic, rhythmic, spectral,
and energy-related categories, to capture subtle ASD-related
speech patterns.

e Machine learning-based classification: we applied machine
learning models to classify participants with vs. without
ADOS-2 A2-defined speech abnormalities, providing an
objective framework for analyzing atypical prosody and
rhythm.

e Complementary clinical insight: Rather than diagnosing
ASD per se, this study evaluates whether acoustic speech
features can support the characterization of speech

abnormalities in verbally fluent individuals with ASD,

serving as a data-driven complement to traditional clinical
assessments.

This  study
advancement in diagnosis of speech abnormalities in ASD by

represents a significant methodological
integrating machine learning with detailed speech analysis. The
use of a comprehensive set of speech features, combined with
sophisticated machine learning techniques, offers a notable
improvement over traditional diagnostic methods. This approach
holds the potential for more accurate and earlier detection
of ASD, which is critical for timely intervention. Ultimately,
the research aims to contribute to personalized treatment and
management strategies, enhancing outcomes for individuals with
ASD and providing a scalable, objective solution for clinical use.
This work focuses on autistic individuals assessed with ADOS-2
Module 4 (verbally fluent adolescents and adults); accordingly,
findings pertain to this subgroup rather than the autism spectrum
as a whole.
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TABLE 1 Speech abnormalities associated with autism
(intonation/volume/rhythm/rate).

Score Description

0 Appropriately varying intonation, reasonable volume, and normal
rate of speech, with regular rhythm coordinated with breathing.

1 Little variation in pitch and tone; rather flat or exaggerated
intonation, but not obviously peculiar, OR slightly unusual
volume, AND/OR speech that tends to be somewhat unusually
slow, fast, or jerky.

2 Speech that is clearly abnormal for ANY of the following reasons:
slow and halting; inappropriately rapid; jerky and irregular in
rhythm (other than ordinary stutter/stammer), such that there is
some interference with intelligibility; odd intonation or
inappropriate pitch and stress; markedly flat and toneless
("mechanical"); consistently abnormal volume.

7 Stutter or stammer or other fluency disorder (if odd intonation is
also present, code 1 or 2 accordingly).

2 Methods
2.1 Caltech audio dataset

2.1.1 Autism Diagnostic Observation Schedule
(ADOS)

The Autism Diagnostic Observation Schedule, Second Edition
(ADOS-2) (Lord et al., 1999; American Psychiatric Association
etal., 2013) is a widely used standardized instrument for diagnosing
ASD. Module 4 of ADOS-2 is specifically designed for verbally
fluent adolescents and adults, typically aged 16 and older, and
differs from other modules intended for younger or non-verbal
individuals. This study focuses on the A2 score, which assesses
abnormalities in speech patterns, including intonation, volume,
rate, and rhythm. Details for each A2 score level are provided in
Table 1.

2.1.2 ADOS interview audio dataset

The ADOS sessions were conducted sequentially, involving
15 structured scenario tasks designed to elicit responses across a
range of communicative and social interactions (see Table 2). These
tasks allow clinicians to capture meaningful speech and behavioral
data, including intonation and speech rate, for analysis. In this
study, the Caltech Audio Dataset (Zhang et al.,, 2022) includes 33
verbally fluent participants with ASD (26 male, 7 female), aged 16-
37 years. The average age of ASD participants was 23.45 & 4.76
years. Nine of these individuals were assessed twice, approximately
six months apart, yielding a total of 42 recording sessions. As
shown in Figure 1, 19 participants exhibited speech abnormalities
(A2 > 1), while 14 participants received an A2 score of 0. Based
on this distribution, the recordings were grouped into ASD with
vs. without speech-related abnormalities. To enhance granularity
and contextual specificity, each session was further segmented into
15 structured scenario tasks, resulting in 42 x 15 = 630 scenario-
level samples, which served as the basic units for subsequent binary
classification analyses.

In addition, although the age range (16-37 years) may overlap
with vocal maturation for some participants, we did not explicitly
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TABLE 2 Overview of SCENARIO TASKS in ADOS-2 module 4 diagnosing

process.

Scenario Name Explanation

N Construction Task Involves the participant engaging in a
task that requires constructing or
assembling a set structure, testing spatial
and motor skills, rather than
communicative abilities.

S, Telling a Story from | Primarily a monologic task where the

a Book participant recounts a story from a
book, differing from spontaneous
dialogic interactions.

S3 Description of a Participants describe a picture, testing

Picture their ability to interpret visual
information and articulate a coherent
description.

Sy Conversation and Focuses on the ability to engage in

Reporting back-and-forth conversation and to
report on past events.

Ss Current Work and Discusses participants’ current

School educational and occupational
engagements.

S Social Difficulties Elicits experiences of social challenges

and Annoyance and annoyances.

S7 Emotions Requires participants to express and
identify emotions.

S Demonstration Requires the participant to demonstrate

Task how to use an item or explain a process,
which does not involve interactive
communication with an examiner.

Sy Cartoons Involves interpreting sequences and
explaining cartoon strips.

Sio Break A pause or intermission in the
assessment, involving no
communicative or cognitive tasks.

Siy Daily Living Covers daily routines and personal care
tasks.

Si2 Friends, Discusses personal relationships and

Relationships, and social norms regarding friendships and
Marriage marital status.

Si3 Loneliness Addresses feelings and situations of
loneliness and isolation.

Sia Plans and Hopes Involves discussing future aspirations
and plans.

Sis Creating a Story Tests creative storytelling abilities in an
unstructured task.

control for or model potential pubertal voice changes. Because our

feature set includes acoustic descriptors (e.g., spectral measures),

such effects cannot be fully ruled out; we therefore acknowledge this

as a limitation and a direction for future, age-stratified analyses.

2.2 Feature extraction for identification of
autism speech disorder

Feature extraction plays a crucial role in the analysis of

speech data, especially in understanding complex disorders like
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Number of Subjects

0 1 2
ADOS-2 A2 Score

FIGURE 1

Distribution of ADOS-2 Module 4 A2 scores across subjects (0 =
normal intonation, 1 = mildly atypical intonation, 2 = markedly
atypical intonation).

ASD. It involves quantifying various aspects of speech that may
reveal traits associated with ASD. For this study, a comprehensive
set of speech features was extracted from recorded dialogues,
grouped based on their relevance to ASD. Prosodic speech
features, including the number of syllables, pauses, rate of speech,
articulation rate, speaking duration, original duration, balance, and
frequency, were extracted using the “Myprosody” tool (Shahab,
2025). This tool integrates multiple speech feature extraction
methods, providing a detailed analysis of prosodic elements.
Additionally, features such as Mel-Frequency Cepstral Coeflicients
(MFCCs), spectrograms, and chromagrams were extracted using
“pyAudioAnalysis” (Giannakopoulos, 2015), enriching the dataset
with diverse audio representations that are essential for analyzing
ASD-related speech patterns. These features are described below
and summarized in Table 3.

Each category of features captures different characteristics of
speech that are potentially altered in ASD:

- Prosody features such as pitch (fundamental frequency)
variations and speech rate are directly related to the emotional
and syntactical aspects of speech, which are often atypical in
ASD.

- Energy and Zero Crossing Rate provide basic information
about the speech amplitude and frequency, which are useful for
detecting abnormalities in speech loudness and pitch changes.

- Spectral and Chroma features reflect the quality of sound and
harmony in speech. These features are sophisticated and can
detect subtleties in speech that are not apparent through simple
auditory observation.

- MFCCs and their deltas offer a robust representation of
speech based on the human auditory system’s perception
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of the frequency scales, essential for identifying nuanced
discrepancies in how individuals with ASD perceive and
produce sounds. By analyzing these features using machine
learning models, we aim to identify patterns that are indicative
of ASD, thereby assisting in the objective and efficient diagnosis
of the disorder.

2.3 Classification models for diagnosis of
speech abnormalities in ASD and analysis

To classify ASD-related speech patterns, we employed six
machine learning algorithms, selected based on their effectiveness
in speech processing and biomedical signal classification. The
classification process follows three major stages:

(1) Model selection based on suitability for structured and
unstructured speech features,

(2) Feature
performance, and

selection and optimization to improve
(3) Model interpretability to analyze which speech features

contribute most to classification.

Model selection rationale
Each model was selected based on its unique advantages in
handling high-dimensional, speech-derived features:

e Support Vector Machine (SVM) (Cortes, 1995): Works well in
high-dimensional spaces and can handle non-linear decision
boundaries using Radial Basis Function (RBF) kernels.

e Random Forest (RF) (Breiman, 2001): An ensemble learning
approach that enhances prediction stability by aggregating
multiple decision trees.

e Gradient Boosting (GB) (Friedman, 2001): Sequentially builds
trees to correct errors of previous iterations, optimizing for
complex non-linear relationships.

e Adaptive Boosting (AdaBoost) (Freund and Schapire, 1997):
Assigns higher weights to misclassified samples, improving
generalization while being prone to noise sensitivity.

e K-Nearest Neighbors (KNN) (Fix and Hodges, 1951): A
distance-based classifier, useful when labels have well-
separated clusters in feature space.

e Naive Bayes (NB) (Rish et al.,, 2001): A probabilistic model
assuming feature independence, known for fast training and
robust results in speech applications.

Each model was implemented in Python (Scikit-Learn) and trained
using 5-fold cross-validation to assess robustness.

Hyperparameter tuning
Hyperparameters were optimized using grid search and
random search techniques:

e Grid Search: Exhaustive search of pre-defined parameter sets
for SVM, Random Forest, and Boosting models.

frontiersin.org
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speech pattern analysis in clinical assessments such as autism.

No. Category Features Explanation #
1 Intonation Frequency Fundamental frequency, related to the pitch of the voice. 1
MEFCCs Mel Frequency Cepstral Coefficients, capture timbral aspects that are crucial for intonation. 13
2 Volume Energy Measures the signal’s loudness. 1
Entropy of Energy Indicates variation in loudness within a frame. 1
3 Rhythm Zero Crossing Rate (ZCR) | Reflects the number of times the waveform crosses zero, related to the frequency of the signal. 1
4 Rate Rate of Speech Measures how fast words are spoken. 1
Number of Syllables Counts the syllables, indicating speech density and pace. 1
5 Pause Number of Pauses Total pauses, reflecting speech interruptions and flow. 1
Balance Ratio of speaking to pausing, indicates rhythmic flow. 1
6 Spectral Spectral Centroid Center of gravity, affects perceived pitch and sharpness. 1
Spectral Spread Measures the width of the spectrum, related to the sharpness of sound. 1
Spectral Rolloff The frequency below which 90% of energy lies, indicates the shape. 1
Spectral Flux Measures the changes between frames, indicates rhythm changes. 1
Spectral Entropy Reflects the entropy of spectral distribution, a complexity measure. 1
7 Chroma Chroma A set of 12 coefficients each representing a semitone within an octave, used in harmony analysis. 12
8 Duration Speaking Duration measure speaking time (excluding fillers and pause) 1
Original Duration measure speaking time (including fillers and pause) 1

TABLE 4 Machine learning models and hyperparameter settings for ASD
classification.

Model Hyperparameters

SVM C=0.1, Kernel=RBE, Gamma=scale, Tolerance=1e-3, Max
Iterations=-1

RF Trees=100, Max Depth=None, Min Samples Split=10, Min
Samples Leaf=5, Bootstrap=True

GB Learning Rate=0.1, Trees=100, Max Depth=3, Min Samples
Split=5, Subsample=0.8

AdaBoost | Estimators=50, Learning Rate=1.0, Base Estimator=Decision
Stump, Algorithm=SAMME.R

KNN K=5, Distance=Euclidean, Weights=Uniform, Algorithm=Auto,
Leaf Size=30

NB Distribution=Gaussian, Variance Smoothing=1e-9

e Random Search: Used for KNN and AdaBoost, where
sampling over parameter space provides efficient exploration.

Each model’s hyperparameter settings are detailed in Table 4.

The performance of each model was assessed using multiple
metrics, including accuracy, precision, recall, and Fl-score,
calculated through cross-validation across the dataset.

In addition, we employed 5-fold GroupKFold cross-validation
to evaluate model performance, ensuring that recordings from the
same participant were not split across folds. This choice was made
to balance bias and variance in model evaluation, given the limited
dataset size.

Frontiers in Neuroinformatics

2.4 Feature importance evaluation

To enhance transparency in ASD classification, we applied
several interpretability techniques to analyze feature contributions.
Shapley Additive Explanations (SHAP) (Lundberg and Lee, 2017)
was employed to estimate the impact of each speech feature
on model predictions. SHAP values were computed for all
samples, allowing us to examine both individual and global feature
influences. SHAP was chosen because it provides consistent,
theoretically grounded attributions that are model-agnostic,
making it especially suitable for comparing feature relevance across
diverse classifiers (e.g., SVM, Random Forest, Gradient Boosting).
Alternative methods such as LIME, permutation importance, or
partial dependence plots (PDP) were considered; however, SHAP
was prioritized due to its ability to capture both local and global
interpretability in a unified framework. We acknowledge that
SHAP is computationally more expensive than these alternatives,
and this aspect is discussed further in the Limitations section.
This approach provided insight into how changes in speech
characteristics affect classification probability, facilitating a better
understanding of model decisions.

For tree-based models such as Random Forest and Gradient
Boosting, feature importance was derived using the Mean Decrease
in Impurity (MDI) metric. This method ranks features based
on their contribution to reducing uncertainty in classification.
Additionally, we applied permutation importance to models that
do not natively provide feature rankings, such as SVM and KNN. By
randomly shuffling each feature and measuring its effect on model
performance, we identified the most influential features for ASD
classification.
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Given that ADOS-2 Module 4 consists of 15 structured tasks,
we conducted a scenario-specific feature analysis to investigate
whether feature importance varies across different conversational
contexts. This analysis involved computing SHAP values separately
for each task, allowing us to assess how models rely on specific
speech features under varying conditions.

To further interpret model decisions, we incorporated
visualization techniques, including SHAP summary plots, feature
importance rankings, and scenario-wise importance heatmaps.
These visual tools help illustrate patterns in speech-related features
and aid in understanding how classification decisions are made. By
integrating multiple interpretability methods, we aimed to ensure
that our models remain transparent and suitable for potential
clinical applications.

The combination of SHAP analysis, feature ranking, and
visualization techniques allows for a comprehensive assessment
of model behavior. These interpretability methods provide
essential insights for refining ASD classification models, validating
the consistency of learned patterns, and supporting future
improvements in automated diagnostic tools.

3 Results

3.1 Experimental setup

To evaluate model performance, we applied a supervised
classification framework using the extracted speech features. All
experiments were conducted in Python (Scikit-learn) with 5-
fold cross-validation to ensure robustness and reduce overfitting.
Models were trained and tested on both feature sets described
in Section 2.3 (the full 40-feature set and the reduced 15-feature
set). We assessed diagnostic performance using four standard
classification metrics:

e Accuracy: The proportion of correctly classified samples out
of all samples.

e Precision: The proportion of predicted positive cases that are
true positives, measuring the reliability of positive predictions.

e Recall (Sensitivity): The proportion of true positive cases
correctly identified, reflecting the ability to capture actual ASD
cases.

e Fl-score: The harmonic mean of precision and recall,
balancing the trade-off between false positives and false
negatives.

Formally, given true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN):

TP+ TN
Accuracy =
TP + TN + FP + FN
. TP TP
Precision = ———, Recall = ———,
TP + FP TP+ FN

Precision x Recall
Fl-score =2 X ——8Mm@™
Precision + Recall

Frontiersin Neuroinformatics
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These metrics are widely used in medical classification tasks
and provide complementary perspectives on diagnostic reliability.
Accuracy summarizes overall performance, precision emphasizes
avoiding false positives, recall emphasizes capturing true cases, and
the F1-score balances both aspects.

3.2 Analysis of speech pattern features

To explore the relationships between these features, we
calculated Pearson correlation coefficients, measuring the degree
and direction of linear relationships (see Figure 2). This approach
is crucial for identifying redundancies, interdependencies, and
unique contributions of each feature, which can enhance model
interpretability and performance by mitigating multicollinearity.
Several notable patterns emerge:

e High Correlation Among Rate-Based Features: The rate
of speech and articulation rate are strongly correlated,
confirming that faster speech naturally leads to a greater
number of syllables articulated per unit time. This redundancy
suggests that only one of these features may be necessary for
robust classification.

e Duration and Pause-Related Measures: Speaking duration,
original duration, and balance also show moderate-to-strong
correlations, reflecting the intertwined nature of fluency,
pause frequency, and overall timing. Longer utterances often
correspond with proportionally longer pauses, which are
captured in the balance measure.

e Spectral and Prosodic Overlap: Several spectral features (e.g.,
spectral spread, centroid, and flux) cluster together, indicating
they capture related aspects of energy distribution and spectral
sharpness. This suggests potential dimensionality reduction
opportunities for spectral descriptors.

e Zero Crossing Rate (ZCR): Notably, ZCR exhibits a relatively
high correlation with spectral flux and spectral centroid.
This indicates that temporal fluctuations in signal polarity
are linked to changes in frequency distribution and energy
transitions. Since ZCR is a simple yet computationally
inexpensive measure, its strong correlation with more
complex spectral descriptors suggests it may serve as a
lightweight proxy for certain spectral dynamics in ASD-
related speech analysis.

e MFCC and Chroma Clusters: MFCCs are highly
intercorrelated, as expected given their derivation from
the same cepstral representation. Similarly, the 12 Chroma
features show block-wise correlations, particularly between
adjacent chroma bands, reflecting harmonic relationships
inherent in speech tonality.

These findings highlight redundancy across certain features
(e.g., rate measures, MFCCs, Chroma coefficients) as well as unique
contributions (e.g., ZCR, spectral spread). This informed our
decision to test both a full 40-feature set and a reduced 15-feature
set, ensuring that classification models are not unduly biased by
collinear predictors.
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3.3 Classification and analysis of ASD using
speech features

In this study, two distinct feature sets were used for
classification: (1) all 40 features (including MFCCs and Chroma),
and (2) 15 selected features after excluding MFCCs and Chroma.
It allows us to assess the necessity of spectral features in ASD
detection, especially for cases where computational simplicity is
prioritized.

e Results with all 40 features: Table 5 summarizes model
performances when using all 40 features. Notably, SVM
outperformed other models, achieving the highest F1-score of
84.49%, respectively, underscoring its robustness in capturing
nuanced ASD-related speech patterns across a comprehensive
feature set.
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To further justify the choice of 5-fold cross-validation,
we directly compared it with 10-fold GroupKFold using
the same 40-feature set. As shown in Tables 5, 6, the 5-fold
setting yielded slightly higher mean scores in accuracy
and F1 score, while also producing consistently smaller
standard deviations across nearly all metrics. In contrast,
the 10-fold setting led to greater variability, particularly
in recall and F1 score, where the standard deviations
were substantially larger. This instability is likely due to
the smaller test partitions in 10-fold CV, which magnify
the impact of sample heterogeneity given our limited
dataset size. Taken together, these results indicate that
5-fold CV provides a more stable and reliable estimate
of generalization performance in this study, whereas
10-fold CV introduced higher variance and less consistent
outcomes.
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TABLE 5 Comprehensive speech features extracted for analyzing ASD based on 40 features (K = 5).

10.3389/fninf.2025.1647194

Model Accuracy Precision Recall F1-Score
SVM 0.8360 £ 0.1334 0.9039 + 0.0788 0.7974 £ 0.1523 0.8449 £+ 0.1192
Random Forest 0.8505 £ 0.0899 0.8733 £ 0.0481 0.8215 £ 0.1190 0.8423 £ 0.0724
AdaBoost 0.8253 £ 0.0815 0.8197 £ 0.0904 0.8190 £ 0.1100 0.8153 £ 0.0842
Naive Bayes 0.7776 £ 0.0906 0.7542 £ 0.0833 0.7800 £ 0.1216 0.7630 =+ 0.0885
KNN 0.8349 £ 0.0912 0.8153 £ 0.0411 0.8202 £ 0.1232 0.8146 £ 0.0752
Gradient Boosting 0.8415 £ 0.0751 0.8296 £ 0.0741 0.8318 & 0.1094 0.8267 £ 0.0750
Voting Ensemble 0.8503 =+ 0.0908 0.8718 £ 0.0538 0.8272 £ 0.1264 0.8442 £ 0.0782

Bold values indicate the best mean performance within each column; ties are all shown in bold.

TABLE 6 Comprehensive speech features extracted for analyzing ASD based on 40 features (K = 10).
Model Accuracy Precision Recall F1-Score
SVM 0.8313 £0.1293 0.8993 + 0.0782 0.7574 £ 0.1940 0.8123 £ 0.1439
Random Forest 0.8480 £ 0.1404 0.8194 £ 0.2104 0.7843 £ 0.2151 0.7834 £ 0.1936
AdaBoost 0.8415 £ 0.1443 0.7021 £ 0.2568 0.7882 £ 0.2252 0.7309 £ 0.2291
Naive Bayes 0.8058 £ 0.1610 0.6806 £ 0.2494 0.7511 £ 0.2338 0.7064 £ 0.2317
KNN 0.8146 £ 0.1440 0.6760 £ 0.2293 0.7692 + 0.2060 0.7071 £ 0.2007
Gradient Boosting 0.8446 £ 0.1369 0.7279 £ 0.2541 0.7912 £+ 0.2262 0.7396 £ 0.2191
Voting Ensemble 0.8404 £ 0.1434 0.7698 £ 0.2489 0.7825 £ 0.2191 0.7629 £ 0.2222

Bold values indicate the best mean performance within each column; ties are all shown in bold.

e Results with Selected 15 Features (Excluding MFCCs and
Chroma): Table 7 shows model performances when MFCCs
and Chroma features were excluded, resulting in a reduced
15-feature set. The SVM model performed best under
this configuration, achieving an accuracy of 85.77% and
an Fl-score of 86.27%. These results reveal that while
spectral features contribute to model accuracy, a simpler
feature set without MFCCs and Chroma can still provide
competitive performance, making it a viable option for
scenarios prioritizing computational efficiency.

3.4 Analysis of feature importance

Feature importance analysis was conducted to determine which
speech features are most indicative of ASD. The top features were
identified based on Mean Decrease in Impurity (MDI) scores
from Gradient Boosting for the 40-feature set and permutation
importance for SVM in the reduced feature set.

To understand the contributions of each feature in ASD
classification, we analyzed feature importance using the SVM
model with all 40 features. Figure 3 shows the top 10 most
important features.

In the analysis with the full 40-feature set (as shown in
Figure 3), Spectral Spread and Spectral Centroid were the top
features, underscoring the importance of spectral distribution in
identifying ASD-related speech abnormalities. Spectral Flux and
Chroma 4 also contributed significantly, indicating that both
spectral energy distribution and pitch variation are relevant for
SVM-based classification. The high importance of MFCC 6 for both

Frontiers in Neuroinformatics

models highlights its role in capturing timbral aspects of speech that
are characteristic of ASD.

With this reduced set (Figure4), Spectral Spread shows
by far the largest average contribution, followed by Spectral
Centroid. Spectral Flux also ranks highly, with ZCR contributing
to a moderate degree. These results suggest that variation in
spectral energy distribution (spread, centroid, flux) constitutes the
most informative set of cues for classifying ADOS-2 A2 speech
abnormalities in this cohort, with additional contributions from
temporal zero-crossing and entropy-based measures.

For the scenario-based analysis, we restricted attention to the
reduced set of 15 features. This choice was made because (1) the
15-feature set achieved comparable or better performance than the
full 40-feature set, and (2) many excluded features (e.g., MFCC,
Chroma) are difficult to interpret in clinical or linguistic terms. By
focusing on interpretable prosodic and energy-related features, the
scenario-level analysis provides insights that are both stable and
meaningful for understanding ASD-related speech abnormalities.
Figure 5 shows the importance of the 15 selected features across
the 15 standardized ADOS scenario tasks, highlighting how feature
relevance varies with interactional context and enhancing model
interpretability.

From Figure 5, several key patterns emerge. For instance,
spectral spread and spectral centroid consistently exhibit relatively
high importance across most scenarios, indicating their stability
and universal significance in diagnosis of speech abnormalities
in ASD across different contexts. Additionally, in Scenario Task
11 and Scenario 13, spectral spread shows particularly high
importance, suggesting that these features may capture critical
ASD-related speech patterns specific to that task.

frontiersin.org


https://doi.org/10.3389/fninf.2025.1647194
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Hu et al. 10.3389/fninf.2025.1647194

TABLE 7 Comprehensive speech features extracted for analyzing ASD without MfCC and chroma.

Model Accuracy Precision Recall F1-Score

SVM 0.8577 + 0.1133 0.9128 + 0.0701 0.8213 + 0.1351 0.8627 =+ 0.1052
Random Forest 0.8447 £ 0.1078 0.8579 % 0.0632 0.8195 % 0.1390 0.8354 + 0.0987
AdaBoost 0.8308 % 0.1131 0.8217 % 0.0958 0.8109 + 0.1476 0.8138 + 0.1150
KNN 0.7993 + 0.1111 0.7612 % 0.0882 0.7885 = 0.1502 0.7715 % 0.1096
Gradient Boosting 0.7833 4 0.0924 0.7553 + 0.0706 0.7785 4 0.1288 0.7624 =+ 0.0850
Naive Bayes 0.7627 4 0.0914 0.7084 + 0.0328 0.7604 + 0.1374 0.7297 + 0.0776
Voting Ensemble 0.8482 + 0.1179 0.8683 + 0.0898 0.8209 + 0.1460 0.8424 +0.1183

Bold values indicate the best mean performance within each column; ties are all shown in bold.

Top 10 Important Features for SVM
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FIGURE 3
Top 10 important features based on full 40-feature set for ASD classification based on SVM.

Top 10 Important Features for SVM
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FIGURE 4
Top 10 important features based on 15-feature set for ASD classification based on SVM.

Frontiers in Neuroinformatics 09 frontiersin.org


https://doi.org/10.3389/fninf.2025.1647194
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Hu et al.

10.3389/fninf.2025.1647194

Number of Syllables

Number of Pauses

Rate of Speech

Articulation rate

Speaking Duration

Original Duration

Balance

Frequency

ZCR

Explanation Variables

Energy

Energy Entropy

Spectral Centroid

Spectral Spread

Spectral Entropy

Spectral Flux

Spectral Rolloff

1 2 3 4 5 6 7

FIGURE 5

Mean Feature Importance Across Observ Groups (Raster Plot)

Scenario Tasks

Mean feature importance across 15 scenario tasks in ADOS interviews for diagnosis of speech abnormalities in ASD.
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4 Discussion

This study demonstrates that analyzing specific speech patterns
in examiner-patient dialogues can significantly aid in diagnosing
ASD. By focusing on a comprehensive set of 40 speech-related
features, we examined the roles of intonation, volume, rate, pauses,
spectral characteristics, Chroma, and duration in distinguishing
individuals with ASD. Our findings suggest that a targeted subset of
these features—primarily prosodic and non-spectral characteristics—
may offer more effective and computationally efficient diagnostic
tools. This discussion addresses the implications of these results,
their alignment with existing research, study limitations, and
potential directions for future work.

4.1 Interpretation of key findings

Our results showed that, while the full feature set achieved
strong classification performance, removing MFCC and Chroma
features led to an improvement in both accuracy and Fl-score.
The refined model, focusing on prosodic, rhythmic, and selective
spectral features, achieved an accuracy of 85.77% and an F1-score
of 86.27%, highlighting the diagnostic potential of simpler, non-
spectral features in ASD detection. This improvement underscores

Frontiersin Neuroinformatics

the relevance of temporal and prosodic features, such as rate
of speech, speaking duration, spectral spread, and frequency,
which consistently ranked highly in importance. Notably, spectral
spread and frequency emerged as top contributors, supporting the
notion that abnormalities in speech fluency, rhythm, and energy
distribution are pivotal in ASD-related speech analysis.

The inclusion of the Voting Ensemble further demonstrated
that combining multiple classifiers can yield more stable
predictions compared to relying on a single model. While
SVM achieved the highest mean accuracy and Fl-score, its
estimates exhibited greater fold-to-fold variability. In contrast, the
Voting Ensemble offered a favorable trade-off between accuracy
and stability, indicating its potential utility in practical applications
where robustness is critical. This highlights the importance
of ensemble-based approaches in complementing individual
classifiers for speech abnormality detection in ASD.

4.2 Comparison with previous research

Our approach aligns with existing research that emphasizes
the role of prosodic features in identifying ASD-related speech
patterns. Previous studies have highlighted irregularities in speech
rate, pauses, and intonation as indicative of ASD (McCann
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and Peppé, 2003; Bone et al., 2015; Holbrook and Israelsen,
2020). However, our findings extend this by quantitatively
demonstrating that reducing reliance on MFCC and Chroma
features—commonly used in general speech analysis—can enhance
ASD-specific diagnostic performance. This contrasts with studies
that focus heavily on spectral features alone and suggests that a
shift toward prosody-based diagnostics may offer a more targeted
approach to capturing ASD-related anomalies in speech.

4.3 Implications for clinical practice

These findings can assist in the assessment of speech
abnormalities in verbally fluent individuals with ASD. While not
intended as a stand-alone diagnostic system for ASD, our approach
may complement existing clinical practices by providing objective,
data-driven measures of prosody and rhythm abnormalities.

Although spectral features alone have achieved high accuracy
in prior studies (Briend et al, 2023), our results highlight that
non-spectral features also capture clinically interpretable aspects of
prosody and rhythm that are directly relevant to the ADOS-2 A2
assessment. Rather than replacing spectral features, non-spectral
features offer complementary value by improving interpretability
and aligning closely with clinical constructs.

Furthermore, the identified importance of features tied
to ADOS-2 Module 4, specifically the A2 score, underscores
the potential for automated analyses to complement clinical
assessment by providing objective, data-driven measures of speech
abnormalities. This aligns with recent calls for more objective, data-
driven approaches in diagnosis of speech abnormalities in ASD to
mitigate subjectivity in clinical practice (Zhang and Li, 2024).

Our scenario-based feature importance analysis (Figure 5,
Table 2) demonstrates that the diagnostic contribution of speech
features is not uniform across tasks. Spectral-domain measures,
particularly Spectral Spread, consistently emerge as more influential
than prosodic timing variables, but their relevance fluctuates
depending on the interactional context. For instance, heightened
importance of spectral features in scenarios such as S11 (Daily
Living) and S13 (Loneliness) suggests that tasks prompting
extended, personally framed, or socially complex responses may
accentuate acoustic variability. These context-sensitive effects
highlight the value of considering task demands when interpreting
speech abnormalities in ASD, and they point toward the
development of context-aware diagnostic models.

4.4 Limitations and future work

Despite promising results, this study has several limitations.
First, the dataset’s size and demographic characteristics may limit
generalizability, as it was based on specific examiner-patient
interactions within the ADOS-2 framework. Further studies with
larger, more diverse samples are necessary to validate the findings
across different populations and settings. Additionally, while
this study focused on specific speech features, there may be
other relevant variables, such as linguistic content and contextual
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information, which could enhance diagnostic accuracy if integrated
with the current model.

Building on this study, future research could explore
integrating additional multimodal data sources, such as facial
expressions, gestures, and gaze, which may complement speech
patterns in ASD diagnosis. Such a multimodal approach could
provide a more holistic view of communicative behaviors
associated with ASD, potentially enhancing the accuracy and
robustness of diagnostic models.

Another limitation is the gender imbalance in our dataset
(26 male vs. 7 female participants). This reflects the higher
reported prevalence of ASD in males compared to females, which
is consistent with prior epidemiological findings. However, the
small number of female participants limits the ability to draw
strong conclusions about whether the observed speech-related
patterns generalize across genders. It is possible that prosodic and
spectral features related to ASD manifest differently in female
participants, an aspect that our current dataset is underpowered
to investigate. Future research with more balanced cohorts will be
essential to examine potential gender-specific differences in ASD-
related speech characteristics and to improve the generalizability of
diagnostic models.

In addition, another limitation relates to repeated ADOS-2
sessions in a subset of participants. Approximately 20% of the
recordings came from follow-up sessions conducted about six
months apart with the same individuals. While these sessions
captured different conversational content and thus provided
valuable within-subject variability, they also introduced potential
non-independence of samples. We did not explicitly model or
control for this in the present analysis, which may have influenced
the stability of the classification results. Future research should
address this by using larger independent cohorts or by applying
statistical approaches such as mixed-effects modeling to account for
repeated measures.

Another limitation concerns our feature reduction strategy.
We focused on a theoretically motivated subset of 15 features,
excluding MFCC and Chroma coefficients because of their limited
interpretability in the context of ASD-related speech abnormalities.
While this choice resulted in slightly improved model performance,
it was not a fully data-driven reduction. Future studies could
incorporate systematic feature selection methods (e.g., recursive
feature elimination, LASSO regularization, or correlation-based
filtering) to more rigorously identify and remove uninformative
features from the full set of 40 features, potentially leading to
further performance gains.

Another limitation concerns the relatively large standard
deviations observed in some models (e.g., SVM), which reflect
variability across cross-validation folds. This variability likely stems
from the modest dataset size and the heterogeneity of speech
samples across participants. As a result, model performance may
be sensitive to how training and test sets are partitioned. Future
research with larger and more balanced datasets will be crucial for
improving the stability and generalizability of the models.

Moreover, as the study found variations in feature importance
across different scenario tasks, developing context-sensitive models
could yield further improvements. By tailoring feature weighting
or selection to specific social interaction scenarios, future models
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could better capture the nuanced ways in which ASD manifests
across diverse contexts. Additionally, exploring reinforcement
learning or other adaptive learning techniques could help create
models that dynamically adjust to individual differences in ASD
presentations.

Another limitation is that our dataset included only individuals
assessed with ADOS-2 Module 4, which is restricted to verbally
fluent participants. Consequently, the results may not generalize to
minimally verbal or non-verbal autistic individuals. Future research
should extend this approach to other ADOS modules to capture a
broader range of the autism spectrum. Additionally, the participant
age range (16-37 years) spans adolescence and early adulthood,
which may include individuals undergoing vocal maturation. We
did not explicitly control for or analyze the potential impact of
pubertal voice changes on extracted speech features. As a result,
vocal maturation could have introduced additional variability in the
data, which should be examined in future research with larger and
more age-stratified samples.

In conclusion, this study underscores the potential of prosody-
based and scenario-sensitive approaches in diagnosis of speech
abnormalities in ASD. By reducing reliance on spectral features and
leveraging context-specific analysis, future diagnostic tools may
become more precise and accessible, supporting earlier and more
objective ASD assessments.

5 Conclusion

This study demonstrates that analyzing a targeted set of speech
features, particularly prosodic and non-spectral characteristics,
can effectively support diagnosis of speech abnormalities in ASD.
By examining 40 distinct speech features from examiner-patient
dialogues, we identified a reduced feature set focused on prosodic
and rhythmic attributes, achieving strong diagnostic accuracy and
outperforming models that rely on more complex spectral features.
The identified features, such as spectral spread, Spectral Centroid,
and Spectral Flux, underscore the relevance of non-spectral cues in
capturing ASD-related communication patterns.

These findings suggest that a prosody-focused, streamlined
approach can enhance accessibility and efficiency in ASD
diagnostics. The performance of the reduced feature set highlights
its potential for real-time assessments, supporting quicker and
more objective screening for speech abnormalities in ASD. Moving
forward, integrating context-sensitive models and multimodal data
sources could refine and advance ASD diagnostics, ultimately
contributing to improved intervention strategies for individuals on
the autism spectrum.
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