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The increase in available computational power and the higher quality of experimental recordings have turned the tuning of neuron model
parameters into a problem that can be solved by automatic global optimization algorithms. Neurofitter is a software tool that interfaces
existing neural simulation software and sophisticated optimization algorithms with a new way to compute the error measure. This error
measure represents how well a given parameter set is able to reproduce the experimental data. It is based on the phase-plane trajectory
density method, which is insensitive to small phase differences between model and data. Neurofitter enables the effortless combination of
many different time-dependent data traces into the error measure, allowing the neuroscientist to focus on what are the seminal properties
of the model.

We show results obtained by applying Neurofitter to a simple single compartmental model and a complex multi-compartmental Purkinje
cell (PC) model. These examples show that the method is able to solve a variety of tuning problems and demonstrate details of its practical
application.

Keywords: parameter tuning, neuron, model, simulator, automatic, optimization algorithms, software, electrophysiology

INTRODUCTION
One of the big challenges facing a scientist developing a detailed compu-
tational model is how to tune model parameters that cannot be directly
derived from experimental results. This is especially true for neuroscien-
tists who develop complex models of neurons that consist of many different
compartments (Rall, 1964) incorporating multiple types of voltage-gated
ion channels (London and Häusser, 2005) that all require separate parame-
ters. This problem can become even more complicated when one wants to
model neuronal networks, which can consist of a large number of neurons
of different types (De Schutter et al., 2005). Because of the sharp increase
in computational power that is made available to scientists in the field
(Markram, 2006) and because of the increasingly detailed knowledge of
neuronal mechanisms that underlie neuronal function, these models have
become more and more complex, causing an increase in the number
of parameters that need to be fitted. In the extreme case there can be
different parameters for each compartment or neuron.

In the ideal situation, the values for every parameter of a model are
obtained from the same set of experimental data (Rall et al., 1992), but
unfortunately this is not always possible. First, it can be difficult to obtain
some parameters within an acceptable error margin. For example, reli-
able kinetic data for ion channels that generate small currents are hard
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to extract. A second problem to be avoided is the “failure of averaging”.
Sometimes the parameter space containing the best maximal conduc-
tances for voltage-gated channels is very concave, excluding the mean.
So the general practice of calculating the mean value from experiments
on different cells is not guaranteed to provide good values (De Schutter
and Bower, 1994; Golowasch et al., 2002).

Until recently the traditional approach was to tune neuronal model
parameters by hand. This requires a lot of effort and knowledge from the
scientist and can be very challenging since the underlying mechanisms
are highly non-linear and difficult to grasp. It can also induce some bias
as the scientist has a natural tendency to assign in advance different roles
to each parameter. However, complicated models have been successfully
developed this way (De Schutter and Bower, 1994; Traub et al., 1991).

Several parameter search methods have been developed over the
years to automate the tuning of neuron models. Three different approaches
can be distinguished. First, some methods do a brute force scan of the
entire parameter space (Bhalla and Bower, 1993; Foster et al., 1993; Prinz
et al., 2003). Most methods tune the model by use of Monte Carlo opti-
mization algorithms, including genetic algorithms and simulated annealing
(Achard and De Schutter, 2006; Baldi et al., 1998; Bush et al., 2005;
Gerken et al., 2006; Keren et al., 2005; Schneider et al., 2004; Vanier
and Bower, 1999; Weaver and Wearne, 2006). Finally, recent approaches
use mathematical techniques to infer in a more direct way values for the
model parameters (Huys et al., 2006).

Because of international initiatives (Bjaalie and Grillner, 2007), exper-
imentalists are increasingly sharing their data with modelers, and many
modelers make their model simulation codes available in databases
like ModelDB (Hines et al., 2004). This makes it possible for people
from both parts of the field to interact with each other and to gener-
ate models that reproduce the available experimental data as closely as
possible.
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In this paper, we present a command-line software tool for automated
parameter searches, called Neurofitter. The innovative part of Neurofitter
is the use of the phase-plane trajectory density method (LeMasson
and Maex, 2001) to measure how faithfully the model can reproduce
experimental data. The users provide the experimental data in the form
of time-dependent traces, specify the model code written for any neuron
simulator environment and select an optimization technique from a library
of third-party routines. Subsequently, Neurofitter will run the model with
different sets of parameters and try to find an optimal model based on
the target data.

SOFTWARE DESCRIPTION AND
METHODS
General algorithm
Neurofitter is aimed to rapidly find the best possible parameter set of a
neuron model to replicate given experimental data. It requires a function
that quantifies the goodness of a parameter set. That way, different
parameter sets can be ranked and the best of them selected. The core
task performed by Neurofitter is therefore the computation of an error
function that connects every parameter set of a neuron model with
a single value that represents how well these parameters are able to
replicate the experimental data.

The user has to provide both the experimental data and a computational
neuron model that can be run with different parameter sets. All the settings
of Neurofitter are defined in an XML file provided to the software during
startup. Figure 1 gives a general overview of the operations performed by
Neurofitter, which are listed in more detail in Appendix A, while Figure 2
provides an overview of the underlying software structure and its relation
to other software packages.

First, Neurofitter will analyze the experimental data (see Section Exper-
imental Data Format) and store it in an object ExperimentInterface so that
it can be compared to model traces.

An object ModelInterface is created that provides an interface with the
model. This object creates model output traces contained in DataTrace
objects, one for every stimulation protocol, by causing a simulator to run
the user-provided model (see Section Adapting the Model Code) with a set
of parameters.

Next, the ModelInterface and ExperimentInterface objects are passed
to a ErrorValueCalculator that creates VdVdtMatrix objects from the model
and experiment Datatraces using the phase-plane trajectory density
method (see Section The Error Function). The ErrorValueCalculator cal-
culates an error value for each set of parameters, and will store this
information in a file.

Finally, the optimization algorithm (see Section Optimization Algo-
rithms) is run using a FitterInterface object. FitterInterface makes use
of ErrorValueCalculator that represents the error function. Neurofitter runs
until a termination criterion of the optimization algorithm is reached and
returns the best set of parameters found.

Experimental data format
The experimental data has to consist of time-dependent traces that may
have been recorded from different sites in the neuron, applying different
stimulation protocols or recording methods. The user should be careful
when combining data from different experiments or sources (De Schutter
and Steuber, 2000) as no model may be able to fit a disjoint set.

The data is submitted as a set of ASCII files (see Figure 3), which
should all have the same sampling rate. There has to be one file for each
separate model run used in the evaluation (corresponding to different
experimental protocols) and for every recording method (e.g., a voltage
or a calcium concentration recording). For a more detailed explanation of
the data format used, refer to Appendix B.

Adapting the model code
Neurofitter is able to interface with different neural simulator packages.
We have written specialized interfaces with the GENESIS (Bower and
Beeman, 1998) and NEURON (Hines and Carnevale, 1997) simulators.

It is possible to use other software packages to simulate the neuron
model, provided the model can be started up from a shell command. The
simulator must read the parameters it has to use from a file before model
execution and write output to another file.

The user has to adapt a model script slightly to enable it to communi-
cate with Neurofitter. The parameter values that need to be tuned should
no longer be defined as constants in the model, but should be read
from a file provided by Neurofitter. Every time the optimization algorithm
wants to evaluate a point in the parameters space, Neurofitter creates
a file at a fixed location (which is specified in the XML settings). This
file contains the run parameters (for example amplitude and location of
current injection), the model parameters (e.g., the ion channel maximal
conductances) and the name and location of the file to which the model
should write its output. Next the neuron simulator is executed by a shell
command. At this point the model code should read the file that was
created by Neurofitter, run the model and write its output to the correct
file location in the same format as the experimental data.

The output trace of the model has to have the same (fixed) sampling
rate as the experimental data and this rate has to be specified in the XML
settings file. If Neurofitter is used with the variable time step methods
available in some neuron simulators, care should be taken that output is
generated at the fixed sampling rate.

Neurofitter settings
The settings for the software are specified in an XML file (Figure 4) that
contains sections for each of the different settings, namely FitterParame-
ters, TraceReaderParameters, ModelParameters, ExperimentParameters,
ErrorValueCalculatorParameters. At present this XML file must be made
or adapted by the user but future versions of Neurofitter will provide a
graphical interface to generate the XML file.

FitterParameters contains the settings for the optimization algorithm,
depending strongly on which algorithm is used, for example with evolution-
ary algorithm these are the size of the population, the mutation rate, etc.

ModelParameters contains the settings for the simulation software;
these are fields like the location of the model, the simulation software
executable, etc.

ExperimentParameters specifies the location of the files that contain
the experimental data. One can, however, also use as “experimental” data
the output of the model with a pre-specified set of parameters (Achard
and De Schutter, 2006).

The ErrorValueCalculatorParameters settings control the phase-plane
trajectory density method. Here one can change the size and resolution
of the 2D histogram. It also specifies the location of the file containing
the error values of the sets of model parameters that have already been
evaluated.

The last one is the TracesReaderParameters, containing the settings for
the module that reads the traces generated by the model and compares
it to experimental data, and the weights that have to be given to the
different parts of the traces. Here the user can also specify the stimulation
protocols, the time ranges of the traces that have to be taken into account
and the number of recording sites.

Parallelization
Because running complex neuron models can be computationally very
expensive, and, as optimization algorithms always need to evaluate many
points in the parameter space, Neurofitter supports running the software
on parallel environments like computer clusters. Neurofitter is able to use
the message passing interface (MPI) (Nagle, 2005) that is commonly in
use on cluster computers.

There are different levels of parallelization (Figure 5) that can be used
by the software. At the first level, one can let every separate node in
the parallel environment calculate the entire error value of one set of
parameters. This minimizes the network traffic between nodes, since
the only values that have to be exchanged between the master node
and the slave CPU nodes are sets of parameters and an error value.
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Figure 1. General algorithm. Short description of the core operations of the algorithm. The left panel contains the steps performed by Neurofitter; the right
panel the actions the user has to implement in the neuron model code.

Another possibility is to split the parallelization at the level of the run
parameters, this way one can run different stimulation protocols of the
model on different CPU nodes. This only makes sense if one wants to run
the model with a large number of different protocols, and if this num-
ber is a multiple of the number of processor nodes on the computer

system. The next level that can be parallelized is outside Neurofitter’s
control; one can parallelize the model itself, with the PGENESIS simu-
lator (De Schutter and Beeman, 1998) or with NEURON (Migliore et al.,
2006). Neurofitter allows the user to mix the different levels of paral-
lelization if necessary, but this can be very complicated to set up on

Figure 2. General structure. Schema describing the most important abstract C++ classes implemented in Neurofitter. An arrow represents the relation-
ship“makes use of”.
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Figure 3. Experimental data format. The format of the ASCII experimental files is shown (right) with the corresponding data traces (left). If the experiment
consists of a recording at two sites, with two different consecutive injections (current amplitudes 1 and 3 nA), two files should be created output Run0.dat and
output Run1.dat, each containing one column with the timestamps and two columns with the recorded data (V) in soma and dendrite. Example was made using
the PC model (De Schutter and Bower, 1994).

some cluster systems as it implies starting MPI jobs from inside other
MPI jobs.

The error function
Optimization methods aim to find the minimal value of a mathemati-
cal/computational function often called the “objective”, “fitness” or “error”
function (Eiben and Smith, 2003). This function maps any parameter set
to a real number that measures the distance between the solution and the
target data. Previous research on optimization methods in the field of neu-
rosciences has mostly used heuristic error functions (Bleeck et al., 2003;
Bush et al., 2005; Davison et al., 2000; Druckmann et al., 2007; Gerken
et al., 2006; Huys et al., 2006; Keren et al., 2005; Prinz et al., 2003; Reid
et al., 2007; Schneider et al., 2004; Shen et al., 1999; Vanier and Bower,
1999; Weaver and Wearne, 2006).

We had multiple goals in selecting an error function (not to be con-
fused with the mathematical Gauss error function “erf” (Abramowitz and
Stegun, 1972)). First of all we wanted to be able to combine smoothly
experimental data from different sources like intracellular voltage record-
ings, local field potentials, calcium signal traces, etc., possibly recorded
from different locations and during different stimulation protocols. Next,
we wanted the method to be insensitive to phase shifts in spike traces
(see Section Phase Shifts). Finally, the method had also to be easy to
use, fast to calculate and to show little sensitivity to noise in the data.
We believe that the phase-plane trajectory density method meets these
conditions.

Phase-plane trajectory density method. The phase-plane trajectory
density method (Bean, 2007; Jenerick, 1963; LeMasson and Maex, 2001)
reduces the sensitivity of the error function to phase shifts between traces
by eliminating the time parameter. This is achieved by plotting one time-
dependent variable against another time-dependent variable; in practice

usually a measure and its derivative in time. To create a phase-plane
trajectory density plot from a voltage trace recording V(t ), Neurofitter
makes a 2D (V, dV/dt ) plot for all the data points in a specified time
range (Figures 6B and 6D). Although specific time, and therefore phase,
is removed, the density plot still constrains several temporal properties
of the signal. Periodic signals like regular spiking will result in a loop
with a shape dependent both on the action potential shape and on the
acceleration of the depolarization during the final phase of the interspike
interval. The density of data points in the loop encodes spike frequency. A
burst consisting of spikes with different shapes will result in superimposed
trajectories of different sizes (Figure 6D).

Next a two-dimensional histogram is created around the phase-plane
plot. When this is done for both an experimental and a model trace, both
traces can easily be compared. The error value can be computed as the
root-mean-square difference between the histograms:

e =
√√√√ Nx∑

i=1

Ny∑
j=1

(
dataij

Ndata
− modelij

Nmodel

)2

(1)

with dataij and modelij the number of points in bin (i, j ), Ndata and Nmodel

the total number of data and model points, Nx and Ny the number of bins
in the histogram. A perfect match results in a zero error.

In practice, we found the optimization algorithm can have difficulties in
finding an optimal value with this error definition (see Section A Bursting
Pacemaker Neuron). The voltage in a neuron will remain close to the
resting potential most of the time, causing the bin containing this resting
value to have a large value, while the other bins representing the shape of
the action potential get very small values. In Equation (1) the difference of
these values to the model are then squared before taking the sum, causing
the error value to become very dependent on the resting potential.
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Figure 4. XML structure. The basic structure of the XML settings file. The root tag can be chosen by the user. A more extended example can be found in
Appendix B.

Equation (1) can be replaced by:

e =

 Nx∑

i=1

Ny∑
j=1

√∣∣∣∣dataij

Ndata
− modelij

Nmodel

∣∣∣∣



2

(2)

which has the opposite effect of the square root of the square’s sum,
namely that the resting potential effect loses weight. Note, however, that
Equation (2) gives a proportionally higher weight to noise than Equation
(1). In Neurofitter the user has to select one of these two equations.

Figure 9 compares the error landscapes obtained for a simple model
using Equations (1) or (2). In this case, Equation (2) is much easier to
search by an optimization algorithm as there are less local minima, so it

suffices for the algorithm to follow the gradient of the surface to find a
better solution.

Phase shifts. For neural data it is an advantage if the error function is
insensitive to small phase shifts or jitter between the model and data
traces. This is very important since the exact timing of spikes is usually
much less reproducible in experimental recordings than the spike shapes
(Fellous et al., 2001; Mainen and Sejnowski, 1995; Shadlen and Newsome,
1998) and it therefore does, in general, not make sense to try to do a
“perfect” fit to a particular trace.

The phase-plane trajectory density method will generate the same
V–dV/dt plot for two traces that show a small phase difference (Figure 7A).
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Figure 5. Parallelization. The different levels of possible parallelization. (A) All the parallel running slaves receive a set of model parameters, run the model,
calculate the error value using the phase-plane trajectory density method, and return the error value to the master node. (B) The slaves run 1 stimulation protocol
using the model and return the voltage traces to the master. (C) The model is internally parallelized in the neuron model simulator.

Other techniques (Vanier and Bower, 1999) have compared recorded
traces by calculating the mean-square error between the recorded data
points:

f = 1
N

N∑
i=1

(datai(t) − modeli(t))
2 (3)

Equation (3), however, is very sensitive to phase shifts in the data. It can
even generate the undesired result that phase shifts are punished more
than the difference between a spiking and a quiescent trace (Figure 7B).

One solution would be to shift the spikes in the model trace so that
both peaks coincide. This allows for comparison of the shape of the action
potentials, since a lot of information about the ion channel conductances
is stored in this shape. However this way of comparing traces can become
complicated when one deals with traces with more than one spike: which
spikes should be compared? What happens when the spiking frequencies
are different? How to treat bursts with irregular number of spikes? etc.

Histogram bin size. An important setting of the method that is not auto-
mated is the size of the 2D histogram, which is determined by both the
maximal/minimal values for V and dV/dt and by the resolution. For experi-
mental data, it is trivial to find the extreme values for V since one possesses
all the data, but for the data produced by the different model parameter
sets this is in general not possible before running the models. Because of
the way this matrix is implemented (see Section Implementation Aspects),
these values can be chosen to be quite broad without using much extra
memory to store the matrix, so one can use, for example, from −300
to 300 mV for voltage traces. If some values produced by the model fall
outside these bounds the bins at the borders of the matrix are used
to store overflow values. Neurofitter calculates the boundaries for dV/dt
automatically, by using the extreme values of V and the sampling rate.

The choice of the resolution (i.e., bin size) of the matrix is more difficult
and is determined by a trade-off rule. If a very small bin size is chosen, the
probability of finding two data points in the same bin becomes tiny, which
causes two traces with a small difference to have a large error value since
all their data points would be in different histogram bins. But one wants
also to avoid the opposite effect, namely if the resolution is too low (in the
extreme case, just 1 bin), a lot of points will be in the same bin and all
traces will have very similar error values. For the problems we studied, we
typically used matrix sizes in the range of 100 by 100 to 500 by 500 bins.
When Neurofitter is used with a high verbose level setting, the software
will print the histograms that are used on the standard output, so that the
user can evaluate the size and resolution of the matrix and fine-tune them
if necessary. We recommend that users check the histograms generated
from the experimental data to make sure that these dimensions are set to
useful values.

Combining different recordings and time ranges. Often one single
experimental trace will not suffice to fit a model, and the scientist wants
to combine different traces from different stimulation protocols, recording
sites, etc.

To accomplish this, the error values from the different traces can be
combined in a global value E as a weighted sum:

E =
Nrecordingsites∑

i=1

Nprotocols∑
j=1

Ntime ranges∑
k=1

wijk · eijk (4)

with i ranging over the Nrecordingsites different recording sites, j over the
Nprotocols different stimulation protocols, and k over the Ntime ranges rele-
vant time ranges, eijk the error values of the different traces calculated
according to Equations (1) or (2) and wijk the weights of the different
traces in the global error function E.

Time ranges can be specified since eliminating detailed temporal infor-
mation from the data traces, as is done in the phase-plane trajectory
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Figure 6. Phase-plane trajectory density plots. (A) Traces recorded from the PC model (De Schutter and Bower, 1994) during constant current injection of
0.5 nA, causing the model to tonically fire action potentials. (B) V–dV/dt plot corresponding to the trace in (A), data sampled every 0.02 ms. Gray lines show the
bins of the 2D histogram used by the phase-plane trajectory density method. In every bin the number of plot points is counted, the counts are then combined in
Equation (1). (C, D) Similar to A and B, except that the model is injected with a current of 3 nA, causing it to burst. The V–dV/dt plot shows different trajectories
corresponding to different action potential shapes.

density function, may sometimes be a disadvantage. For example, if one
simulates a neuron that first spikes and then bursts, a model that produces
the opposite sequence, burst first and then spike, will give good error val-
ues. This problem can be overcome by dividing the traces in different,
possibly overlapping, time ranges on which the phase-plane trajectory
density method is applied separately (Figure 8, Figure 13).

The different error values generated this way, one for each time
range, can then be summed afterwards with possibly different weights
(Equation 3). These weights make it possible to assign different levels
of importance to each time range. For example, it might be decided
that a transitory period at the beginning of the trace does not need
to be fit exactly and so it can be given a lower weight. The example
XML settings file in Appendix B shows how these time ranges can be
defined.

Optimization algorithms
By giving an error value to every set of parameters, finding the best set of
parameters is reduced to an optimization problem that can be solved by
general global optimization algorithms.

Neurofitter interfaces with third-party optimizations libraries and has
also several built-in optimization algorithms, ranging from very simple

methods to the quite complicated particle swarm optimization. We next
give a brief overview of the included algorithms.

Mesh. A multi-dimensional regular mesh is created in the parameter
space (Prinz et al., 2003). The error function is evaluated at every vertex.
No information about the goodness of points previously visited is exploited.
The algorithm allows the user to make a preliminary scan of the solution
space or to get insights in the shape of simple error landscapes. In the case
where the model has just two parameters it is easy to make 3D plots of
the error function (Figure 9), if there are more parameters users can apply
stacking techniques to visualize higher-dimensional spaces (Taylor et al.,
2006). As the number of points to evaluate increases as a power of the
number of free parameters, this algorithm is unfortunately computationally
prohibitive when this number approaches 10.

Random. This method is very similar to the Mesh algorithm, except that
the points are chosen at random according to a uniform distribution in
the parameter space. The advantage is that, when calculating enough
points, this method does not create artificial biases in the data caused
by the shape of a mesh. And since the order in which the solution space
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Figure 7. Phase difference between spike trains. (A) Plot of a fragment of two spike trains (red and blue) that show a phase difference. On a phase-plane
trajectory density plot these two spike trains would show almost the same shape. (B) The least square errors (blue trace, Equation 3) between the two spike
trains in (A) show a maximum when the phase difference is maximal, at that point the values are much higher than the least square errors between the red
trace and the flat green trace (A).

is searched is random, instead of starting at one corner, this method is
more suited as a reference to compare the speed of different optimization
algorithms.

File. When using the FileFitter the user provides Neurofitter with a file
containing specific parameter sets that have to be evaluated. This offers
the possibility of exploring some user-defined sets of parameters.

Particle swarm optimization. The particle swarm optimization algorithm
(PSO) (Kennedy and Eberhart, 1995) imitates the behavior of flocks of
animals that are in search for food or that try to avoid predators. The
general concept is that every particle in the swarm searches for a local
minimum in the error function, during which it is influenced by the best
solution found so far by both the particle itself and by other particles to
which it is connected to in the swarm.

Because a large number of variants for particle swarm optimization
exist, James Kennedy and Maurice Clerc have proposed a standard PSO
algorithm called PSO 2006 (http://www.particleswarm.info), which is the
version implemented in Neurofitter. This algorithm has a very limited
amount of internal parameters that have to be set as most of these set-
tings are calculated automatically. For example, the number of particles
in the swarm is the closest integer to 10 + 2 × √

D with D the number
of dimensions (i.e., number of parameters).

Evolution strategies (ES). Another interesting method is ES (Rechenberg,
1973; Schwefel, 1975) in which a process similar to natural selection is
used to find an optimal solution. The method is very similar to genetic
algorithms (Holland, 1975) but has as advantage that it is specifically
designed for problems with real numbers instead of integers. As with
genetic algorithms one starts with an initial random population of possible
solutions, to which a number of operators are applied, causing subse-
quent populations to contain better and better individuals. The operators
used in general in ES, are mutation, crossover, and selection. The former
lets the parameters change with random values from a Gaussian distri-
bution, the second averages parameters of several individuals, and the
latter selects the best individuals from every generation to survive into
the next.

Non-linear optimization for mixed variables and derivatives
(NOMAD). NOMAD (Audet and Orban, 2004) is a method that, while it
is still a global optimization technique, is more specialized in finding local
solutions. It starts with a single point in the search space. Then the algo-
rithm repetitively applies two steps on the search space, namely a global
search and a local poll step. During the search step a mesh is created in the
solution space and the value of the error function is calculated on randomly
chosen crossings all over the mesh. If during this step no better solution
than the incumbent solution is found, the poll step is applied. This consists
of a search on the mesh in the space around the incumbent solution.

Hybrid. Unfortunately, as predicted by the no-free-lunch theorems
(Wolpert and Macready, 1997), there exists no optimization algorithm that
is perfect, and it is very difficult to find out which is the best method to
use for a specific problem. However, one can combine different search
algorithms by applying them sequentially (Banga et al., 2003). The idea
is to first let one algorithm search in the full parameter space until it is
unable to substantially improve the solution, and then use its best solution
as a start for another algorithm that is faster at finding local solutions. In
Neurofitter we have implemented a method that first uses the ES tech-
nique, which is then followed by the NOMAD algorithm (Achard and De
Schutter, submitted).

Implementation aspects
Neurofitter is written in C++ in such a way that it is very readable by users
who have some knowledge of C++. Overall, concepts in Neurofitter are
used in a very generic way, so that users can easily add pieces of code to
Neurofitter. In this way other optimization algorithms, file formats, paral-
lelization methods, etc. can be incorporated into Neurofitter. The settings
of all the components that are added can be read from the Neurofitter XML
settings file in a straightforward way.

We have minimized the memory used by Neurofitter by implementing
the V–dV/dt histograms in a data structure called a dictionary. Since these
histograms are in general very sparse, it is not very memory efficient
to store all the values in memory arrays, but only to store the non-zero
elements, which can be implemented using a two-dimensional dictionary.
As a consequence, users can set the minimal and maximal values of the
matrix quite broadly without incurring a memory penalty.
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Figure 8. Different time ranges. Plot showing the ability of Neurofitter to calculate the phase-plane trajectory density plot for different time ranges in a trace
separately. This enables the user to make a distinction between different firing patterns inside one trace. Example was made using the PC model (De Schutter
and Bower, 1994).

We realize that the field of optimization techniques is rapidly evolving
and that many new optimization methods are being developed. That is
why we made it possible for users to use third-party optimization libraries.
Similarly, users are free to use whichever neuron simulator they like. We
provided built-in interfaces to the NEURON (Hines and Carnevale, 1997)
and GENESIS (Bower and Beeman, 1998) simulators but other simulators
can easily be used.

Since we expect a very diverse set of users, Neurofitter compiles
on as many systems as possible. Some of the systems we successfully
tested Neurofitter on include Mac OS X 10.4 on PPC/Intel processors,
Windows Cygwin, Linux Slackware/Suse, etc. Neurofitter uses MPI for
it’s parallelized version and can be used on most cluster computers,
the MPI implementation we tested it on were OpenMPI, LAM/MPI and
MPICH.

Methods used in the examples
The two example models in the discussion section were simulated with
GENESIS 2.2.1 software (Bower and Beeman, 1998) under Mac OS X 10.4
and SUSE Linux Enterprise Server 10 and run on an Apple cluster computer
using IBM PowerPC G5 and Intel Xeon processors. For the compilation of

Neurofitter, GENESIS, ES, and NOMAD the Gnu Compiler Collection (gcc)
version 4.0.1 was used. Data analysis was performed using Matlab 6.5,
Igor Pro 5.04b and Gnuplot 4.2.

EXAMPLES OF USING NEUROFITTER
A bursting pacemaker neuron
Rhythm generation is an important function of the nervous system. The
primary kernel for respiratory rhythm is hypothesized to be located in the
pre-Bötzinger complex in mammals (Smith et al., 1991). The rhythm is
generated by a population of excitatory neurons that have intrinsic bursting
pacemaker-like properties. These properties arise from a balance between
the different ion channels present in the cells. We tested the efficiency of
Neurofitter in finding the correct balance of the parameters that generate
this bursting behavior by letting it fit a simple single-compartmental model
of the pre-Bötzinger bursting pacemaker neurons described in Butera et al.
(1999). It contains four ionic currents: a fast (NaF) and a persistent (NaP)
Na current, a delayed-rectifier potassium (Kdr) current, and a K-dominated
passive leakage current:

C
dV

dt
= −INaP − INaF − IKdr − ILeak (5)
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Figure 9. Error landscapes. 3D plots of error landscapes created by Mesh searches in the solution space of the pacemaker neuron model. (A) uses Equation
(1) to calculate the error values; (B) uses Equation (2). Remark that the deep blue region in panel A has become dark red in panel B. The view angle of both
plots is chosen differently to allow a better view of the 3D landscapes. The black arrows indicate the location of the optimal solution. The red arrow points to the
position of a local minimum that created problems for the ES algorithm.

To allow for a bursting behavior the model incorporates a slow inacti-
vation of the NaP current with a time constant of 10 seconds.

This model was a good test case as it has a small number of ionic
channels but an electrophysiological behavior more complex than simple
spiking. Two of the four maximal conductances were released, creating
an error function that takes two single values as argument and that could
easily be visualized in a three-dimensional plot (Figure 9A). We fitted the
maximal conductances of the NaP and Kdr channels, since the balance of
strengths of these two channels is important to allow the bursting behavior
of the model.

The target traces were these created by the original maximal conduc-
tance values used in Butera et al. (1999), 2.8 nS for gNaP and 11.2 nS for
gKdr. The parameter boundaries imposed on the optimization algorithms
were [0,10] nS for gNaP and [0,50] nS for gKdr. We used a single phase-
plane 2D histogram comprising 3.0–4.8 seconds of the trace shown in
Figure 11A.

A mesh in the solution space was explored by using Equation (1) to
calculate the difference between two matrices, creating the error plot
shown in Figure 9A.

However, optimization algorithms often failed to find a good solution to
this error function. This was because the error function contained a local
minimum around the point gNaP ≈ 5 nS and gKdr ≈ 15 nS, while the best
solution was 2.8 nS for gNaP and 11.2 nS for gKdr (Figure 10).

Further investigation revealed that this was because the error function
using Equation (1), emphasized too much the resting potential, and less
the shape of the action potentials, as described in Section Phase-Plane
Trajectory Density Method.

Using Equation (2) the error landscape became steeper and contained
less local optima (Figure 9B), which made it easier for an optimization
algorithm to find a good solution. Running ES and NOMAD sequen-
tially made it possible in this case to find almost the exact value that
was used in the original paper by making 1000 model evaluations
(Figure 11).

To benchmark the optimization algorithms, we made a comparison
with a complete random search of the solution space (Figure 12), which
shows that, indeed, the more advanced optimization algorithms were
faster in finding a good solution.

The XML settings file used for this example can be found in
Appendix B.

A complex multi-compartmental neuron
The Purkinje cell (PC) model described in De Schutter and Bower (1994) is
a very complex model consisting of 1600 compartments and 4 zones with
different channel densities. The model shows a very broad range of possi-
ble activities (tonic firing, bursting, etc). Therefore, it has a large amount of
parameters that have to be fit before it can reproduce the available exper-
imental data. This makes it very difficult to hand-tune this model and it is
quite appropriate to use automatic optimization techniques. Results of this
approach have been described in Achard and De Schutter (2006). A total
of 24 of maximal conductance parameters were released (Table 1), and
current clamp experiments using different injection amplitudes were sim-
ulated. While we tried to use reasonably wide bounds for all conductances
in these parameter searches (Table 1), preliminary tests showed that the
bounds for the two channels controlling somatic spiking (fast sodium and
delayed rectifier potassium) had to be quite constrained for the ES to work
rapidly in this example.

This study made extensive use of the ability of Neurofitter to split up
data traces and to combine different phase-plane plots to generate one
error function. To incorporate different behaviors of the PC, currents of dif-
ferent amplitudes were injected in both soma and dendrites (Figure 13).
Traces were obtained during five somatic current injections of 0.5, 1, 1.5,
2.5, and 3 nA; one dendritic current injection of 1.5 nA; and without any
injected current to include the quiescence at rest (De Schutter and Bower,
1994). The model was run sequentially for different current amplitudes,
creating seven different output files. The duration of recording was differ-
ent for the each injected current: it was short for silent or tonically firing
traces in order to optimize the computation time and longer for bursting
traces in order to have enough points in the error 2D histogram.

Since ion channel parameters were fitted in the soma and the dendrites
it was important to have recording sites in both locations (Figure 13).
These were weighted so that soma and dendrite had equal influence on
the error measure. In order to have an experimentally realistic protocol,
the dendritic recording sites were only located on smooth dendrites. Every
recorded file from the model therefore contained four columns, one column
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Figure 10. ES search using Equation (1) in the phase-plane trajectory density method. (A) Plot of points in the solution space evaluated by Neurofitter
during an Evolutionary Strategies search (6000 evaluations) to tune the pacemaker model using Equation (1) for the phase-plane trajectory density method.
Every red point represents 1 evaluation. ES is not able to escape a deep region (B) Interpolated plot of the error values calculated by Neurofitter during the ES
search in (A). The global optimal solution with error value 0 is shown by the black and white arrows, but the ES algorithm is not able to escape a local minimum
(red arrow) around gNaP = 5 nS and gKdr = 10–20 nS. Remark that plot B does not show a complete representation of the error landscape, but only the shape
as seen by ES.

Figure 11. Resulting traces. (A) Somatic membrane voltage traces of the
target data (red), the best model found by an ES optimization after 200 (green)
and 500 (yellow) evaluations, and by a NOMAD search that started with the
best solution found by ES (blue). The respective error values are 0, 6.7, 4.1,
and 2.6. (B) Phase-plane trajectory of the traces in A (same color code). The
density of the trajectory is not visible, since one location on the plot can contain
many overlapping data points.

with the timestamps, one column with data recorded from the soma and
two from the dendrites.

After the start of a current injection one can expect a transitory regime
that stabilizes after some time. To separate these two periods, every trace
was evaluated twice using the time range feature of Neurofitter (Figure 13,
Section Combining Different Recordings and Time Ranges). The transitory
period was defined as the period from 100 to 200 ms after the start of
the experiment and the stable period as from 1 second after the start of
current injection until the end of the recording.

The combination of all these recordings created 7 × 3 × 2 parts of
traces that were compared separately using the phase-plane trajectory
density method with Equation (1) and Nx = Ny = 100.

Combining all the measures with different weights wijk a total error
value could be calculated:

E =
7∑

i=1

3∑
j=1

2∑
k=1

wijk · eijk (6)

with i iterating over the injection amplitudes, j over the recording sites,
and k over the time ranges; wijk 1 for somatic recordings and 0.5 for
dendritic recordings, except when no current was injected, then they
were respectively 0.6 and 0.3.

As optimization algorithm the ES technique was used to fit the param-
eters, the evolution of the error values during the algorithm is shown in
Figure 14.

Subsequent analysis showed that a hybrid approach (Section Hybrid)
substantially improved the error of the solutions found compared to ES
alone (Achard and De Schutter, submitted).

DISCUSSION
As the results show, Neurofitter finds model parameter sets that nicely
reproduce predefined target voltage traces, with minimal effort from
the user. For a very simple model (Butera et al., 1999) with only two
released parameters, Neurofitter finds one almost perfect solution, but
for a more complicated model of the cerebellar PC (De Schutter and
Bower, 1994) the method has shown that the different sets of parameters
can generate data traces that show very similar behavior (Achard
and De Schutter, 2006). These two examples were chosen because
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www.frontiersin.org



V a n G e i t e t a l .

Figure 12. ES/NOMAD evolution of pacemaker neuron model. (A) Evolution of best error value found by Random (red) and hybrid ES+NOMAD (blue) searches.
The data points (mean ± sdv) are averaged over 10 different runs of the algorithms using different random seeds. After 500 error evaluations Neurofitter switched
from ES to NOMAD. (B) The evolution of the best maximal NaP and Kdr channel conductances during the same 10 runs as in A for the hybrid ES + NOMAD
algorithm. The dashed line shows the maximal conductance of the target data. Not the entire range of the y-axis is shown to allow a better scaling of the plot.

we knew in advance that a good solution exists and, therefore, any
problems in fitting would be due to the error measure or optimization
method used. Of course Neurofitter also needs to be shown capable
of fitting models to real experimental data, but this is more complex
to analyze as the quality of the neuron model used will determine
the ultimate success. Preliminary efforts in fitting experimental traces
(http://icwww.epfl.ch/∼gerstner/QuantNeuronMod2007/challenge.html)
have been very encouraging and this is a topic of active research by the
authors.

One of the big advantages of Neurofitter lies in its use of the phase-
plane trajectory density method. In our experience it is a very efficient
method to evaluate time series data traces and it has the desirable property
of being insensitive to jitter and phase shifts in the data (Druckmann

et al., 2007). This error measure is entirely heuristic and it is difficult
to predict a priori a reasonable threshold to distinguish good from bad
models (Achard and De Schutter, 2006). The use of Equation (2), which
introduces a very sharp gradient for small errors and a low gradient for
large errors, is also unusual but it worked quite well for different fitting
problems we have investigated. A limitation of the phase-plane trajectory
density method is that it only provides information about size of error if
the model and data traces overlap. If there is no such overlap the maximal
error will be computed, independent of the distance between the traces in
2D space. However, this is unlikely to occur if the error measure combines
several phase-planes (Equation 5), and it will never cause problems if
enough parameter sets are randomly generated at early stages of the
optimization.

Table 1.The 24 maximal conductance parameters of the PC model that were tuned in Neurofitter.

Type Parameters Original value Lower bound Upper bound

Na+ (fast) gNaFs 75 000 50 000 100 000
Na+ (persistent) gNaPs 10 3 30
Ca2+ (T-type) gCaTs, gCaTm, gCaTt, gCaTd 5 1 20
Ca2+ (P-type) gCaPm, gCaPt, gCaPd 45 10 100
K+ (A-type) gKAs 150 50 500

gKAm 20 3 60
K+ (delayed rectifier) gKdrs 6 000 2 000 10 000

gKdrm 600 200 1 000
K+ (muscarinic) gKMs 0.4 0 3

gKMm 0.1 0 1
gKMt, gKMd 0.13 0 1

K+ (C-type Ca2+-activated) gKCm, gKCt, gKCd 800 200 2 000
K+ (K2 Ca2+-activated) gK2m, gK2t 3.9 0.5 10
K+ (anomalous rectifier) gKhs 3 0.5 10

Values are in S/m2.
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Figure 13. PC model traces. All the traces recorded from the original PC model that were used to find new parameters. Every column represents a different
recording site, every row a different current injection (somatic injection unless otherwise mentioned) and the dashed lines show the boundaries of the two
different time ranges. In total there are 42 trace fragments for which separate phase-plane trajectory plots are calculated. The traces with no current injection
have a slightly different time range. For the other current injection amplitudes the time range ends at the end of the recording.

Previously described automated model parameter search methods dif-
fer from Neurofitter on two separate aspects: the optimization method used
and the implementation of the error function. Some methods (Goldman
et al., 2001; Prinz et al., 2003) use an error function that focuses on
quantitative aspects that are important for physiological function and are
therefore also insensitive to phase shifts in the data. Typical properties
include the firing behavior (silent, spiking, bursting,. . .), resting potentials,

spiking frequencies, spike heights, spike widths, bursting frequencies,
number of spikes per burst, etc. These properties are measured from the
data and compared to similar measurements from the model to calcu-
late the error. We have previously shown that our method achieves the
same accuracy as these approaches (Achard and De Schutter, 2006, Sup-
plementary data). This approach requires criteria to consistently define
spikes, bursts, “regularly spiking”, etc. It necessitates the use of spike
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Figure 14. Error evolution PC model. Error evolution during the optimization
process of the PC model. Mean error value ± standard deviation in every
generation is in red. The error value of the best individual is in green.

detection or even spike sorting methods (Lewicki, 1998) to analyze the
traces, and, as these methods are at best semi-automated, extra effort
from the user will be required. An advantage of these approaches is that
the model will not be fitted to data from a single cell but to a statistical dis-
tribution reflecting the underlying variability (Marder and Goaillard, 2006).
It also makes it easier to give more weight to specific characteristics, like
spike width (Druckmann et al., 2007). But even in intracellular recordings
the reliability of automated spike isolation methods is not always guaran-
teed (Blanche and Swindale, 2006; Moon, 1996; Paulin, 1992). If one wants
to reproduce not only the simple spiking activity of a cell or a network,
but also its subthreshold behavior, the spikelets of the bursts, the trans-
mission of post-synaptic potentials, etc., it becomes increasingly difficult
to automatically quantify these different properties. Moreover, the more
complex the analysis required, the more subjective and user-dependent it
will become since the criteria that have to be used are not clearly defined.
Conversely, the phase-plane trajectory density method used by Neurofitter
is very transparent and requires only a few control parameters, allowing
the user to focus on the selection of relevant data traces to determine the
seminal properties of the model. While we have until now only included
data from one cell or neuron in the error measure it is, in principle, possible
to combine data from different neurons of a similar type if one wants to
generate a “generic” model.

Another advantage of using Neurofitter is that the user can exploit the
large knowledgebase that exists in the field of optimization techniques.
Very advanced methods have been invented in this field, and by using
Neurofitter one can apply many of these techniques to tune neuronal
models, including evolutionary strategies (Keijzer et al., 2001), particle
swarm optimization (Kennedy and Eberhart, 1995) and MADS (Audet and
Orban, 2004). Especially the ES technique has been shown to be able to
handle high dimensional problems with a lot of local minima (Achard and
De Schutter, 2006; Banga et al., 2003). Global optimization techniques,
that try to find the best global minimum of the error function will perform
better than local optimization techniques, since the error space created
by the parameters of neuron models is apparently filled with local minima
and flat area’s (Achard and De Schutter, 2006; Goldman et al., 2001).
So methods that are based on optimization algorithms like the conjugate
gradient method (Vanier and Bower, 1999) will have difficulties in finding
good solutions.

Other parameter search methods (Bhalla and Bower, 1993; Goldman
et al., 2001; Prinz et al., 2003) explore the solution space using brute-force
methods by evaluating the model on all the points of a uniform higher-

dimensional mesh. This is reasonable when the number of parameters
that need to be fitted remains low, but since the amount of points that
needs to be evaluated increases as a power of the number of dimensions,
this becomes computationally very expensive for complex models.

The method proposed by Huys et al. (2006) is an interesting alternative,
because it does not apply the traditional stochastic search methods to
tune neuron models, but follows a more direct mathematical approach
by turning the fitting problem into a non-negative regression problem.
However, its main disadvantage is that for large cells it requires voltage
recording at many positions in the neuron, which strongly limits the data
sets that can be used for this method since at present the only technique
available would be voltage-sensitive dye imaging studies.

In this paper, the use of current clamp voltage data is emphasized, but
this is in no sense a prerequisite to use Neurofitter. Users can easily use
it for other applications. As long as the experimental data consists of one
or more time-dependent traces to which the phase-plane matrix method
can be applied, Neurofitter can be used. Possible alternatives are traces
of calcium concentration signals inside a cell, data from voltage clamp
experiments, etc. It has recently been suggested that extracellular record-
ings of action potentials can provide useful additional constraints to fitting
a model (Gold et al., 2006) and it is relatively straightforward to incorpo-
rate such data into phase-plane trajectory density matrices. It should also
be possible to apply Neurofitter to other problems than fitting the max-
imum conductances of channels. For example, instead of using a fixed
morphology, one may want to tune the morphology itself to generate partic-
ular electrophysiological properties (Mainen and Sejnowski, 1996; Stiefel
and Sejnowski, 2007). Another possibility is fitting of network parameters,
including connection strengths between neurons, network topologies, etc.
This will require careful evaluation of the required experimental data,
especially if one wants to achieve specified levels of synchronization in
the network (Brown et al., 2004).

Neurofitter will hopefully stimulate both modelers and experimentalists
to share their data to create better models (Ascoli, 2006; Kennedy, 2006),
and will make it easier for neuroscientists to create detailed neuron models
based on experimental data. Neurofitter is designed to be an evolving
software package. We are continuing to explore ways to enhance it, both
by improving the search methods used and by making the program easier
to use. As Neurofitter is licensed under GPL license, it can be modified
and extended by its users.

Downloading the software
Neurofitter can be freely downloaded from http://neurofitter.sourceforge.
net.
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APPENDIX A: ALGORITHM
Using Neurofitter involves the following steps:

(1) The user adapts the model so that it can interact with Neurofitter
(2) The user adapts the experimental data to the appropriate format
(3) The user generates an XML file containing the settings of Neurofitter
(4) The user executes the Neurofitter binary
(5) Neurofitter reads the experimental data and generates the experi-

mental phase-plane trajectory density matrices
(6) Neurofitter starts the optimization algorithm
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(7) The optimization algorithm returns a first set of model parameters
that have to be evaluated

(8) For every “run” parameter (e.g., amplitude of injected current)
8.1 Neurofitter writes a file “param.dat” in the model directory

containing the model parameters
8.2 Neurofitter writes the “run” parameter (e.g., current ampli-

tude) in ‘param.dat’
8.3 Neurofitter writes in ‘param.dat’ a string containing the loca-

tion of where it expects the simulator to write the output
data

8.4 Neurofitter runs the external neuron simulator
8.5 The simulator reads the model parameters from ‘param.dat’
8.6 The simulator reads the run parameter from ‘param.dat’
8.7 The simulator reads the requested output file location from

‘param.dat’
8.8 The simulator runs the model
8.9 The simulator writes out the data to the requested location

8.10 Neurofitter reads the output of the simulator
8.11 Neurofitter cuts out the relevant time periods in the data and

generates phase-plane trajectory density matrices
8.12 Neurofitter calculates the error value for this run by compar-

ing with the experimental V phase-plane trajectory density
matrices

(9) Neurofitter calculates the weighted sum of the error values of all the
different runs

(10) Neurofitter writes the error value of the parameters in the Neurofitter
output file

(11) Neurofitter gives back the error value of the model parameter set to
the optimization algorithm

(12) The optimization algorithm searches for a new parameter set to
evaluate

(13) Neurofitter returns to step (8) until a termination criterion is reached
(14) The user reads all the evaluated model parameter sets with their

error value from the Neurofitter output file.

APPENDIX B: FILE FORMATS USED BY
NEUROFITTER
Data traces file format
The first column of every file contains the time stamps, and in subsequent
columns the data recorded from the different recording sites (Figure 3).
The sampling rate of all the files should be the same.

The data (both the experimental data and the model output) has
to be stored using filenames that have as format “output Run0.dat”,
“output Run1.dat”, etc. The user can choose the text string before the
underscore by setting the value of the OutputFilePrefix option in the Neu-
rofitter XML settings file (section below). The format of the text after the
underscore is fixed; it should be “Run0.dat”, “Run1.dat”, “Run2.dat”, etc.
for the files containing the data that will be compared with stimulation
protocols 0, 1, 2, etc.

XML settings file
An example of a Neurofitter settings file. It is similar to the one
used for the model in Section A Bursting Pacemaker Neuron, but for
demonstration purposes some settings in this file are different. All
words between <!– and –> are comments, and are not processed by
Neurofitter.

<ButeraModel>
 <!-- Number of parameters to be tuned --> 
 <Dimensions>2</Dimensions>  

 <!-- Verbose level; values from 0 to 5; the higher the more output --> 
 <!-- will be written to standard output -->  
 <VerboseLevel>4</VerboseLevel>  

 <!-- Seed of the random number generator to be used during --> 
<!-- the algorithm --> 

 <Seed>1550</Seed>  

 <!-- The sampling frequency of the data traces, units should be --> 
 <!-- the same as in the TracesReader settings --> 
 <SamplingFrequency>5000</SamplingFrequency> 

 <!-- The starting point of the optimization algorithm --> 
 <StartingPoints> 
  1.0 1.0 
 </StartingPoints> 

 <!-- The lower and upper bound of each parameter --> 
<Bounds>

  1.0 10000.0 <!-- LowerBound UpperBound --> 
  1.0 50000.0 
 </Bounds> 

 <!-- Path of directory were Neurofitter will be executed --> 
 <WorkingDirectory>/home/buteratest</WorkingDirectory> 

 <!-- Print settings file to stdout before execution ? --> 
<!-- 1 = True / 0 = False --> 

 <PrintParameterFile>1</PrintParameterFile> 

<!-- Selection of the optimization algorithm --> 
<!-- Possible values are: --> 
<!-- Mesh, Random, File, Swarm, EO, NOMAD, EONOMAD --> 
<FitterType>EO</FitterType>
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        <maxGen>5000</maxGen> <!-- Maximal number of generations --> 
        <minGen>0</minGen> <!-- Minimal number of generations --> 
        <maxEval>30000</maxEval> <!-- Maximal number of evaluation --> 
        <targetFitness>0.0</targetFitness> <!-- Target fitness below  --> 

<!-- which ES stops --> 
        <steadyGen>1000</steadyGen> <!-- Maximal number of generations --> 

<!-- without improvement -->
        <crossType>global</crossType> <!-- number of parents for --> 

<!-- cross-over (global or local) --> 
        <crossObj>intermediate</crossObj> <!-- type of cross-over --> 
        <TauLoc>1</TauLoc> <!-- internal parameter for self-evolution --> 
        <TauGlob>1</TauGlob> <!-- internal parameter for self-evolution --> 
        <Beta>0.0873</Beta> <!-- internal parameter for self-evolution --> 

</FitterParameters>

<!-- Settings of object that reads the data traces --> 
<!-- Only 1 type at the moment: Normal --> 
<TracesReaderType>Normal</TracesReaderType>
<TracesReaderParameters>

<!-- Number of stimulation protocols --> 
<NumberOfRuns>1</NumberOfRuns>
<!-- Number of settings (like injection amplitude) -->
<!-- per stimulation protocol --> 
<NumberOfRunParameters>1</NumberOfRunParameters>

<!-- Values for the run parameters --> 
<RunParameters>

0.0 1.0 <!-- RunPar1 RunPar2 ... Weight --> 
</RunParameters>

<!-- Number of different time ranges --> 
<NumberOfPeriods>3</NumberOfPeriods>
<!-- Selection of time ranges, 1 line per period --> 
<!-- Units the same as the sampling frequency setting --> 
<Periods>

2.0 3.9 0.33 <!-- PeriodStart PeriodStop Weight --> 
1.0 1.5 0.33 
0.5 0.75 0.33 

</Periods>

<!-- Number of different recording sites --> 
<NumberOfRecordSites>1</NumberOfRecordSites>
<!-- One line for the weight of every recording site --> 
<RecordSites>

1 <!-- Weights --> 
</RecordSites>

<!-- The prefix used in the filenames of the experimental  --> 
<!-- and model data,
<!-- e.g. filename of the data of the first run = -->
<!-- output_Run0.dat --> 
<OutputFilePrefix>output</OutputFilePrefix>

</TracesReaderParameters>

<!-- The type of simulator used to run the model --> 
<!-- Possible values: Genesis, Neuron, Executable --> 
<ModelType>Genesis</ModelType>
<!-- Settings for the simulator interface --> 
<ModelParameters>

<!-- The Genesis binary location --> 
<GenesisLocation>/usr/local/bin/genesis</GenesisLocation>
<!-- Directory containing the model files --> 
<ModelDirectory>/home/buteratest/model</ModelDirectory>
<!-- Directory that will contain the model output files --> 
<OutputDirectory>/home/buteratest/model/output</OutputDirectory>

<!-- Settings of the optimization algorithm --> 
<FitterParameters>
  <popSize>22</popSize> <!-- Number of individuals in population --> 

        <nbOffspring>200</nbOffspring> <!-- Number of offspring --> 
        <replacement>Plus</replacement> <!-- Replacement strategy --> 
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<!-- Genesis model file that starts the simulation --> 
 <ModelSource>/home/buteratest/model/buteramodel.g</ModelSource> 

<!-- File written by Neurofitter that contains the model and --> 
<!-- run parameters. This file should be read by the model --> 
<ParameterFile>/UseterWork/wernermodel/param.dat</ParameterFile>
<!-- Show the genesis stdout during execution, useful for --> 
<!-- debugging -->  

  <ShowExecuteOutput>0</ShowExecuteOutput> 
 </ModelParameters>  

 <!-- Type of experimental data --> 
 <!-- Possible values are:  

<!--   File: data read from file --> 
<!--   Fake: ‘experimental’ data is obtained by running -->  
<!--    the model with a preset set of parameters --> 

 <ExperimentType>Fake</ExperimentType> 
 <ExperimentParameters> 
  <Parameters>2800.0 11200.0</Parameters>  
 </ExperimentParameters> 

 <!-- Type of error function used --> 
 <!-- Only 1 possible value: Matrix --> 
 <ErrorValueCalculatorType>Matrix</ErrorValueCalculatorType> 
 <!-- Settings of the error function --> 

<ErrorValueCalculatorParameters>
 <!-- Type of V-dV/dt matrix used --> 
 <!-- Only 1 possible value: Direct --> 

  <VdVdtMatrixType>Direct</VdVdtMatrixType> 
         <VdVdtMatrixParameters> 
   <!-- Numbers of bins in the V direction of the matrix --> 
             <vLength>100</vLength> 

<!-- Numbers of bins in the V direction of the matrix --> 
             <dVdtLength>100</dVdtLength> 
   <!-- Minimal value of V --> 
             <minimalV>-0.1</minimalV> 
   <!-- Maximal value of V --> 
             <maximalV>0.05</maximalV> 
   <!-- Values below comparePrecision are supposed to -->  

<!-- be equal --> 
             <comparePrecision>1e-15</comparePrecision> 
   <!-- Show the matrix on standard output with numeric --> 

<!-- values; 1 = True, 0 = False --> 
             <numericOutputFormat>0</numericOutputFormat> 
   <!-- Way of calculating the difference between matrices --> 
   <!-- 0 = Calculate the sum of the squares --> 
   <!-- 1 = Calculate the sum of the square roots --> 
             <SumOfSquareRoots>0</SumOfSquareRoots> 

</VdVdtMatrixParameters>
<!-- Enable export of the calculated error values to a file --> 

  <!-- 1 = True, 0 = False --> 
<enableFileExport>1</enableFileExport>   
<!-- Name of the file to store the error values to --> 

         <exportFile>ErrorValues.dat</exportFile> 
</ErrorValueCalculatorParameters  

</ButeraModel>
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Gold, C., Henze, D. A., Koch, C., and Buzsáki, G. (2006). On the origin of the extracellular
action potential waveform: A modeling study. J. Neurophysiol. 95, 3113–3128.

Goldman, M. S., Golowasch, J., Marder, E., and Abbott, L. F. (2001). Global structure,
robustness, and modulation of neuronal models. J. Neurosci. 21, 5229–5238.

Golowasch, J., Goldman, M. S., Abbott, L. F., and Marder, E. (2002). Failure of averaging
in the construction of a conductance-based neuron model. J. Neurophysiol. 87,
1129–1131.

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment. Neural
Comput. 9, 1179–1209.

Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M. (2004).
ModelDB: A database to support computational neuroscience. J. Comput. Neurosci.
17, 7–11.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence (Ann Arbor, University
of Michigan Press).

Huys, Q. J., Ahrens, M. B., and Paninski, L. (2006). Efficient estimation of detailed
single-neuron models. J. Neurophysiol. 96, 872–890.

Jenerick, H. (1963). Phase plane trajectories of the muscle spike potential. Biophys. J.
3, 363–377.

Keijzer, M., Merelo, J. J., Romero, G., and Schoenauer, M. (2001). Evolving objects: A
general purpose evolutionary computation library. In Artificial Evolution: 5th Inter-
national Conference, Evolution Artificielle, EA 2001, Le Creusot.(France; Berlin,
Springer-Verlag).

Kennedy, D. (2006). Where’s the beef? missing data in the information age. Neuroinfor-
matics 4, 271–273.

Kennedy, J., and Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of the
IEEE International Joint Conference on Neural Networks, 1942–1948.

Keren, N., Peled, N., and Korngreen, A. (2005). Constraining compartmental models
using multiple voltage recordings and genetic algorithms. J. Neurophysiol. 94,
3730–3742.

LeMasson, and Maex (2001). Introduction to equation solving and parameter fitting. In
Computational Neuroscience: Realistic Modeling for Experimentalists.(London, CRC
Press).

Lewicki, M. S. (1998). A review of methods for spike sorting: the detection and classifi-
cation of neural action potentials. Network 9, R53-R78.
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