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Large-scale modeling – a tool for conquering the complexity 
of the brain
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Is there any hope of achieving a thorough understanding of higher functions such as perception, memory, thought and emotion or is the stunning 
complexity of the brain a barrier which will limit such efforts for the foreseeable future? In this perspective we discuss methods to handle 
complexity, approaches to model building, and point to detailed large-scale models as a new contribution to the toolbox of the computational 
neuroscientist. We elucidate some aspects which distinguishes large-scale models and some of the technological challenges which they entail.
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INTRODUCTION
With its 20 billion neurons connected in networks made of millions of 
 kilometers of axons the brain is a very complex system. In our quest 
for understanding it we need tools to handle this complexity. Using the 
strategy of divide-and-conquer, we can study smaller and smaller parts 
and attempt to understand the whole through the principle of hierarchical 
reductionism (Dawkins, 1986). Employing such principles, a century of 
neuroscience has advanced our understanding tremendously on all levels 
from molecules to behavior, but there are still gaping holes in our knowl-
edge, for example with regard to the nature of the neural code and the 
principle of operation of the cerebral cortex. While it remains uncertain 
whether a brain system can be understood as the interaction between 
independently describable subsystems, the brain does display a hierarchy 
of spatial scales with repeated structure such as molecules, synapses, 
neurons, microcircuits, networks, regions and systems. Churchland and 
Sejnowski (1992) called these scales levels of organization. Here we 
discuss how the advent of large-scale modeling in computational neuro-
science opens the possibility to study the dynamics of models simultane-
ously incorporating levels from molecules to regions. This kind of model 
is an important aid when working with questions such as the neural cor-
relates of memory and the nature of cortical information processing.

MATHEMATICAL MODELING
When addressing questions related to dynamics, even the interaction of a 
few species of molecule introduces new dimensions of complexity which 

cannot be handled without the tools of mathematical modeling (see, e.g., 
Aurell et al., 2002). Hodgkin and Huxley (1952) described the interac-
tion of ion channels in a patch of neuronal membrane using a set of 
coupled non-linear ordinary differential equations and could explain and 
quantitatively reproduce the basic features of the action potential. Via the 
equivalent cylinder model of the dendrite (Rall, 1959), developments in 
computational neuroscience led to the fi rst descriptions of the dynamics 
of neocortical neurons (see, e.g., Traub, 1979).

Mathematical modeling has a long tradition outside of neuroscience. 
Experience shows that a model should be as simple as possible in order 
to be tractable (possible to analyze, easy to do computations with) and in 
order to make strong statements about the physical system being mod-
eled. Einstein (1934) stated “It can scarcely be denied that the supreme 
goal of all theory is to make the irreducible basic elements as simple and 
as few as possible without having to surrender the adequate representa-
tion of a single datum of experience.” Most importantly, a model should 
have as few free parameters as possible. 

With increased model complexity, uncertainty of modeling results 
increases. In addition, the model also loses explanatory power – it 
becomes diffi cult to understand the dynamics of the system. Note, though, 
Einsteins caution about “adequate representation” – the degree of sim-
plicity that is achievable is dependent on the scientifi c question posed.

IS A DETAILED MODEL MORE REALISTIC?
It may seem natural that the concept of hierarchical reductionism implies 
that a model targeted at a higher level of organization should be com-
posed of component models at a lower level, and that this, in turn, implies 
that a model of a network necessarily must be much more complex and 
have more parameters than a model of a neuron. If that were true, one 
might ask what is the proper lowest level to build on in order to achieve 
a “realistic” model. The deeper the level, the more realistic? No, includ-
ing more details from lower levels leads to more model parameters. In 
fact, this makes it harder to obtain a realistic model since the realism 
of a model is related to how well constrained it is by experimental data. 
More model parameters means that more data is required to determine 
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them, data which can often contain uncertainties and be hard to acquire. 
In contrast, for a given question and domain it is often possible to fi nd a 
valid simple model which is well constrained by data and, therefore, real-
istic. Consider, for example, how we describe the propagation of sound 
through air. A simple model based on the wave equation is in most cases 
adequately realistic in that the parameters are well constrained by data 
and that it gives correct predictions at the given level of description, while 
it is signifi cantly harder to obtain the same degree of realism in a more 
detailed model involving the interactions of air molecules.

ABSTRACTION
The tool which the modeler uses to keep the model simple is abstrac-
tion. By taking away aspects not important for answering the scientifi c 
questions which the model is designed to address, useful models can be 
formulated at different levels of organization without loss of tractabil-
ity. For example, using the mean fi eld approximation (for a review, see 
Renart et al., 2004) the effect of individual synapses onto neurons can be 
abstracted and represented as its average. Yet, provided that the under-
lying assumptions hold, such models give valid answers to questions 
regarding the dynamics of populations of neurons. Note that abstraction 
is not limited to the removal of unnecessarily detailed levels; in virtually 
any model spanning multiple levels of organization, abstraction is used 
on every level to preserve only what is important for the study. For further 
discussion of mathematical modeling in biology, see, e.g., May (2004).

PITFALLS OF SUBSAMPLING
Numerical simulations of brain network models have typically been based 
on either abstract connectionist-type units (e.g., Dehaene et al., 1998; 
Hopfi eld, 1984) or integrate-and-fi re units (e.g., Brunel, 2000). In order to 
decrease model size, subsampling is often employed, that is, only a small 
subset of the real neurons are actually simulated. With fewer presynaptic 
units providing synapses, it becomes necessary to exaggerate connection 
density, or synaptic conductance – most of the time both. This results in 
a network with unnaturally few and strong signals circulating, in contrast 
to the real network, where many weak signals interact. Such differences 
tend to signifi cantly distort the network dynamics. For example, artifi cial 
synchronization can easily arise, which is a problem especially since syn-
chronization is one of the more important phenomena one might want to 
study. Cells in the model may not even be operating in the same dynamic 
regime as the real cells so that their behavior is ruled by  different mecha-
nisms. Figure 1 illustrates this effect in two different simulations of the 

Lamprey locomotor central pattern generator (CPG) network (Grillner, 
2003). Figure 1B shows a simulation with a  subsampled model and 
few, strong signals. In the simulation in Figure 1C, all neurons of the 
real  network are simulated. By modeling the full network with a one-
to-one correspondence between real and model neurons we get natural 
dynamics, but for large networks this entails a large number of state 
variables, and, thus, heavy computations. (For a discussion of effects of 
unnatural connection density in a network with a larger number of units, 
see Morrison et al., 2007).

LARGE-SCALE MODELS
Thanks to increasingly powerful massively parallel supercomputers and 
a parallel development of multi-core chip design, large-scale models of 
neural networks with hundreds of millions of state variables are now 
within reach. A review of the state-of-the-art within this fi eld is available 
in a report from the 1st INCF1 workshop on large-scale modeling of the 
nervous system (Djurfeldt and Lansner, 2007; see Brette et al., 2007 and 
Cannon et al., 2007 for discussion on related topics).

In general, we use large-scale models the same way as other 
models:

● to formulate hypotheses regarding the function of the nervous 
system

● to falsify hypotheses
● as a tool to identify what we don’t know
● to suggest new experiments
● to validate self-consistency of the description of a phenomenon or 

function

A model can be explicit in the sense that there is a simple relationship 
between its state variables and empirical data. Since a large-scale model 
can harbour a large number of state variables it can afford to be explicit 
at several levels of organization. This can be an advantage in situations 
where there is interest in effects spanning multiple levels. For example, 
in a model of memory function based on Hodgkin-Huxley formalism and 
conductance-based synapses, ionic currents are explicitly represented. 
This opens new possibilities for studying pharmacological effects on 
memory function. For similar reasons large-scale models can be espe-
cially valuable when used as a platform for integrating knowledge and to 
validate self-consistency of the description of multi-scale phenomena or 
functions.

APPROACHES TO MODEL BUILDING
The Blue Brain project (Markram, 2006) is largely based on the bottom-
up approach to modeling which means taking the physical structure of 
the tissue as a starting point with the hope of capturing function. The 
aim is to reconstruct, in the computer, a full cortical column, includ-
ing all neuron types and all connectivity. The model will consist of 
∼10000 multi-compartment neurons modeled with the Hodgkin-Huxley 
formalism.

However, when modeling the complex and intricate structure of the 
cortex, it turns out that we may need information from additional sources. 
Some model parameters are well constrained by experiment, while oth-
ers, for example the structure of long-range connectivity, are still largely 
unknown. Hypotheses of cortical function, expressed in more abstract 
models, can guide model development, in selecting what elements to 
include in the model, in giving additional constraints, and in “fi lling in” 
where empirical data are still missing. This is the top-down approach to 
modeling.

In practise, the approach of the modeler is usually neither purely top-
down nor purely bottom-up. For example, Djurfeldt et al. (2008) describe 
a full-scale model of cortical layers II/III approaching the size of a cor-
tical area. Simulations of this model, also based on multi-compartment 

Figure 1. Membrane potential of Lamprey locomotor CPG excitatory 
interneuron (EIN) plotted against time. (A) Recording from live animal. 
(B) Simulation with one modeled EIN per hemisegment. (C) Simulation with 
30 modeled EINs per hemisegment. 1International Neuroinformatics Coordinating Facility
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Hodgkin-Huxley units, have comprised up to 22 million neurons. The model 
is mainly designed to target the question: Is the hypothesis of attractor 
memory network function in neocortex consistent with  neocortical micro-
architecture and dynamics at the levels of the cell and synapse? Here, 
most parameters of the neuron models are determined from experimental 
data in a bottom-up manner. However, the connectivity parameters are 
determined by combining a long-range connectivity structure required for 
attractor memory network function with currently existing empirical con-
straints on connectivity.

Another example of the top-down approach is given by Potjans et al. 
(2007) where a theory of system level function (the actor-critic architec-
ture of TD-learning) is mapped to a spiking neuronal network.

MANY VARIABLES, FEW PARAMETERS 
vs. DATA-DRIVEN MODELS
In the model of Djurfeldt et al. (2008), and in most or all other network 
models, the parameters of a neuron type are replicated over the popula-
tion of model neurons, with or without stochastic variability, in a crystal-
like manner. This means that even if a large-scale model has a large 
number of state variables, it can still have a comparatively small total 
number of parameters, and in this sense be tractable and amenable to 
analysis.

On the other hand, large-scale simulations also open the possibil-
ity of incorporating large quantities of empirical data into models. New 
experimental techniques with the ability to extract empirical data on an 
industrial scale are under development. For example, serial block-face 
scanning electron microscopy (Denk and Horstmann, 2004) holds the 
promise of dissection of the cortical column at the nanoscale level. Such 
data could be used to set a large number of distinct morphology and 
connectivity parameters, yielding a complex and realistic model. Would 
this type of heavily data-driven model be a branching point for model 
development in that it would be qualitatively different from models with 
fewer parameters?

Importing large amounts of data into a model also means import-
ing large amounts of unknown, or unexplained, structure. It will, thus, 
be more diffi cult to understand why the model behaves in a certain way. 
The model can be studied by varying parameters, but this can also be 
more diffi cult when the number of parameters is large. Heavily data-
driven models may therefore require new types of knowledge-building 
strategies. Consider, for example, a model where connectivity has been 
imported from an experimental data set. If we use the top-down recur-
rent attractor memory hypothesis, we might want to device an algorithm 
to look for attractors, either in the data set itself or in model dynamics. 
In practise, we foresee a development with a continuum of models with 
regard to the number of experimentally determined parameters. It is gen-
erally useful to combine information from models targeted at different 
levels.

TECHNOLOGICAL CHALLENGES
Large-scale models place new demands on simulation software, such 
as tools for model construction and specifi cation, simulators, visualiza-
tion tools and database systems. Djurfeldt and Lansner (2007) summa-
rize some of the existing and planned software. For models based on 
Hodgkin-Huxley formalism, the standard distribution of NEURON (Hines, 
2005) supports parallel simulation on cluster computers using MPI 
(Message Passing Interface) starting with version 5.9. A parallel version 
of GENESIS, PGENESIS (Hood, 2005), exists and Genesis 3 (Bhalla, 2007; 
Cornelis and De Schutter, 2003), with improved support for parallelism, 
is under development. A parallel version of NEST (Gewaltig, 2005), often 
used for the simulation of integrate-and-fi re models, exists, to name a 
few examples.

Large-scale models produce large amounts of data. Visualization tools 
are needed which can compute the equivalent of brain imaging signals 
from electroencephalography (EEG), magnetoencephalography (MEG), 

fMRI (BOLD) and voltage sensitive dyes (VSD). These signals have in 
 common that they correlate with activity of large populations of neurons. 
Such visualization tools have the dual role of providing a way to analyze 
and understand population activity in the simulation and providing a way 
to connect to experimental results in brain imaging.

An aspect of software for neural modeling discussed in Djurfeldt 
and Lansner (2007) is the need for re-usability through modularity and 
software interoperability (see also Cannon et al., 2007). For large-scale 
models, the suggestion was made to implement a framework for con-
necting software components enabling on-line communication for exam-
ple between two parallel simulators or between a parallel simulator and a 
visualization tool. This would make it possible to connect multiple large-
scale models into systems and would enable independent development 
of software for visualization of data from large-scale simulations. The 
INCF has initiated the MUSIC project which aims to develop a standard 
for such communication frameworks.

One challenge, with applicability to modeling in general, is to improve 
reproducibility of simulation results. There is a need to standardize crite-
ria for how models are published to ensure reproducibility. There is also a 
need to create an infrastructure supporting the validation of models and 
simulators, ensuring that results from the same model, obtained using 
different simulators, are similar. Another challenge, less technological but 
rather political, is to create an awareness of the increased dependence 
of computational neuroscience on simulation technology. More funding 
needs to be available for the development of simulation software and in 
particular its long-term sustainability.

CONCLUSIONS
The fi eld of mathematical modeling today provides powerful tools to mas-
ter the complexity of the brain. Large-scale models are a recent develop-
ment, enabled by the astonishing development of chip technology and 
parallel computing, with a computational power now being unleashed by 
special purpose software. Computational neuroscience will benefi t from 
the possibility of modeling multiple cortical areas and systems with high 
detail. Such models have the potential to link dynamic phenomena at 
the cellular and synaptic levels to memory function or other cognitive 
functions of the brain, which enables a quantitative understanding of the 
underlying processes and interactions.
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