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Recent applications of network theory to brain networks as well as the expanding empirical databases of brain architecture spawn an

interest in novel techniques for analyzing connectivity patterns in the brain. Treating individual brain structures as nodes in a directed

graph model permits the application of graph theoretical concepts to the analysis of these structures within their large-scale connectivity

networks. In this paper, we explore the application of concepts from graph and game theory toward this end. Specifically, we utilize the

Shapley value principle, which assigns a rank to players in a coalition based upon their individual contributions to the collective profit of

that coalition, to assess the contributions of individual brain structures to the graph derived from the global connectivity network. We

report Shapley values for variations of a prefrontal network, as well as for a visual cortical network, which had both been extensively

investigated previously. This analysis highlights particular nodes as strong or weak contributors to global connectivity. To understand the

nature of their contribution, we compare the Shapley values obtained from these networks and appropriate controls to other previously

described nodal measures of structural connectivity. We find a strong correlation between Shapley values and both betweenness

centrality and connection density. Moreover, a stepwise multiple linear regression analysis indicates that approximately 79% of the

variance in Shapley values obtained from random networks can be explained by betweenness centrality alone. Finally, we investigate the

effects of local lesions on the Shapley ratings, showing that the present networks have an immense structural resistance to degradation.

We discuss our results highlighting the use of such measures for characterizing the organization and functional role of brain networks.
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INTRODUCTION
Numerous biological and artificial networks can be conceptualized as
graphs of vertices connected by directed or undirected edges. The
application of graph theory to such networks provides a principled
understanding of structural features such as connectedness, ‘‘reach-
ability,’’ motif composition, or degree distribution, which characterize these
networks and help to predict their functional properties (for reviews see
Hilgetag et al., 2002; Sporns, 2003; Sporns et al., 2004). In graphs that are
neither completely random nor entirely regular, it is interesting to
characterize not only the overall network properties but also the features of
individual vertices, their contribution to the overall network, and the
network effects of their removal or insertion (Kaiser and Hilgetag, 2004;

Kötter and Stephan, 2003; Sporns and Kötter, 2004). Assessing the
contribution of individual nodes is a focus in game theory where the overall
success of coalitions can be decomposed into the putative contributions of
individual players in the game (Osborne and Rubinstein, 1994).

In this paper, we introduce the concepts of game theory to the analysis
of graphs derived from brain networks. First, we briefly define the
Shapley function, which is used to assign Shapley values to individual
contributors. Second, we give an intuitive description of how the concepts
of Shapley function and Shapley values can be mapped to brain networks.
Third, we recall a formal method for calculating Shapley values in neural
networks and explain the meaning of specific values. Fourth, we devote a
larger section to examples using connectivity matrices from specific
interregional networks of the primate brain where we have calculated the
Shapley values. We compare the effect of existing versus non-existing
edges in the network, as well as specific networks versus random
controls. Next, the relation of Shapley values to other network indices,
such as cluster coefficients and betweenness centrality, is studied.
Finally, we investigate the use of Shapley values in lesion analysis of brain
networks. We conclude that our notion of Shapley values in brain networks
adds a new point of view to structural network analysis that is related to
‘‘connectedness’’ and the identification of network ‘‘hubs’’ (Sporns et al.,
2007). In the future, Shapley value analysis promises to be particularly
useful in the investigation of lesion effects where it may have a functional
counterpart (Aharonov et al., 2003; Keinan et al., 2004).
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MATERIALS AND METHODS
The Shapley function
One approach to analyzing the contributions of individual nodes to overall
network connectivity is the assignment of so-called Shapley ratings (here
interchangeably also referred to as Shapley values). Originally conceived
by game theorist Shapley (1953), the Shapley value is a means of fairly
portioning the collective profit attained by a coalition of players, based
upon the relative contributions of the players to that profit. More formally,
we can consider N to be a set of players in some game, S�N to be a
subset of players forming a coalition within this game, and f : P Nð Þ R
to be the function that assigns a real numbered profit to the subset S of
players. Abstractly, f is referred to as a characteristic function ; in this
context, the characteristic we are interested in is a network’s connectivity.
By definition, for any f ; f �ð Þ ¼ 0 , where� is the empty set. A Shapley
value is assigned by the Shapley function F : N R, which associates
each player in N with a real number and which is uniquely defined by the
following axioms (Shapley, 1953):

1. Efficiency : all profits must be distributed:
P

i2nf f ið Þ ¼ f Nð Þ.
2. Symmetry : the ordering of the players i and j has no influence on their

Shapley values: f f ið Þ ¼ f f jð Þ.
3. Additivity : the collective profits of two games, defined by

characteristic functions f and g, are mutually exclusive. The Shapley
values obtained from two separate games are thus independent, and
the values must be added player by player f fþg ¼ f f þ fg.

The determination of the value of f can be conceived intuitively as
follows. Suppose p is a permutation of the set of players N. In other
words, if all players lined up, p represents one possible ordering of players
in this queue. Suppose also that, for a given p, player i is part of the
coalition that consists of all players standing in front of him in this queue.
That is, if ppi represents the subset of players preceding i in the queue p,
then the contribution of player i to this coalition is the profits of the
coalition including him less the profits of the coalition without him. As a
formula

f ðppi[iÞ� f ðppiÞ
This particular distribution scheme would be quite unfair if only applied

to a single permutation of N, since the payoffs are dependent only upon
the composition of the queue preceding player i, and are thus not truly
representative. However, Shapley showed that if this value is calculated
as an average over the set, denoted P, of all possible permutations of N
(of which there are jNj!), the result is a fair distribution of value according
to the contribution as determined by f , and it obeys the three axioms
outlined above. The Shapley function for a characteristic function f is thus
given by

ff ðiÞ ¼ 1=jNj!
X

p2P
½ f ðppi[iÞ� f ðppiÞ�

A Shapley function for neuronal networks
While this original derivation of f was meant to apply to the analysis of
game-like systems in economy and decision making, it has proven useful
when abstracted for applications within a variety of different paradigms.
Focusing on brain research, the complicated behavioral effects resulting
from regional brain damage and the interest in large-scale brain
connectivity motivate an assessment of the contributions of individual
brain regions to the global properties of the networks made up by neurons
and their interconnections.

On the macroscopic scale, which is typically the resolution of clinical
observations, the brain can be idealized as a network consisting of brain
regions and their interconnections. From a graph-theoretical view, brain
regions then are regarded as homogeneous vertices whose directed
edges express binarized connection densities. Using tools from graph

theory, one can assess the contribution of individual nodes to overall
network properties, in particular to the ‘‘reachability’’ of other nodes
through the paths that are comprised by the directed edges. The
importance of a node would consequently be assessed in terms of the
effects that its removal has on the paths connecting all pairs of nodes.

We have presented a novel method for assigning Shapley values as
vertex ratings in a directed graph representing a neuronal connectivity
network (Abraham et al., 2006). This requires a definition of the
characteristic function f , such that it represents the contribution that a
given neuronal structure makes to the overall connectivity of the network
of which it is a part. To do this, we conceive of the brain as a directed
graph, denoted G¼ (VG, EG), whose set of vertices VG represents a set
of neuronal structures (nuclei or cortical regions) and whose set of
directed edges EG represents the set of unidirectional connections
(projections) between these structures. To represent a given vertex’s
contribution to overall connectivity (analogous to a given player’s
contribution to the collective profit), we then introduce the concept of
strongly connected components. Graph G is considered to be strongly
connected if, for every pair of vertices i and j contained in V , there is a
directed path from i to j (and from j to i). That is, it is possible to follow
projections from each neuronal structure to any other. If a subgraph ofG is
denoted byG0 ¼ V 0;E0 , with V 0�VG and E0�EG , then the set SCC(G)
is an enumeration of all possible maximal subgraphs G0 contained in G
which are strongly connected in this manner. In other words, each suchG0

is a strongly connected component of G. Note that two different strongly
connected components do not have any common nodes.

The number of strongly connected components in G is an indication of
its connectedness. If jSCC Gð Þj ¼ 1, this indicates that there is a direc-
ted path in G from any vertex i2VG to any other vertex j2VG . If these
nodes represent neuronal structures, this means that any structure is
capable of communicating with any other; thus, all forward and feedback
signals are possible. If, however, a network G is comprised of n2N
disconnected components, the value of jSCC Gð Þj is at least n. Thus, the
function SCCðG) has an important implication for the analysis of neuronal
connectivity. If a vertex i is removed from G (analogous to a localized
lesion), the number of connected components may also be altered, and
the magnitude of this alteration can be considered a measure of the
contribution of i to the connectivity of G. Thus, jSCCj is an acceptable
characteristic function for our analysis; for a given vertex set V 0�VG,
where G0 V 0;E0ð Þ is the subgraph of G with E0 being the set of all edges
whose two vertices are in G0, the characteristic function fG is given by

fGðV 0Þ ¼ jSCCðG0Þj
Note that, for a strongly connected graph G, the value of fGðGÞ is 1.

Having obtained an appropriate characteristic function for connectivity, it
is possible to proceed with a determination of Shapley values as described
above

f f ðiÞ ¼ 1=jNj!
X

p2P½jSCCðppi[iÞj�jSCCðppiÞj�
It is notable that, because lower values of jSCC G0ð Þj correspond to

higher connectivity, the average of values fG for permutations including i,
minus that for permutations excluding it, will be lower for nodes whose
existence inG results in higher connectivity. Thus, a lower value for f f ið Þ
indicates that vertex i contributes more to a network’s connectivity. In
general, if the graph is strongly connected, the Shapley ratings for vertices
obtained in this manner have a sum over all vertices of one. Lacking
connectivity information altogether (other than that the graph is strongly
connected), the expected value of a random node in the network
consisting of n nodes is therefore 1/n, and ratings can be assigned a
meaning relative to this value.

A separate but related question is: having removed a vertex from the
graph, how does this alter the contribution of other nodes in the graph?
This can tell us, for example, which intact structures can conceivably
compensate for the loss of another brain structure, or which are effectively
independent of it. Having analyzed a graph G for its Shapley values, we
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can subsequently analyze the graph induced by the removal of vertex i.
The resulting set of differences between Shapley values gives us a
measure of the relative dependence of all other vertices upon i, with
respect to connectivity, as well as some indication of those vertices whose
importance is most affected by the loss of i.

RESULTS AND DISCUSSION
Intact networks
In this section, we present examples of Shapley values calculated for two
graphs representing large-scale brain networks, one representing visual
cortical areas and the other representing prefrontal cortical areas. The first
graph is a previously published connectivity matrix of macaque visual
cortex (Y92; Young 1992, based on data compiled by Felleman and Van
Essen, 1991). The graph comprised 30 disjoint areas from primary visual
cortex (V1) to association areas in parietal (7a), temporal (TH), and
prefrontal (46) lobes. Connections between these areas were represented
as binary entries in the connection matrix, with all empty fields filled with
zeros. A graphical representation of this network is shown in Figure 1.

Since the sum of all node ratings is constrained to a value of 1, the
expected Shapley rating for an area in this matrix was 1/30� 0.033. As
explained above, a lower Shapley value indicates that a node has a
stronger impact on the ‘‘reachability’’ of other vertices, whereas a high

value indicates that a vertex can be removed without strong effects on the
structure of the remaining network. By far the most negative Shapley
rating was obtained for area V4, a densely connected color-sensitive area
in the ventral visual processing stream (Figure 2). The two areas with the
next lowest Shapley ratings, frontal eye field (FEF) and 46 (centro-lateral
prefrontal cortex), have to be interpreted with caution since these are the
only frontally located areas in this matrix, which take a special position in
the network. Other areas with low Shapley ratings are mostly densely
connected structures of the prestriate cortex (V2, V3, VP) and the dorsal
stream regions (MSTd, 7a, MT, STPp, LIP, DP), as well as temporal area
TF. Areas with high Shapley values include predominantly temporal
stream areas, comprising all inferotemporal (IT) areas, and notably the
primary visual cortex (V1), whose subcortical input is ignored here.

The second example comprises three variations on the matrix of
connections between regions of macaque prefrontal cortex (W40; Walker,
1940) that were curated from anatomical tracing studies represented in
the CoCoMac database (Kötter, 2004; Stephan et al., 2001). The graphs
for these matrices are illustrated in Figure 3.

In a previous study, we analyzed the node similarities and cluster
structure of this matrix (Passingham et al., 2002). We concluded that each
node had a unique characteristic set of afferent and efferent connections
and that the family relationships among nodes differentiated a small set of
groups, notably a densely intraconnected cluster of orbitomedial areas
(areas 10–14, 25), a group of lateral prefrontal areas (45, 46, 8A), and a

Figure 1. Diagram portraying the directed graph representing the Y92 network. Only neuronal connections that are known to exist are drawn. The positions of
the nodes were obtained by multidimensional scaling (MDS) using Kruskal’s method using the software package Systat 10 on the correlations between the
connectivity vectors for each node as described in full detail in Kötter and Stephan, 2003.
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third group of densely connected areas (8B, 9, 24) that mediated between
the first two. The Shapley value analysis allows us now to extend and
refine this characterization.

As in previous studies, here we initially assumed that an absence of
connectivity information most likely indicates a factual absence of the
respective connection. Therefore, we filled in the empty cells of the
connectivity matrix with zeros (W40-0). The resulting Shapley ratings led
to the ranking of nodes as shown in Figure 4. In this first variant, the
vertices with the lowest Shapley ratings were areas 9, 24, and 12, which
are also the only areas that have connections with all other areas in the
connectivity matrix of the prefrontal cortex (Figure 3).

These three areas take part in the orbitomedial and the densely
connected intermediate groups of areas. If we include the area with the
next lowest Shapley rating (area 46) then not only are all three major
groups of areas represented, but we note that, on a functional level, at
least two of these areas (in particular areas 24 and 46) are known to be
among the most commonly activated regions across a broad range
of functional imaging paradigms and have been identified as being
hypoactivated in attention deficit hyperactivity disorder (e.g., Dickstein
et al., 2006). At the other extreme, the three areas with the highest
Shapley values (8B, 45, 14) are clearly associated with very specific brain
functions (spatial and object recognition, autonomic control). Each of

these three areas belongs again to a different one of the three groups of
areas defined by Kötter and Stephan (2003) so that each cluster contains
areas with both very low and very high Shapley ratings. In absolute terms,
the Shapley ratings of areas 9 and 24 were negative, which indicates a
very strong impact considering that the expected Shapley rating in a
network with regular connectivity (and thus equal area contributions, e.g.,
a ring) is 1/n¼ 1/12� 0.083. Altogether, half of the areas had Shapley
values smaller than 0.083.

As mentioned above, the prefrontal connectivity graph shown in
Figure 3 contained some unknown edges. We treated them like absent
connections (W40-0), which is the common procedure under the
assumption that all substantial projections are likely to have been
documented. Knowing, however, that at least some of the efferent
connectivity of area 8B was unavailable due to mapping limitations
resulting from a redefinition of area 8B in later studies (see Barbas and
Pandya, 1989 vs. Petrides and Pandya, 1994, as well as discussion in
legend of Figure 1 of Kötter and Stephan, 2003), we calculated as a
control the Shapley ratings under the other extreme assumption that all
unknown connections did actually exist (W40-1). As could be expected
from the relatively small number of changes, this alternative calculation
produced a very similar ranking of most areas. A few differences,
however, were noticeable: (a) there were no longer any negative Shapley

Figure 2. Shapley values obtained for the Y92 matrix. The x-axis is located at the expected Shapley value for a 30-node network, which is 1/30� 0.033.

Figure 3. Diagram portraying the directed graphs representing the prefrontal interregional cortical network. (A) Original W40-0 and W40-1 networks as
analyzed in previous studies (Kötter and Stephan, 2003; Passingham et al., 2002; Stephan et al., 2001); (B) W40-2 network. The positions of nodes were obtained
by MDS (see legend to Figure 1). The dashed lines indicate connections whose status of existence was unknown.
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ratings, that is, the absolute dependence on a few individual areas
decreased; (b) the overall range of Shapley values decreased as highly
positive values were decreased; (c) the insertion of edges in the graph (or
inversely: removal of some of its connections) affected other nodes in
different ways; areas from the orbitomedial cluster were much less
affected then those contained in the other two clusters.

We obtained a third variant of the prefrontal matrix which resulted from
a more recent evaluation of tracing data where the information database
had been updated and extended and the mapping procedure had been
refined to take into account additional options (W40-2). Altogether this
matrix had only a single unspecified entry: the projection from area 11 to
area 45, which we assume to be absent. Ordering of the Shapley ratings
by size led to a very similar sequence of network contributions: while
areas 12, 9, 46 continued to have the lowest Shapley ratings, the
importance of area 24 greatly decreased. By contrast, area 25 (in Walker’s
map the rostro–dorsal part of anterior cingulate gyrus, similar to
Brodmann’s area 32) gained importance. The list of areas with the most
positive Shapley values was now led by area 8A, before areas 45, 14, and
8B.

The consistency of the ranking of areas with all three matrices speaks
to the robustness of both the data collation procedure and the analysis
method, which produce comparable results despite differences in the
degree and methods of filling of otherwise strongly constrained
connectivity matrices. In addition, the list of areas with extreme values
extends our earlier functional interpretation of a low Shapley rating
relating to a general functionality with frequent activation of the area as
opposed to a high Shapley rating relating to specialized functionality
with a more task-dependent activation, by including area 8A (FEF) as an
area specialized in eye movements. The ranking spawns further interest
in the functional roles of areas 12 and 9, which are poorly understood
but appear to be critically positioned at the interface between different
groups of prefrontal areas. We propose that lesioning any of the areas with
very low Shapley values should have profound effects on network
function.

Comparison with other measures of network connectivity
Network participation indices (NPIs) are values derived from a directed
graph representing a neuronal network, which represent some aspect of a
node’s participation within the network (Kötter and Stephan, 2003). The

three indices proposed in the original paper were: the density of
connections of a node, or its degree of interconnectedness; transmission,
which refers to the ratio of outdegree to indegree; and symmetry, which is
a measure of reciprocal connectivity between a node and its neighbors.
Two variants of the symmetry measure have been calculated for the
present study: symmetry-all includes all types of known symmetrical
connectivity, (including reciprocal absence of connections); whereas
symmetry-exists includes only those symmetrical connections known to
exist. As we will see, only the latter is interesting in the context of this
study and is therefore referred to unless the specific distinction is made.

Like Shapley values, density values are highest for areas 9, 24, and 12
in the prefrontal network (Figure 2 in Kötter and Stephan, 2003). Two
other nodal connectivity measures that have been useful in characterizing
structural connectivity are: the clustering coefficient (Watts and Strogatz,
1998), which is a measure of the connectedness of a node’s neighbors;
and betweenness centrality (Freeman, 1977; Honey et al., 2007), which
measures how central a node is within its network. One further measure of
nodal importance is that of dynamical importance, which evaluates the
effect of a particular node upon the maximum eigenvalue of the
connectivity matrix, a value which has been used to describe global
connectivity in a variety of network paradigms (Restrepo et al., 2006).
Table 1 shows the correlational relationships of these six indices with the
Shapley values obtained here, for both the visual network (Y92) and the
prefrontal network (W40, averaged over its three variants).

In both the visual and prefrontal networks, density and betweenness
centrality exhibited strong and significant negative correlations with
Shapley values; symmetry (of existing connections) was not significant in
the visual network indicating that it is not a requirement for negative
Shapley values. Since smaller Shapley values indicate higher nodal
importance, the negative correlation was expected. Clustering coefficients
showed significant positive correlations with Shapley ratings in both
networks, indicating an inverse relationship. Dynamical importance was
effectively positively correlated since—somewhat similar to Shapley
ratings—a negative value indicates a great influence. Transmission was
not significantly correlated with Shapley values in either matrix.

These relationships were also evaluated for a set of 5000 randomly
generated 11-node networks for which Shapley values and the above
measures were calculated. Again, there appeared to be no correlation
whatsoever with transmission, while density, symmetry, and between-
ness centrality showed significant negative correlations. Clustering

Figure 4. Histograms showing the relative Shapley ratings for areas in the three variants of the W40 network, sorted by scores for the W40-0 variant.
The x-axis is located at the expected Shapley value for a 12-node network, which is 1/12� 0.083.
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coefficient was again positively correlated with Shapley values, although
the strength of this correlation was substantially reduced. The matrix size
of n ¼ 11 was selected on the basis of its calculation time complexity,
similarity to the W40 matrix size, and the observation that the calculated
correlations were relatively stable at this size (see Figure 5).

It is interesting to note the relationship between matrix size and
correlation for these measures. In particular, the positive correlation of the
clustering coefficient was not apparent until a size of at least n ¼ 7.
Likewise, the (negative) correlation of betweenness centrality with
Shapley values grew with increasing matrix size. Conversely, the three NPI
measures, symmetry-all, symmetry-exists, and density, appeared to have
slightly weakened correlations with increasing matrix size, a pattern
which may reflect their underlying similarities, as well as differences
of these measures with respect to the clustering coefficient and
betweenness centrality. Such differences may relate in part to the local
nature of the NPI measures, as opposed to the dependence of the

clustering coefficient and betweenness centrality on larger neighborhoods
of nodes, an effect that is limited in smaller networks. This relationship
also serves as a caveat for the application of these measures to networks
with very few (i.e., less than seven) nodes.

A stepwise multiple linear regression analysis performed in Matlab, on
data obtained from the randomly generated matrices, identified between-
ness centrality as the factor best explaining the variance of Shapley values
(R2 ¼ 0:789). Linear models with density, symmetry, and dynamical
importance alone were less explanatory (R2 ¼ 0:479; 0:278; 0:632,
respectively). Individually, density, symmetry, and dynamical importance
added similarly to the power of the betweenness centrality model
(R2

adj ¼ 0:838; 0:855; 0:816, respectively), whereas clustering coefficient
and transmission added virtually nothing to the model. These results illus-
trate a strong, albeit partial relationship between betweenness centrality,
dynamical importance, density, symmetry, and Shapley ratings, while
clearly demonstrating that these measures are not completely redundant.

Figure 5. Relationship between matrix size and nodal measure correlations with Shapley values, as derived from a set of 5000 randomly generated
matrices. Dynlmp¼ dynamical importance (Restrepo et al., 2006).

Table 1. Pearson correlation coefficients (r ) and associated p-values (p) for correlations with Shapley values for: the three NPI values, the
clustering coefficient, betweenness centrality, and dynamical importance.

Network

NPI Y92 (Visual) W40 (Prefrontal) Random (11 nodes)

r p r p r p

Transmission �0.452 0.069 0.277 0.408 0.012 0.700
Density �0.873 0.000 �0.914 0.000 �0.707 0.000
Symmetry �0.362 0.153 �0.747 0.018 �0.537 0.000
Clustering 0.702 0.002 0.707 0.012 0.278 0.000
Centrality �0.846 0.000 �0.908 0.000 �0.891 0.000
DynImp 0.797 0.000 0.943 0.000 0.801 0.000

Values are shown for both of the two empirically based networks presented in this paper, as well as a set of 5000 randomly generated 11-node networks.
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Moreover, there appears to be little or no predictive relationship between
clustering coefficient, transmission, and Shapley ratings.

Lesioned networks
Taking these analyses a step further, we evaluated the changes in the
Shapley rating of prefrontal areas following removal of a single area from
the network (Figure 6). Obviously, if an area is removed then no Shapley
rating can be calculated for that area itself. For the ‘‘lesioned’’ W40
connectivity matrix, there remain 11 areas whose expected Shapley rating
is 1/(12� 1)� 0.091.

We found that three areas (areas 12, 9, and 46; Figure 6, left-most
areas) always had the lowest Shapley ratings independent of which other
area was removed. Also, the effects of removal differed: taking out either
area 12, 9, or 46 strongly increased the importance of the remaining two.
Altogether, the ratings for individual nodes were only weakly dependent

upon the location of the lesion, and there were no huge or erratic changes
in Shapley ratings.

Nevertheless, elimination of some areas (9, 46, 8B, 12, and 8A) clearly
increased the range of the Shapley ratings among areas in the network,
whereas removal of others (e.g., 45, 11, 14, 25) decreased it, thus making
the network contributions more homogeneous. Area 45 appears to be
particularly interesting when assessing the overall extent of absolute
changes to Shapley values in the network induced by the removal of
individual areas (Figure 7). Note that the influence on the homogeneity
of network contribution does not correlate well with any individual
node index, including the Shapley rating of the lesioned node (r¼�0.46).
This result confirms from a different perspective that area 45 has a special
role in the connectivity pattern of the prefrontal network, which predicts
the network to be highly sensitive to lesion effects. The special
connectivity of area 45 in the prefrontal network was already pointed out

Figure 7. Range of Shapley values in increasing order for different eliminated brain regions (abscissa) calculated as the difference between the highest
and lowest values among the remaining nodes from the W40-2 matrix. The level of the abscissa indicates the range value in the intact network.

Figure 6. Shapley ratings for brain regions in the W40-2 network ordered along the abscissa by increasing mean Shapley values. For each of these brain
regions, the different shapes represent the Shapley values obtained for subgraphs induced by the elimination of a particular brain region (symbols explained on the
right).
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by Kötter and Stephan (2003) with respect to its network participation, and
noting the exceptionally low symmetry of its connectivity, with a paucity of
afferents and a strong preponderance of efferents (high transmission
index).

DISCUSSION AND CONCLUSIONS
The application of game theoretical concepts to neuronal network models
is a novel approach in connectivity analysis. By assigning Shapley values
to nodes in these networks, it is possible to quantify the contribution that
each individual node makes to the overall connectivity of the network.

There are a few practical limitations inherent in this approach. If we
have a network consisting of n nodes then, to calculate the Shapley value
of a node by Shapley’s formula, we have to consider all n! permutations of
the set of n nodes. Therefore, the number of steps to compute a Shapley
value is proportional to n!. However, there are some cases in which the
Shapley value can be computed efficiently (Abraham et al., 2006). Another
problem is that the numbers involved in the computation quickly get too
large for precise integer arithmetic. This made it necessary to implement
special data types that can handle longer integers even for the relatively
small networks with up to 30 nodes that we used.

As with every new connectivity measure, it is important to investigate
its relationship to existing measures. Accordingly, we have compared this
measure with other node-specific measures of connectivity, namely
density, symmetry, transmission, betweenness centrality, and the
clustering coefficient. Our results showed a strong association between
Shapley ratings and betweenness centrality values with a (negative)
correlation of �0.89 indicating a strong similarity between these
concepts. Density, symmetry (of existing connections), and dynamical
importance are also highly correlated with Shapley values (Table 1).
Moreover, each of these values, coupled with betweenness centrality in a
general linear model, can explain over 80% of the variance in Shapley
values. These relationships suggest important underlying similarities, as
well as differences, between the individual measures investigated here. At
this time, a mathematical proof of the precise relationships between these
and other nodal measures of network connectivity seems elusive, but an
approximation may already yield interesting insights into their nature and
application to neuronal networks. Hypotheses about the interdependence
can conceivably be generated by using hierarchical clustering approaches
comparing the indices across a large number of brain regions. The
relationship between such analyses and the theoretical roles of particular
neuronal structures within a large-scale network merits further
investigation.

Conceptually, the removal of a node with a relatively low Shapley
rating (and thus a high contribution) would be expected to affect the
network connectivity in some important way, whereas the removal of
those nodes with higher ratings would be expected to have a lesser
impact. Thus, the rating has potential utility as a means of analyzing
discrete network lesions, by predicting the magnitude at which a
particular lesion would be expected to disrupt network connectivity. It
would also speak to the question of whether there are particular nodes
whose lesion can or cannot be compensated for. Moreover, a re-
assignment of Shapley ratings based upon a lesioned version of a network
can provide an indication of how this lesion affects the relative
contribution of the remaining nodes. This can, for instance, be done by
evaluating relative Shapley values during consecutive stepwise removal
of nodes (which by itself is a problem of high complexity). The
characterization of the network disintegration as, for instance, ‘‘graceful
degradation/degeneration’’ versus ‘‘catastrophic failure’’ could potentially
contribute to the investigation of brain connectivity from the point of view
of system theory.

Previous work on network vulnerability has been carried out, for
example, for the world wide web (Barabasi and Albert, 1999), which turns
out to be robust with respect to random deletion of nodes, but rather
vulnerable to targeted attack on heavily connected hubs (Albert et al.,

2000; Doyle et al., 2005). In the case of brain networks, a measure of edge
vulnerability (Kaiser and Hilgetag, 2004) has been defined and has led to
the identification of edges whose loss most affects global structural
measures. Such edges often correspond to ‘‘bridges,’’ that is, edges
linking segregated clusters of brain regions. A more detailed study of
lesion effects on network structure has revealed a pattern of degradation
in large-scale brain networks that resembles that of scale-free networks
(Kaiser et al., 2007). Shapley values may offer a new analytic tool for
predicting the functional impact of lesioning network nodes. For example,
our analysis of the visual network Y92 suggested that a lesion of area V4
might have a strong impact on the visual network, which is in line with the
earlier observation of Felleman and Van Essen (1991) that V4 is extremely
densely connected within the visual cortical network. An analysis of a
similar connection matrix comprising visual and sensorimotor areas has
shown that V4 has very high betweenness centrality (Honey et al., 2007)
and that its removal strongly degrades small-world attributes of the
remaining network (Sporns et al., 2007). Other putative hub regions
identified on the basis of centrality and motif contributions include
areas FEF, 46 and 7a, all of which are shown to have strongly negative
Shapley values in the present analysis. By contrast, our analysis
suggests that lesions of IT areas or even V1 would lead to rather
discrete network disturbances within the cerebral cortex. Shapley
values suggest a potentially very significant role for prefrontal area 46
and FEF, which is worth noting given that these areas are not a primary
part of the visual cortical network. It needs to be investigated, however,
how their connectivity with posterior cortex compares with other frontal
areas.

It is important to note that all these considerations address the
structural integrity of the network, whereas the significance of these
measures within a functional network in the context of phenomena such
as stimulus-driven or endogenously produced activity—and how they are
affected by lesions—is not yet well defined (see Sporns et al., 2004).
While Shapley values have been introduced at the functional level (e.g.,
Aharonov et al., 2003; Keinan et al., 2004), it is unclear how they are
related to structural Shapley values. In order to tie structure-function
relationships together more closely, we need a large database of
correlated structural and functional measurements in the same species
or—even better—the same individual organism, such as lesions induced
by stroke or by transcranial magnetic stimulation, compared to structural
and functional measures including MRT and EEG. From there, we will need
computational models that can provide testable predictions of
mechanistic links between structure and function. Neuroinformatics is
still very much in the first steps to become useful for answering basic and
clinical questions concerning brain function.
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