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There are several important diffi culties in this model fi tting 
problem. Firstly, because of the threshold property, the mapping 
from a time-varying signal to spike trains is generally discontinuous 
in spiking models (Brette, 2004). Besides, the fi tness criterion we 
used (the gamma coincidence factor used in the INCF competition; 
Jolivet et al., 2008) is discrete, because it is a function of the number 
of coincidences within a predefi ned temporal window. These facts 
prevent us from using optimization methods based on gradients (e.g. 
conjugated gradient descent). Secondly, a single evaluation of the 
criterion for a given set of parameter values involves the simulation 
of a neuron model over a very long time. For example, recordings in 
challenges A and B of the 2009 INCF competition last 60 s, sampled at 
10 kHz, totalling 600,000 values of the input signal. Thus, evaluating 
the fi tness criterion for any spiking model involves several millions 
of operations. Thirdly, not only the parameter values are unknown, 
but there are also many candidate models. In particular, it is not 
unreasonable to think that different neuron types may be best fi t 
by different phenomenological models. Therefore, the optimization 
tools should be fl exible enough to allow testing different models.

To address these issues, we developed a model fi tting toolbox for 
the spiking neural network Brian (Goodman and Brette, 2009). Brian 
is a simulator written in Python that lets the user defi ne a model 
by directly providing its equations in mathematical form (includ-
ing threshold condition and reset operations). Using an interpreted 
language such as Python comes at a cost, because the interpretation 
overhead can slow down the simulations, but this problem can be 
solved by vectorizing all operations when the network model includes 
many neurons. It turns out that the same strategy applies to program-
ming GPUs, which are most effi cient when all processors execute the 
same operation (the Single Instruction, Multiple Data (SIMD) model 
of parallel programming). Therefore, we developed several vectoriza-
tion techniques for spiking model optimization (see Vectorization 

INTRODUCTION
Neurons encode time-varying signals into trains of precisely timed 
spikes (Mainen and Sejnowski, 1995; Brette and Guigon, 2003), 
using a diverse set of ionic channels with specifi c characteristics. 
Recently, it was found that simple phenomenological spiking 
models, such as integrate-and-fi re models with adaptation, can 
in fact predict the response of cortical neurons to somatically 
injected currents with surprising accuracy in spike timing (Jolivet 
et al., 2004; Brette and Gerstner, 2005; Gerstner and Naud, 2009). 
This unexpected performance is probably related to the fact that 
detailed conductance-based models with widely diverse ion chan-
nel characteristics can in fact have the same properties at neuron 
level (Goldman et al., 2001). These encouraging results triggered 
an interest in quantitative fi tting of neuron models to experi-
mental recordings, as assessed by the recent INCF Quantitative 
Single-Neuron Modeling competition. The competition has seen 
several successful submissions, but there is no available method 
to systematically fi t arbitrary models to experimental data. Such 
computational tools would be particularly useful for modellers in 
systems neuroscience, for example, who could use empirically vali-
dated models in their studies. We developed a model fi tting library, 
which works with the Brian simulator (Goodman and Brette, 2009), 
and allows the fi tting of user-defi ned spiking models to electro-
physiological data consisting of spike trains elicited by time-varying 
signals (for example, intracellularly injected currents). If the user’s 
machine has a graphics processing unit (GPU) − a cheap parallel 
processor available on many standard machines − the algorithms 
run in parallel on it. The library is available as a part of Brian, which 
is distributed under a free open-source license1.
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Since the simulations are independent within one iteration, they 
can be run simultaneously. In the PSO algorithm, each particle 
accelerates towards a mixture of the location of the best particle 
and the best previous location of that particle. The state update rule 
combines deterministic and stochastic terms in order to prevent the 
particles from getting stuck in locally optimal positions:
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where X
i
(t) and V

i
(t) are the position and speed vectors of particle i 

at time t, respectively. X ti
l ( ) is the best position occupied by particle 

i before time t (local best position), and Xg(t) is the best position 
occupied by any particle before time t (global best position). ω, c

l
 

and c
g
 are three positive constants which are commonly chosen as 

follows in the literature (Shi and Eberhart, 1998; den Bergh, 2006): 
ω = 0.9, c

l
 = c

g
 = 1.9. We chose these values for most results shown in 

this paper. For the in vitro recordings, we chose c
l
 = 0.1 and c

g
 = 1.5 

which we empirically found to be more effi cient. Finally, r
l
 and r

g
 are 

two independent random numbers uniformly resampled between 
0.0 and 1.0 at each iteration.

Boundary constraints can be specifi ed by the user so that the par-
ticles are forced to stay within physiologically plausible values (e.g. 
positive time constants). The initial values V

i
(0) are set at 0, whereas 

the initial positions of the particles are uniformly sampled within 
user-specifi ed parameter intervals. The convergence rate of the opti-
mization algorithm decreases when the interval sizes increase, but this 
effect is less important when the number of particles is very large.

Fitness function. The computation of the gamma factor can be per-
formed in an offl ine or online fashion. The offl ine method consists 
in recording the whole spike trains and counting the number of 
coincidences at the end of the simulation. Since the fi tness function 
is evaluated simultaneously on a very large number of neurons, 
this method can be both memory-consuming (a large number of 
spike trains must be recorded) and time-consuming (the offl ine 
computation of the gamma factor of the model spike trains − which 
can consist of several hundred thousand spikes − against their cor-
responding target trains is performed in series). The online method 
consists in counting coincidences as the simulation runs. It allows us 
to avoid recording all the spikes, and is much faster than the offl ine 
algorithm. Moreover, on the GPU the online algorithm requires a 
GPU to CPU data transfer of only O(num particles) bytes rather 
than O(num spikes), and CPU/GPU data transfers are a major 
bottleneck. Our fi tting library implements the online algorithm. 
About 10% of the simulation time at each iteration is spent count-
ing coincidences with our algorithm on the CPU.

Vectorization over data sets
The particle swarm algorithm can be easily adapted so that a single 
neuron model can be fi tted to several target spike trains simulta-
neously. The algorithm returns as many parameter sets as target 
spike trains. The gamma factor values for all particles and all spike 
trains are also computed in a single run, which is much faster than 
computing the gamma factors in series. For example, in the INCF 
Quantitative Modeling dataset, all trials (13 in challenge A and 9 
in challenge B) can be simultaneously optimized.

Techniques). These techniques apply both to CPU simulations and 
to parallel GPU simulations. We used just-in-time compilation tech-
niques to keep the same level of fl exibility when models are simulated 
on the GPU, so that using the GPU is transparent to the user (see GPU 
Implementation). We demonstrate our algorithms (see Results) by 
fi tting various spiking models to the INCF competition data (chal-
lenges A and B). Consistent with previous studies, we found that 
adaptive spiking models performed very well. We also show how our 
tool may be used to reduce complex conductance-based models to 
simpler phenomenological spiking models.

MATERIALS AND METHODS
VECTORIZATION TECHNIQUES
Fitting a spiking neuron model to electrophysiological data is per-
formed by maximizing a fi tness function measuring the adequacy 
of the model to the data. We used the gamma factor (Jolivet et al., 
2008), which is based on the number of coincidences between the 
model spikes and the experimentally-recorded spikes, defi ned as 
the number of spikes in the experimental train such that there is at 
least one spike in the model train within ±δ, where δ is the size of 
the temporal window (typically a few milliseconds). The gamma 
factor is defi ned by
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where N
coinc

 is the number of coincidences, N
exp

 and N
model

 are the 
number of spikes in the experimental and model spike trains, respec-
tively, and r

exp
 is the average fi ring rate of the experimental train. The 

term 2δN
exp

r
exp

 is the expected number of coincidences with a Poisson 
process with the same rate as the experimental spike train, so that Γ = 0 
means that the model performs no better than chance. The normali-
zation factor is chosen such that Γ ≤ 1, and Γ = 1 corresponds to a 
perfect match. The gamma factor depends on the temporal window 
size parameter δ (it increases with it). However, we observed empiri-
cally that the parameter values resulting from the fi tting procedure did 
not seem to depend critically on the choice of δ, as long as it is not so 
small as to yield very few coincidences. For most results shown in the 
Section “Results”, we chose δ = 4 ms as in the INCF competition.

This fi tting problem can be solved with any global optimization 
algorithm that does not directly use gradient information. These 
algorithms are usually computationally intensive, because the fi tness 
function has to be evaluated on a very large number of parameter 
values. We implemented several vectorization techniques in order to 
make the fi tting procedure feasible in a reasonable amount of time. 
Vectorization allows us to use the Brian simulator with maximum 
effi ciency (it relies on vectorization to minimize the interpretation 
overhead) and to run the optimization algorithm in parallel.

Vectorization over parameters
Particle swarm optimization algorithm. We chose the particle 
swarm optimization (PSO) algorithm (Kennedy and Eberhart, 
1995), which involves defi ning a set of particles (corresponding 
to parameter values) and letting them evolve in parameter space 
towards optimal values (see Figures 1 and 7). Evaluating the fi tness 
of a particle requires us to simulate a spiking neuron model with 
a given set of parameter values and to calculate the gamma factor. 

Rossant et al. Fitting spiking models
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Vectorization over time
The gamma factor is computed by simulating the neurons over the 
duration of the electrophysiological recordings. The recordings can 
be as long as several tens of seconds, so this may be a bottleneck for 
long recordings. We propose vectorizing the simulations over time 
by dividing the recording into equally long slices and simulating 
each neuron simultaneously in all time slices. Spike coincidences are 
counted independently over time slices, then added up at the end 
of the simulation when computing the gamma factor. The problem 
with this technique is that the initial value of the model at the start 
of a slice is unknown, except for the fi rst slice, because it depends 
on the previous stimulation. To solve this problem, we allow the 
time windows to overlap by a few hundreds of milliseconds and we 
discard the initial segment in each slice (except the fi rst one). The 

initial value in the initial segment is set at the rest value. Because 
spike timing is reliable in spiking models with fl uctuating inputs 
(Brette and Guigon, 2003), as in cortical neurons in vitro (Mainen 
and Sejnowski, 1995), spike trains are correct after the initial win-
dow, that is, they match the spike trains obtained by simulating the 
model in a single pass, as shown in Figure 2.

The duration of one slice is overlap + recording duration/number 
of slices, so that the extra simulation time is overlap × number of 
slices, which is, relative to the total simulation time, overlap/slice 
duration. Thus, there is a trade off between the overhead of simu-
lating overlapping windows and the gain due to vectorisation. In 
our simulations, we used slices that were a few seconds long. The 
duration of the required overlap is related to the largest time con-
stant in the model.
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FIGURE 1 | Fitting spiking neuron models with particle swarm optimization 

(PSO). The target spike train was generated by injecting a noisy current (white 
noise, 500 ms long) into a leaky integrate-and-fi re model (R = 1010 A−1 and 
τ = 40 ms), and PSO was run to fi nd the correct parameter values. The boundary 
conditions used for the optimization are the ranges of the axes. The optimization 
algorithm makes the particles (sets of parameter values) evolve towards the area 
with high fi tness values (an oblique line in this example). (A) Positions of the 

particles in parameter space (R, τ) at the start of the algorithm and their evolution 
at the next iteration (arrows). The colored background represents the value of the 
gamma factor for all parameter values. (B) Voltage trace of the red particle shown 
in A compared to the original one (blue), in response to the injected current (top). 
The y-axis is unitless. (C) Positions of the particles at iteration 4. (D) Voltage trace 
of the red particle (same as in (A) and (B)) at iteration 4. The gamma factor 
increased from 0.09 to 0.55 between (B) and (D).
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GPU IMPLEMENTATION
A graphics processing unit (GPU) is a type of chip available on mod-
ern graphics cards. These are inexpensive units designed originally 
and primarily for computer games, which are increasingly being 
used for non-graphical parallel computing (Owens et al., 2007). 
The chips contain multiple processor cores (240 in the current 
state of the art designs, and 512 in the next generation which will 
be available in 2010) with a limited ability to communicate between 
each other. This makes them ideal for the particle swarm algorithm 
where many independent simulations need to be run for each itera-
tion of the algorithm, especially with the vectorization techniques 
that we presented in the Section “Vectorization Techniques”.

Programming for a GPU is rather specialised. Each processor 
core on a GPU is much simpler than a typical CPU, and this places 
considerable limitations on what programs can be written for them. 
Moreover, although recent versions of these chips allow more of the 
functionality of a full CPU (such as conditional branching), algo-
rithms that do not take into account the architecture of the GPU 
will not use it effi ciently. In particular, the GPU places constraints 
on memory access patterns. Consequently, although 240 cores may 
be present in the GPU, it is unrealistic in most cases to expect a 
240× speed increase over a CPU. However, speed improvements 
of tens to hundreds of times are often possible (see the showcase 
on the NVIDIA CUDA Zone)2. In our case, we have achieved a 
roughly 50−80× speed improvement, thanks largely to the fact that 
the model fi tting algorithm is “embarassingly parallel”, that is, that 

it features a number of independent processes which do not inter-
act with each other. This means that memory can be allocated in 
the topologically continuous fashion that is optimal for the GPU, 
and the code does not need to introduce synchronization points 
between the processes which would slow it down.

We use the GPU in the following way. We have a template pro-
gram written in the subset of C++ that runs on the GPU. Code that 
is specifi c to the neuron model is generated and inserted into the 
template when the model fi tting program is launched. The code is 
generated automatically from the differential equations defi ning 
the neuron model, compiled and run automatically on the GPU 
(just-in-time compilation) using the PyCUDA package (Klöckner 
et al., 2009).

The code generation works as follows. We start from a basic 
template that handles standard operations shared amongst all mod-
els, including loading the input currents to the model, computing 
the coincidence count and so forth. The template has several slots 
for specifying code specifi c to the model, including the numerical 
integration step and the thresholding and reset behavior. The dif-
ferential equations defi ning the neuron model are stored as strings 
in Brian. For example, if the differential equation was 'dV/dt=-
V/tau' then we store the substring '-V/tau'. An Euler solver 
template for this might look like:

for var, expr in diffeq:
  (var)__tmp = (expr);
for var in diffeq:
  (var) += dt*(var)__tmp;

V
m

Time (s)
0 0.5 1 1.5 2 2.4

FIGURE 2 | Vectorization over time. A leaky integrate-and fi re neuron receiving a dynamic input current is simulated over 2.4 s (top row, black). The same model is 
simultaneously simulated in three time slices (blue) with overlapping windows (dashed lines). Vertical dotted lines show the slice boundaries. The model is normalized 
so that threshold is 1 and reset is 0. The overlap is used to solve the problem of choosing the initial condition and is discarded when the slices are merged.

2http://www.nvidia.com/object/cuda_home.html

http://www.nvidia.com/object/cuda_home.html
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In the case above this would become (after substitutions):

V__tmp = -V/tau;
V += dt*V__tmp;

This latter code snippet is valid C code that can be run on the GPU. 
A similar technique is used for thresholding and reset behaviour.

These techniques mean that the huge speed improvements of the 
GPU are available to users without them having to know anything 
about GPU architectures and programming. Usage is transpar-
ent: on a system with a GPU present and the PyCUDA package 
installed, the model fi tting code will automatically be run on the 
GPU, otherwise it will run on the CPU.

DISTRIBUTED COMPUTING
As mentioned in the previous section, the model fi tting algorithm 
presented here is close to “embarassingly parallel”, meaning that it can 
relatively easily be distributed across multiple processors or comput-
ers. In fact, the algorithm consists of multiple iterations, each of which 
is “embarassingly parallel” followed by a very simple computation 
which is not. More precisely, the simulation of the neuron model, 
the computation of the coincidence count, and most of the particle 
swarm algorithm can be distributed across several processors  without 
needing communication between them. The only information that 
needs to be communicated across processors is the set of best param-

eters found so far. With N particles and M processors, each processor 
can independently work on N/M particles, communicating its own 
best set of parameters to all the other processors only at the end of 
each iteration. This minimal exchange of information means that the 
work can be effi ciently distributed across several processors in a single 
machine, or across multiple machines connected over a local network 
or even over the internet. We use the standard Python multiprocess-
ing package to achieve this. See the section titled “Benchmark” and 
Figure 6 for details on performance.

RESULTS
MODEL FITTING
We checked our algorithms on synthetic data and applied them to 
intracellular in vitro recordings.

Synthetic data
We fi rst check that the optimization algorithms can fi t a spiking neu-
ron model to spike trains generated by the same model (Figure 3). We 
simulated a leaky integrate-and-fi re neuron model with an adaptive 
threshold (equations in Table 1) responding to a fl uctuating current 
injection over 500 ms (Ornstein-Uhlenbeck process). As expected, 
the optimization algorithm converged to a perfect fi t (Γ = 1 with 
precision δ = 0.1 ms) after just a few iterations. We chose this small 
value of δ to show that the fi t can be nearly perfect, as expected in 
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FIGURE 3 | Fitting a leaky integrate-and-fi re model with adaptive 

threshold. (A) A 500-ms fl uctuating current is injected into a leaky 
 integrate-and-fi re neuron with adaptive threshold (R = 3.4 × 109 A−1, 
τ = 25 ms, τt = 10 ms, α = 0.15, a = 0.1). The output spike train is used as the 
target spike train for the fi tting procedure with the same model. (B) Results 

from the optimization algorithm match the original parameters within 15% 
error and the resulting trace (blue; threshold in green; the model is normalized 
so that Vm has no unit) is close to the original trace (black), even though only 
spike timings were used for fi tting. The gamma factor was 1.0 at precision 
δ = 0.1 ms.
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this situation. The corresponding parameter values were very close 
to the original ones (±15%), so that the original and optimized traces 
match, even though only the spike trains were used for the fi tting 
procedure (a perfect match of the traces can be obtained by using 
more particles than we used for the fi gure, giving parameters values 
within ±3%). However, this is not likely to be a general result: for 
example, if the neuron model included after-spike effects (such as 
refractoriness) and the interspike intervals were longer than these 
effects (that is, at low fi ring rates), then the method could not recover 
these properties since they would not be visible in the spike trains.

In vitro recordings
We then applied our fi tting procedure to in vitro intracellular record-
ings from the 2009 Quantitative Single-Neuron Modeling competi-
tion (challenges A and B). In these recordings, fl uctuating currents 
were injected into the soma of cortical neurons (L5 regular spiking 
pyramidal cell for challenge A and L5 fast spiking cell for challenge 

B). Figure 4 shows the result of fi tting an integrate-and-fi re model 
with adaptive threshold (equations in Table 1) to an intracellular 
recording of an L5 fast spiking cell responding to in-vivo-like current 
injection (Challenge B). For the 1 s sample shown in the fi gure, the 
optimization algorithm converged in a few iterations towards a very 
good fi tness value (Γ = 0.9 at precision δ = 2 ms).

Tables 1 and 2 report the results of fi tting four different spik-
ing models to the recordings in challenges A (regular spiking 
cell) and B (fast spiking cell). Each challenge includes the record-
ings of several identical trials (same input current; 13 trials in 
A and 9 trials in B), and we report the average and standard 
deviation for all quantities (gamma factor and parameter values). 
The recordings were divided into a training period (fi rst 10 s), 
which was used to optimize the models, and a test period (last 
10 s), which was used to calculate the gamma factors reported 
in the tables. We used the following values for the optimization 
algorithm: ω = 0.9, c

l
 = 0.1, c

g
 = 1.5. We used a local constant 

Table 1 | Optimization results for Challenge A. Four neuron models were fi tted to the electrophysiological recordings of a regular spiking L5 pyramidal cell 

responding to in-vivo-like current injection. There were 13 trials with the same input. The models were optimized on the part of the data between 17.5 seconds 

and 28 seconds and the gamma factors were calculated between 28 and 38 seconds (δ = 4 ms). The value relative to the intrinsic reliability Γin is reported in 

brackets. Parameter D is a time shift for output spikes (recorded spikes typically occur slightly after model spikes because they are reported at the time when 

the membrane potential crosses 0 mV). We also reported rescaled versions of the parameter values (in brackets) so that they correspond to 

electrophysiological quantities.

Model Gamma factor Parameters

ADAPTIVE IF

τdV / dt = RI −V − w 0.50 ± 0.05 (64%) R = 3.01 ± 0.64 /nA (76.0 ± 9.2 MΩ)

τwdw/dt = −w  τ = 12.65 ± 2.57 ms

V
V
w w

>1
0

:
→
→ +

⎧
⎨
⎩ α

  τw = 100.24 ± 30.24 ms

  α = 0.36 ± 0.12 (9.1 ± 2.3 mV)

  D = 1.50 ± 0.46 ms

ADAPTIVE THRESHOLD IF

τdV /dt = RI − V 0.54 ± 0.05 (69%) R = 3.85 ± 1.13 /nA (56.5 ± 2.4 MΩ)

τtdVt /dt = aV − Vt  τ = 12.44 ± 2.42 ms

V V
V
V Vt

t t

>1
0

+
→
→ +

⎧
⎨
⎩

:
α

  τt = 97.64 ± 20.71 ms

  a = 0.21 ± 0.19

  α = 0.52 ± 0.32 (7.2 ± 1.8 mV)

  D = 1.57 ± 0.42 ms

ADAPTIVE EXPONENTIAL IF

τdV/dt = RI − V − w + ΔT exp ((V − 1)/ΔT) 0.51 ± 0.04 (65%) R = 3.69 ± 1.37 /nA (66.0 ± 21.1 MΩ)

τwdw/dt = aV − w  τ = 10.63 ± 1.82 ms

V
V V
w wT

r>1 2+
→
→ +

⎧
⎨
⎩

Δ :
α

  τw = 122.77 ± 26.18 ms

  a = 0.44 ± 0.79

  Vr = −1.01 ± 0.95 (−76.8 ± 13.7 mV)

  ΔT = 0.0 ± 0.0 (33.9 ± 33.3 µV)

  α = 0.50 ± 0.34 (8.8 ± 5.3 mV)

  D = 1.41 ± 0.32 ms

IZHIKEVICH

dV /dt = 0.04 V 2 + 5 V + 140 + RI − u 0.38 ± 0.05 (48%) R = 444 ± 772 /A

du/dt = a (bV − u)  a = 0.03 ± 0.05

V
V c
u u d

> 30 :
→
→ +

⎧
⎨
⎩

  b = −1.02 ± 2.47

  c = −122 ± 68

  d = 299 ± 536

  D = 0.35 ± 1.20 ms
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value much smaller than the global one so that the evolution of 
the algorithm is not dominated by the local term, which would 
make optimization slower.

Since only the spike trains were used for fi tting, units were arbitrary 
(e.g. reset is 0 and threshold is 1 for the adaptive IF model). To interpret 
the parameter values, we also report scaled versions of the parameters 
obtained by changing the voltage units of the model in a such a way 
that the average and standard deviation of the model trace agree with 
those of the intracellular recording. The mean µ

d
 and the standard 

deviation σ
d
 of the experimental voltage trace were computed over 

the test period after the action potentials were cut. Then, the mean µ
m

 
and the standard deviation σ

m
 of the voltage traces of the fi tted model 

were also  computed over the same test period. Finally, each parameter 
value X of the model was affi ne-transformed in either of the follow-
ing two ways: X

transformed
 = σ

d
/σ

m
· (X − µ

m
) + µ

d
 (for parameter V

r
) or 

X
transformed

 = σ
d
/σ

m
· X (for parameters α, Δ

T
, R).

Interestingly, for both challenges, best performance was achieved 
by a simple model, the integrate-and-fi re model with adaptive 
threshold: Γ = 0.54 ± 0.05 for challenge A and Γ = 0.76 ± 0.07 for 
challenge B. The intrinsic reliability of the neurons can be defi ned 
as the average gamma factor between trials (Γ

in
 = 0.78 for challenge 

A and Γ
in

 = 0.74 for challenge B). Relative to the intrinsic reliability, 

the performance was 69% and 102% respectively. The fact that 
the performance on challenge B is greater than 100% probably 
refl ects a drift in parameter values with successive trials, most likely 
because the cell was damaged. Indeed, the performance was tested 
on data that was not used for parameter fi tting, so it could not 
refl ect overfi tting to noisy recordings but rather a systematic change 
in neuron properties. Consistently with this explanation, in both 
challenges the fi ring rate increased over successive trials (whereas 
the input was exactly identical). This change in neuronal properties 
was likely caused by dialysis of the cell by the patch electrode (the 
intracellular medium is slowly replaced by the electrode solution) 
or by cell damage.

A related model with an adaptive current instead of an adapta-
tive threshold performed similarly. The performance of the adaptive 
exponential integrate-and-fi re model (Brette and Gerstner, 2005) 
(AdEx), which includes a more realistic spike initiation current 
(Fourcaud-Trocme et al., 2003), was not better. This surprising result 
is explained by the fact that the optimized slope factor parameter (Δ

T
) 

was very small, in fact almost 0 mV, meaning that spike initiation was 
as sharp as in a standard integrate-and-fi re model. The Izhikevich 
(2003) model, a two-variable model with the same qualitative proper-
ties as the AdEx model, performed poorly in comparison.
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FIGURE 4 | Fitting a leaky integrate-and-fi re neuron with adaptive 

threshold to electrophysiological recordings. (A) A fl uctuating in-vivo-like 
current was injected intracellularly in the soma of a L5 fast spiking cell. (B) The 

recorded spike train (black) is used to fi t an adaptive threshold integrate-and-fi re 
model. (C) Voltage trace (blue, no unit) and time-varying threshold (green) of 
optimized model. The gamma factor was 0.90 (precision δ = 2 ms).
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Table 2 | Optimization results for Challenge B. Four neuron models were 

fi tted to the electro-physiological recordings of an L5 fast spiking cell 

responding to in-vivo-like current injection. There were 9 trials with the same 

input.

Model Gamma factor Parameters

ADAPTIVE IF

 0.77 ± 0.06 (104%) R = 2.25 ± 0.08 /nA

  (47.2 ± 3.4 MΩ)

  τ = 10.25 ± 1.33 ms

  τw = 7.53 ± 1.62 ms

  α = 1.47 ± 0.52

  (30.4 ± 9.7 mV)

  D = 1.79 ± 0.69 ms
ADAPTIVE THRESHOLD IF

 0.76 ± 0.07 (102%) R = 4.80 ± 1.69 /nA

  (59.9 ± 6.7 MΩ)

  τ = 22.09 ± 7.26 ms

  τt = 10.08 ± 2.77 ms

  a = 0.45 ± 0.21

  α = 1.39 ± 0.65

  (16.9 ± 7.2 mV)

  D = 1.95 ± 0.71 ms
ADAPTIVE EXPONENTIAL IF

 0.76 ± 0.05 (103%) R = 4.79 ± 2.49 /nA

  (58.9 ± 30.9 MΩ)

  τ = 22.41 ± 12.35 ms

  τw = 51.64 ± 96.44 ms

  a = 1.16 ± 1.12

  Vr =−2.00 ± 0.00 

  (−84.9 ± 1.1 mV)

  ΔT = 0.0 ± 0.0

  (12.24 ± 0.34 µV)

  α = 1.00 ± 1.33

  (12.6 ± 16.5 mV)

  D = 1.63 ± 0.71 ms
IZHIKEVICH

 0.62 ± 0.08 (83%) R = 578 ± 387 /A

  a = 0.14 ± 0.10

  b = −3.09 ± 2.57

  c = −74.7 ± 75.0

  d = 1.56 × 103 ± 1.22 × 103

  D = 1.46 ± 1.35 ms

MODEL REDUCTION
Our model fi tting tools can also be used to reduce a complex 
 conductance-based model to a simpler phenomenological one, 
by fi tting the simple model to the spike train generated by the 
complex model in response to a fl uctuating input. We show an 
example of this technique in Figure 5 where a complex conduct-
ance-based model described in benchmark 3 of Brette et al. (2007) 
is reduced to an adaptive exponential integrate-and-fi re model 
(Brette and Gerstner, 2005). The complex model consists of a 
membrane equation and three Hodgkin-Huxley-type differential 
equations describing the dynamics of the spike generating sodium 
channel (m and h) and of the potassium rectifi er  channel (n). 

In this example, the gamma factor was 0.79 at precision 0.5 ms. 
This technique can in principle be applied to any pair of neuron 
models.

BENCHMARK
To test the scaling performance across multiple processors, we used 
a three machine cluster connected over a Windows network. Each 
computer consisted of a quad-core 64 bit Intel i7 920 processor at 
2.6 GHz, 6 GB RAM, and an NVIDIA GeForce GTX 295 graphics 
card (which have two GPUs). The cluster as a whole then had 12 
cores and 6 GPUs.

Performance scaled approximately linearly with the number of 
processors, either with CPUs (Figure 6A) or GPUs (Figure 6B). 
In the case of CPUs, performance was close to ideal (that is N 
 processors performing N times faster than a single processor), 
and was slightly lower than ideal with GPUs. With our relatively 
inexpensive three machine cluster, we could achieve performance 
approximately 300 times faster than with a single CPU, allowing us 
to fi t models in hours which would previously have taken weeks. 
A single GPU performed approximately 65× faster than a single 
CPU (or around 16× faster than the four cores available on a single 
machine in our cluster), and a dual-GPU GTX 295 card performed 
around 108× faster than a single CPU (or around 27× faster than 
the four CPUs alone).

DISCUSSION
We presented vectorized algorithms for fi tting arbitrary spiking 
neuron models to electrophysiological data. These algorithms 
can run in parallel on a graphics processing unit (GPU) or on 
multiple cores. It appeared that the speed improved by a factor 
of 50−80 times when the GPU was used for model simulations. 
With three dual-GPU cards, the performance was about 300 times 
faster than with one CPU, which makes it a cheap alternative to 
clusters of PCs. The algorithms are included as a model fi tting 
library for the Brian simulator (Goodman and Brette, 2009), 
which is distributed under a free open-source license3. This 
computational tool can be used by modellers in systems neu-
roscience, for example, to obtain empirically validated models 
for their studies.

We chose to use the particle swarm algorithm for optimization, 
but it can be easily replaced by any other global optimization algo-
rithm that uses simultaneous evaluations of different parameter 
sets, such as genetic algorithms. Indeed, the optimization procedure 
is defi ned at script level (in Python) and runs on the main processor. 
The error criterion could also be modifi ed, for example to include 
an error on the intracellular voltage trace, so that the model can 
predict both spike times and voltage.

Other model fitting techniques have been previously 
described by several authors, most of them based on maximum 
likelihood (Paninski et al., 2004, 2007). Our initial motivation 
for choosing a more direct approach based on general global 
optimization methods was that it applies to arbitrary models, 
including nonlinear ones, whereas maximum likelihood optimi-
zation is generally model-specific. Current maximum  likelihood 

3http://www.briansimulator.org

http://www.briansimulator.org
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FIGURE 5 | Model reduction from a Hodgkin−Huxley model to an adaptive 

exponential integrate-and-fi re model (AdEx). (A) A 500-ms fl uctuating current 
is injected into a conductance-based model. (B) The output spike train is used to fi t 

an AdEx model. (C) Voltage trace of the optimized AdEx model. The gamma factor 
is 0.79 at precision 0.5 ms and the parameter values are τ = 12 ms, τw = 25 ms, 
R = 7.0 × 109 A−1, VR = − 0.78, ΔT = 1.2, a = 0.079, α = 0 (normalized voltage units).
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FIGURE 6 | Speedup with multiple CPUs and GPUs. A fi tting task was 
performed over 1-s-long electrophysiological data. (A) Speedup in the 
simulation of 10 iterations with 400,000 particles as a function of the number 
of cores, relative to the performance of a single CPU. We used different cluster 
confi gurations using 1−12 cores spread among one up to three different 

quad-core computers connected over a local Windows network. (B) Speedup 
in the simulation of 10 iterations with 2,000,000 particles as a function of the 
number of GPUs, relative to the performance of a single CPU (using the same 
number of particles). GPUs were spread on up to three PCs with dual-GPU 
cards (GTX 295).

techniques apply essentially to linear threshold models, which 
constitute a large class of models but do not include, for exam-
ple, the AdEx model and Izhikevich model, which we could 
evaluate with our algorithm. In Huys et al. (2006), a sophis-
ticated maximum likelihood method is presented to estimate 
parameters of complex biophysical models, but many aspects 

of the model must be known in advance, such as time constants 
and channel properties (besides, the voltage trace is also used). 
Another important difference is in the application of these tech-
niques. The motivation for maximum likelihood approaches is 
to determine parameter values when there is  substantial vari-
ability in the neural response to repeated  presentations of the 
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Our results on challenges A and B of the INCF Quantitative 
Modeling competition confi rm that integrate-and-fi re models 
with adaptation give good results in terms of prediction of cortical 
spike trains. Interestingly, the adaptive exponential integrate-and-
fi re model (Brette and Gerstner, 2005) did not give better results 
although spike initiation is more realistic (Badel et al., 2008). It 
appears that the fi tting procedure yields a very small value for the 
slope factor parameter Δ

T
, consistent with the fact that spikes are 

sharp at the soma (Naundorf et al., 2006; McCormick et al., 2007). 
The Izhikevich model also did not appear to fi t the data very well. 
This could be because spike initiation is not sharp enough in this 
model (Fourcaud-Trocme et al., 2003) or because it is based on the 
quadratic model, which approximates the response of  conductance-
based models to constant currents near threshold, while the recorded 
neurons were driven by current fl uctuations.

Our technique can also be used to obtain simplifi ed phe-
nomenological models from complex conductance-based ones. 
Although it primarily applies to neural responses to intracellular 
current injection, it could in principle be applied also to extracel-
lularly recorded responses to time-varying stimuli (e.g. auditory 
stimuli), if spike timing is reproducible enough. An interesting 
extension, which could apply to the study of phase locking proper-
ties of  auditory neurons, would be to predict the distribution of 
spike timing using stochastic spiking models.
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