
Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 2 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 05 March 2010
doi: 10.3389/neuro.11.002.2010

There are several important diffi culties in this model fi tting
problem. Firstly, because of the threshold property, the mapping
from a time-varying signal to spike trains is generally discontinuous
in spiking models (Brette, 2004). Besides, the fi tness criterion we
used (the gamma coincidence factor used in the INCF competition;
Jolivet et al., 2008) is discrete, because it is a function of the number
of coincidences within a predefi ned temporal window. These facts
prevent us from using optimization methods based on gradients (e.g.
conjugated gradient descent). Secondly, a single evaluation of the
criterion for a given set of parameter values involves the simulation
of a neuron model over a very long time. For example, recordings in
challenges A and B of the 2009 INCF competition last 60 s, sampled at
10 kHz, totalling 600,000 values of the input signal. Thus, evaluating
the fi tness criterion for any spiking model involves several millions
of operations. Thirdly, not only the parameter values are unknown,
but there are also many candidate models. In particular, it is not
unreasonable to think that different neuron types may be best fi t
by different phenomenological models. Therefore, the optimization
tools should be fl exible enough to allow testing different models.

To address these issues, we developed a model fi tting toolbox for
the spiking neural network Brian (Goodman and Brette, 2009). Brian
is a simulator written in Python that lets the user defi ne a model
by directly providing its equations in mathematical form (includ-
ing threshold condition and reset operations). Using an interpreted
language such as Python comes at a cost, because the interpretation
overhead can slow down the simulations, but this problem can be
solved by vectorizing all operations when the network model includes
many neurons. It turns out that the same strategy applies to program-
ming GPUs, which are most effi cient when all processors execute the
same operation (the Single Instruction, Multiple Data (SIMD) model
of parallel programming). Therefore, we developed several vectoriza-
tion techniques for spiking model optimization (see Vectorization

INTRODUCTION
Neurons encode time-varying signals into trains of precisely timed
spikes (Mainen and Sejnowski, 1995; Brette and Guigon, 2003),
using a diverse set of ionic channels with specifi c characteristics.
Recently, it was found that simple phenomenological spiking
models, such as integrate-and-fi re models with adaptation, can
in fact predict the response of cortical neurons to somatically
injected currents with surprising accuracy in spike timing (Jolivet
et al., 2004; Brette and Gerstner, 2005; Gerstner and Naud, 2009).
This unexpected performance is probably related to the fact that
detailed conductance-based models with widely diverse ion chan-
nel characteristics can in fact have the same properties at neuron
level (Goldman et al., 2001). These encouraging results triggered
an interest in quantitative fi tting of neuron models to experi-
mental recordings, as assessed by the recent INCF Quantitative
Single-Neuron Modeling competition. The competition has seen
several successful submissions, but there is no available method
to systematically fi t arbitrary models to experimental data. Such
computational tools would be particularly useful for modellers in
systems neuroscience, for example, who could use empirically vali-
dated models in their studies. We developed a model fi tting library,
which works with the Brian simulator (Goodman and Brette, 2009),
and allows the fi tting of user-defi ned spiking models to electro-
physiological data consisting of spike trains elicited by time-varying
signals (for example, intracellularly injected currents). If the user’s
machine has a graphics processing unit (GPU) − a cheap parallel
processor available on many standard machines − the algorithms
run in parallel on it. The library is available as a part of Brian, which
is distributed under a free open-source license1.

Automatic fi tting of spiking neuron models to
electrophysiological recordings

Cyrille Rossant1,2, Dan F. M. Goodman1,2, Jonathan Platkiewicz1,2 and Romain Brette1,2*

1 Laboratoire Psychologie de la Perception, Centre National de la Recherche Scientifi que and Université Paris Descartes, Paris, France
2 Département d’Etudes Cognitives, Ecole Normale Supérieure, Paris, France

Spiking models can accurately predict the spike trains produced by cortical neurons in response
to somatically injected currents. Since the specifi c characteristics of the model depend on the
neuron, a computational method is required to fi t models to electrophysiological recordings.
The fi tting procedure can be very time consuming both in terms of computer simulations and
in terms of code writing. We present algorithms to fi t spiking models to electrophysiological
data (time-varying input and spike trains) that can run in parallel on graphics processing units
(GPUs). The model fi tting library is interfaced with Brian, a neural network simulator in Python.
If a GPU is present it uses just-in-time compilation to translate model equations into optimized
code. Arbitrary models can then be defi ned at script level and run on the graphics card. This tool
can be used to obtain empirically validated spiking models of neurons in various systems. We
demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009
competition by comparing the performance of a number of neuron spiking models.

Keywords: model fitting, electrophysiology, spiking models, simulation, GPU, distributed computing, adaptive

threshold, optimization

Edited by:

Erik De Schutter, University of
Antwerp, Belgium; Okinawa Institute
of Science and Technology, Japan

Reviewed by:

Werner Van Geit, Okinawa Institute of
Science and Technology, Japan
Astrid A. Prinz, Emory University, USA
Magnus Richardson, University of
Warwick, UK

*Correspondence:

Romain Brette, Equipe Audition,
Département d’Etudes Cognitives,
Ecole Normale Supérieure, 29, rue
d’Ulm, 75230 Paris Cedex 05, France.
e-mail: romain.brette@ens.fr

1http://www.briansimulator.org

http://www.briansimulator.org

Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 2 | 2

Since the simulations are independent within one iteration, they
can be run simultaneously. In the PSO algorithm, each particle
accelerates towards a mixture of the location of the best particle
and the best previous location of that particle. The state update rule
combines deterministic and stochastic terms in order to prevent the
particles from getting stuck in locally optimal positions:

V t V t c r X t X t c r X t X t

X t

i i i i i

i

() () [() ()] [() ()]

()

+ = + − + −

+

1

1

ω l l
l

g g
g

== + +X t V ti i() (),1

where X
i
(t) and V

i
(t) are the position and speed vectors of particle i

at time t, respectively. X ti
l () is the best position occupied by particle

i before time t (local best position), and Xg(t) is the best position
occupied by any particle before time t (global best position). ω, c

l

and c
g
 are three positive constants which are commonly chosen as

follows in the literature (Shi and Eberhart, 1998; den Bergh, 2006):
ω = 0.9, c

l
 = c

g
 = 1.9. We chose these values for most results shown in

this paper. For the in vitro recordings, we chose c
l
 = 0.1 and c

g
 = 1.5

which we empirically found to be more effi cient. Finally, r
l
 and r

g
 are

two independent random numbers uniformly resampled between
0.0 and 1.0 at each iteration.

Boundary constraints can be specifi ed by the user so that the par-
ticles are forced to stay within physiologically plausible values (e.g.
positive time constants). The initial values V

i
(0) are set at 0, whereas

the initial positions of the particles are uniformly sampled within
user-specifi ed parameter intervals. The convergence rate of the opti-
mization algorithm decreases when the interval sizes increase, but this
effect is less important when the number of particles is very large.

Fitness function. The computation of the gamma factor can be per-
formed in an offl ine or online fashion. The offl ine method consists
in recording the whole spike trains and counting the number of
coincidences at the end of the simulation. Since the fi tness function
is evaluated simultaneously on a very large number of neurons,
this method can be both memory-consuming (a large number of
spike trains must be recorded) and time-consuming (the offl ine
computation of the gamma factor of the model spike trains − which
can consist of several hundred thousand spikes − against their cor-
responding target trains is performed in series). The online method
consists in counting coincidences as the simulation runs. It allows us
to avoid recording all the spikes, and is much faster than the offl ine
algorithm. Moreover, on the GPU the online algorithm requires a
GPU to CPU data transfer of only O(num particles) bytes rather
than O(num spikes), and CPU/GPU data transfers are a major
bottleneck. Our fi tting library implements the online algorithm.
About 10% of the simulation time at each iteration is spent count-
ing coincidences with our algorithm on the CPU.

Vectorization over data sets
The particle swarm algorithm can be easily adapted so that a single
neuron model can be fi tted to several target spike trains simulta-
neously. The algorithm returns as many parameter sets as target
spike trains. The gamma factor values for all particles and all spike
trains are also computed in a single run, which is much faster than
computing the gamma factors in series. For example, in the INCF
Quantitative Modeling dataset, all trials (13 in challenge A and 9
in challenge B) can be simultaneously optimized.

Techniques). These techniques apply both to CPU simulations and
to parallel GPU simulations. We used just-in-time compilation tech-
niques to keep the same level of fl exibility when models are simulated
on the GPU, so that using the GPU is transparent to the user (see GPU
Implementation). We demonstrate our algorithms (see Results) by
fi tting various spiking models to the INCF competition data (chal-
lenges A and B). Consistent with previous studies, we found that
adaptive spiking models performed very well. We also show how our
tool may be used to reduce complex conductance-based models to
simpler phenomenological spiking models.

MATERIALS AND METHODS
VECTORIZATION TECHNIQUES
Fitting a spiking neuron model to electrophysiological data is per-
formed by maximizing a fi tness function measuring the adequacy
of the model to the data. We used the gamma factor (Jolivet et al.,
2008), which is based on the number of coincidences between the
model spikes and the experimentally-recorded spikes, defi ned as
the number of spikes in the experimental train such that there is at
least one spike in the model train within ±δ, where δ is the size of
the temporal window (typically a few milliseconds). The gamma
factor is defi ned by

Γ =
−

⎛

⎝
⎜

⎞

⎠
⎟

−
+

⎛

⎝
⎜

⎞

⎠
⎟

2

1 2

2

δ
δ

r

N N r

N Nexp

coinc exp exp

exp model

,

where N
coinc

 is the number of coincidences, N
exp

 and N
model

 are the
number of spikes in the experimental and model spike trains, respec-
tively, and r

exp
 is the average fi ring rate of the experimental train. The

term 2δN
exp

r
exp

 is the expected number of coincidences with a Poisson
process with the same rate as the experimental spike train, so that Γ = 0
means that the model performs no better than chance. The normali-
zation factor is chosen such that Γ ≤ 1, and Γ = 1 corresponds to a
perfect match. The gamma factor depends on the temporal window
size parameter δ (it increases with it). However, we observed empiri-
cally that the parameter values resulting from the fi tting procedure did
not seem to depend critically on the choice of δ, as long as it is not so
small as to yield very few coincidences. For most results shown in the
Section “Results”, we chose δ = 4 ms as in the INCF competition.

This fi tting problem can be solved with any global optimization
algorithm that does not directly use gradient information. These
algorithms are usually computationally intensive, because the fi tness
function has to be evaluated on a very large number of parameter
values. We implemented several vectorization techniques in order to
make the fi tting procedure feasible in a reasonable amount of time.
Vectorization allows us to use the Brian simulator with maximum
effi ciency (it relies on vectorization to minimize the interpretation
overhead) and to run the optimization algorithm in parallel.

Vectorization over parameters
Particle swarm optimization algorithm. We chose the particle
swarm optimization (PSO) algorithm (Kennedy and Eberhart,
1995), which involves defi ning a set of particles (corresponding
to parameter values) and letting them evolve in parameter space
towards optimal values (see Figures 1 and 7). Evaluating the fi tness
of a particle requires us to simulate a spiking neuron model with
a given set of parameter values and to calculate the gamma factor.

Rossant et al. Fitting spiking models

Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 2 | 3

Rossant et al. Fitting spiking models

Vectorization over time
The gamma factor is computed by simulating the neurons over the
duration of the electrophysiological recordings. The recordings can
be as long as several tens of seconds, so this may be a bottleneck for
long recordings. We propose vectorizing the simulations over time
by dividing the recording into equally long slices and simulating
each neuron simultaneously in all time slices. Spike coincidences are
counted independently over time slices, then added up at the end
of the simulation when computing the gamma factor. The problem
with this technique is that the initial value of the model at the start
of a slice is unknown, except for the fi rst slice, because it depends
on the previous stimulation. To solve this problem, we allow the
time windows to overlap by a few hundreds of milliseconds and we
discard the initial segment in each slice (except the fi rst one). The

initial value in the initial segment is set at the rest value. Because
spike timing is reliable in spiking models with fl uctuating inputs
(Brette and Guigon, 2003), as in cortical neurons in vitro (Mainen
and Sejnowski, 1995), spike trains are correct after the initial win-
dow, that is, they match the spike trains obtained by simulating the
model in a single pass, as shown in Figure 2.

The duration of one slice is overlap + recording duration/number
of slices, so that the extra simulation time is overlap × number of
slices, which is, relative to the total simulation time, overlap/slice
duration. Thus, there is a trade off between the overhead of simu-
lating overlapping windows and the gain due to vectorisation. In
our simulations, we used slices that were a few seconds long. The
duration of the required overlap is related to the largest time con-
stant in the model.

0

0.5

1.0

0.1 0.15 0.2 0.25 0.3
Time (s)

0

0.4

0.8

0.9 0.95 1 1.05 1.1
30

35

40

45

50

0

0.15

0.3

0.45

0.6

0.75

0.9

R (A) 1e10

τ
(m

s)

0.9 0.95 1 1.05 1.1
30

35

40

45

50

0

0.15

0.3

0.45

0.6

0.75

0.9

1e10

τ
(m

s)

V
m

C
ur

re
nt

 (n
A

)

0

0.5

1.0

0.1 0.15 0.2 0.25 0.3
Time (s)

0

0.4

0.8

V
m

C
ur

re
nt

 (n
A

)

A B

C D

-1

R (A)-1

Γ

Γ

FIGURE 1 | Fitting spiking neuron models with particle swarm optimization

(PSO). The target spike train was generated by injecting a noisy current (white
noise, 500 ms long) into a leaky integrate-and-fi re model (R = 1010 A−1 and
τ = 40 ms), and PSO was run to fi nd the correct parameter values. The boundary
conditions used for the optimization are the ranges of the axes. The optimization
algorithm makes the particles (sets of parameter values) evolve towards the area
with high fi tness values (an oblique line in this example). (A) Positions of the

particles in parameter space (R, τ) at the start of the algorithm and their evolution
at the next iteration (arrows). The colored background represents the value of the
gamma factor for all parameter values. (B) Voltage trace of the red particle shown
in A compared to the original one (blue), in response to the injected current (top).
The y-axis is unitless. (C) Positions of the particles at iteration 4. (D) Voltage trace
of the red particle (same as in (A) and (B)) at iteration 4. The gamma factor
increased from 0.09 to 0.55 between (B) and (D).

Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 2 | 4

Rossant et al. Fitting spiking models

GPU IMPLEMENTATION
A graphics processing unit (GPU) is a type of chip available on mod-
ern graphics cards. These are inexpensive units designed originally
and primarily for computer games, which are increasingly being
used for non-graphical parallel computing (Owens et al., 2007).
The chips contain multiple processor cores (240 in the current
state of the art designs, and 512 in the next generation which will
be available in 2010) with a limited ability to communicate between
each other. This makes them ideal for the particle swarm algorithm
where many independent simulations need to be run for each itera-
tion of the algorithm, especially with the vectorization techniques
that we presented in the Section “Vectorization Techniques”.

Programming for a GPU is rather specialised. Each processor
core on a GPU is much simpler than a typical CPU, and this places
considerable limitations on what programs can be written for them.
Moreover, although recent versions of these chips allow more of the
functionality of a full CPU (such as conditional branching), algo-
rithms that do not take into account the architecture of the GPU
will not use it effi ciently. In particular, the GPU places constraints
on memory access patterns. Consequently, although 240 cores may
be present in the GPU, it is unrealistic in most cases to expect a
240× speed increase over a CPU. However, speed improvements
of tens to hundreds of times are often possible (see the showcase
on the NVIDIA CUDA Zone)2. In our case, we have achieved a
roughly 50−80× speed improvement, thanks largely to the fact that
the model fi tting algorithm is “embarassingly parallel”, that is, that

it features a number of independent processes which do not inter-
act with each other. This means that memory can be allocated in
the topologically continuous fashion that is optimal for the GPU,
and the code does not need to introduce synchronization points
between the processes which would slow it down.

We use the GPU in the following way. We have a template pro-
gram written in the subset of C++ that runs on the GPU. Code that
is specifi c to the neuron model is generated and inserted into the
template when the model fi tting program is launched. The code is
generated automatically from the differential equations defi ning
the neuron model, compiled and run automatically on the GPU
(just-in-time compilation) using the PyCUDA package (Klöckner
et al., 2009).

The code generation works as follows. We start from a basic
template that handles standard operations shared amongst all mod-
els, including loading the input currents to the model, computing
the coincidence count and so forth. The template has several slots
for specifying code specifi c to the model, including the numerical
integration step and the thresholding and reset behavior. The dif-
ferential equations defi ning the neuron model are stored as strings
in Brian. For example, if the differential equation was 'dV/dt=-
V/tau' then we store the substring '-V/tau'. An Euler solver
template for this might look like:

for var, expr in diffeq:
 (var)__tmp = (expr);
for var in diffeq:
 (var) += dt*(var)__tmp;

V
m

Time (s)
0 0.5 1 1.5 2 2.4

FIGURE 2 | Vectorization over time. A leaky integrate-and fi re neuron receiving a dynamic input current is simulated over 2.4 s (top row, black). The same model is
simultaneously simulated in three time slices (blue) with overlapping windows (dashed lines). Vertical dotted lines show the slice boundaries. The model is normalized
so that threshold is 1 and reset is 0. The overlap is used to solve the problem of choosing the initial condition and is discarded when the slices are merged.

2http://www.nvidia.com/object/cuda_home.html

http://www.nvidia.com/object/cuda_home.html

Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 2 | 5

Rossant et al. Fitting spiking models

In the case above this would become (after substitutions):

V__tmp = -V/tau;
V += dt*V__tmp;

This latter code snippet is valid C code that can be run on the GPU.
A similar technique is used for thresholding and reset behaviour.

These techniques mean that the huge speed improvements of the
GPU are available to users without them having to know anything
about GPU architectures and programming. Usage is transpar-
ent: on a system with a GPU present and the PyCUDA package
installed, the model fi tting code will automatically be run on the
GPU, otherwise it will run on the CPU.

DISTRIBUTED COMPUTING
As mentioned in the previous section, the model fi tting algorithm
presented here is close to “embarassingly parallel”, meaning that it can
relatively easily be distributed across multiple processors or comput-
ers. In fact, the algorithm consists of multiple iterations, each of which
is “embarassingly parallel” followed by a very simple computation
which is not. More precisely, the simulation of the neuron model,
the computation of the coincidence count, and most of the particle
swarm algorithm can be distributed across several processors without
needing communication between them. The only information that
needs to be communicated across processors is the set of best param-

eters found so far. With N particles and M processors, each processor
can independently work on N/M particles, communicating its own
best set of parameters to all the other processors only at the end of
each iteration. This minimal exchange of information means that the
work can be effi ciently distributed across several processors in a single
machine, or across multiple machines connected over a local network
or even over the internet. We use the standard Python multiprocess-
ing package to achieve this. See the section titled “Benchmark” and
Figure 6 for details on performance.

RESULTS
MODEL FITTING
We checked our algorithms on synthetic data and applied them to
intracellular in vitro recordings.

Synthetic data
We fi rst check that the optimization algorithms can fi t a spiking neu-
ron model to spike trains generated by the same model (Figure 3). We
simulated a leaky integrate-and-fi re neuron model with an adaptive
threshold (equations in Table 1) responding to a fl uctuating current
injection over 500 ms (Ornstein-Uhlenbeck process). As expected,
the optimization algorithm converged to a perfect fi t (Γ = 1 with
precision δ = 0.1 ms) after just a few iterations. We chose this small
value of δ to show that the fi t can be nearly perfect, as expected in

C
ur

re
nt

 (n
A

)
V

m

Time (s)
0 0.1 0.2 0.3 0.4 0.5

0.4

0.8

1.2

0

0

0.4

0.8

1.2

-0.4

A

B

FIGURE 3 | Fitting a leaky integrate-and-fi re model with adaptive

threshold. (A) A 500-ms fl uctuating current is injected into a leaky
 integrate-and-fi re neuron with adaptive threshold (R = 3.4 × 109 A−1,
τ = 25 ms, τt = 10 ms, α = 0.15, a = 0.1). The output spike train is used as the
target spike train for the fi tting procedure with the same model. (B) Results

from the optimization algorithm match the original parameters within 15%
error and the resulting trace (blue; threshold in green; the model is normalized
so that Vm has no unit) is close to the original trace (black), even though only
spike timings were used for fi tting. The gamma factor was 1.0 at precision
δ = 0.1 ms.

Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 2 | 6

Rossant et al. Fitting spiking models

this situation. The corresponding parameter values were very close
to the original ones (±15%), so that the original and optimized traces
match, even though only the spike trains were used for the fi tting
procedure (a perfect match of the traces can be obtained by using
more particles than we used for the fi gure, giving parameters values
within ±3%). However, this is not likely to be a general result: for
example, if the neuron model included after-spike effects (such as
refractoriness) and the interspike intervals were longer than these
effects (that is, at low fi ring rates), then the method could not recover
these properties since they would not be visible in the spike trains.

In vitro recordings
We then applied our fi tting procedure to in vitro intracellular record-
ings from the 2009 Quantitative Single-Neuron Modeling competi-
tion (challenges A and B). In these recordings, fl uctuating currents
were injected into the soma of cortical neurons (L5 regular spiking
pyramidal cell for challenge A and L5 fast spiking cell for challenge

B). Figure 4 shows the result of fi tting an integrate-and-fi re model
with adaptive threshold (equations in Table 1) to an intracellular
recording of an L5 fast spiking cell responding to in-vivo-like current
injection (Challenge B). For the 1 s sample shown in the fi gure, the
optimization algorithm converged in a few iterations towards a very
good fi tness value (Γ = 0.9 at precision δ = 2 ms).

Tables 1 and 2 report the results of fi tting four different spik-
ing models to the recordings in challenges A (regular spiking
cell) and B (fast spiking cell). Each challenge includes the record-
ings of several identical trials (same input current; 13 trials in
A and 9 trials in B), and we report the average and standard
deviation for all quantities (gamma factor and parameter values).
The recordings were divided into a training period (fi rst 10 s),
which was used to optimize the models, and a test period (last
10 s), which was used to calculate the gamma factors reported
in the tables. We used the following values for the optimization
algorithm: ω = 0.9, c

l
 = 0.1, c

g
 = 1.5. We used a local constant

Table 1 | Optimization results for Challenge A. Four neuron models were fi tted to the electrophysiological recordings of a regular spiking L5 pyramidal cell

responding to in-vivo-like current injection. There were 13 trials with the same input. The models were optimized on the part of the data between 17.5 seconds

and 28 seconds and the gamma factors were calculated between 28 and 38 seconds (δ = 4 ms). The value relative to the intrinsic reliability Γin is reported in

brackets. Parameter D is a time shift for output spikes (recorded spikes typically occur slightly after model spikes because they are reported at the time when

the membrane potential crosses 0 mV). We also reported rescaled versions of the parameter values (in brackets) so that they correspond to

electrophysiological quantities.

Model Gamma factor Parameters

ADAPTIVE IF

τdV / dt = RI −V − w 0.50 ± 0.05 (64%) R = 3.01 ± 0.64 /nA (76.0 ± 9.2 MΩ)

τwdw/dt = −w τ = 12.65 ± 2.57 ms

V
V
w w

>1
0

:
→
→ +

⎧
⎨
⎩ α

 τw = 100.24 ± 30.24 ms

 α = 0.36 ± 0.12 (9.1 ± 2.3 mV)

 D = 1.50 ± 0.46 ms

ADAPTIVE THRESHOLD IF

τdV /dt = RI − V 0.54 ± 0.05 (69%) R = 3.85 ± 1.13 /nA (56.5 ± 2.4 MΩ)

τtdVt /dt = aV − Vt τ = 12.44 ± 2.42 ms

V V
V
V Vt

t t

>1
0

+
→
→ +

⎧
⎨
⎩

:
α

 τt = 97.64 ± 20.71 ms

 a = 0.21 ± 0.19

 α = 0.52 ± 0.32 (7.2 ± 1.8 mV)

 D = 1.57 ± 0.42 ms

ADAPTIVE EXPONENTIAL IF

τdV/dt = RI − V − w + ΔT exp ((V − 1)/ΔT) 0.51 ± 0.04 (65%) R = 3.69 ± 1.37 /nA (66.0 ± 21.1 MΩ)

τwdw/dt = aV − w τ = 10.63 ± 1.82 ms

V
V V
w wT

r>1 2+
→
→ +

⎧
⎨
⎩

Δ :
α

 τw = 122.77 ± 26.18 ms

 a = 0.44 ± 0.79

 Vr = −1.01 ± 0.95 (−76.8 ± 13.7 mV)

 ΔT = 0.0 ± 0.0 (33.9 ± 33.3 µV)

 α = 0.50 ± 0.34 (8.8 ± 5.3 mV)

 D = 1.41 ± 0.32 ms

IZHIKEVICH

dV /dt = 0.04 V 2 + 5 V + 140 + RI − u 0.38 ± 0.05 (48%) R = 444 ± 772 /A

du/dt = a (bV − u) a = 0.03 ± 0.05

V
V c
u u d

> 30 :
→
→ +

⎧
⎨
⎩

 b = −1.02 ± 2.47

 c = −122 ± 68

 d = 299 ± 536

 D = 0.35 ± 1.20 ms

Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 2 | 7

Rossant et al. Fitting spiking models

value much smaller than the global one so that the evolution of
the algorithm is not dominated by the local term, which would
make optimization slower.

Since only the spike trains were used for fi tting, units were arbitrary
(e.g. reset is 0 and threshold is 1 for the adaptive IF model). To interpret
the parameter values, we also report scaled versions of the parameters
obtained by changing the voltage units of the model in a such a way
that the average and standard deviation of the model trace agree with
those of the intracellular recording. The mean µ

d
 and the standard

deviation σ
d
 of the experimental voltage trace were computed over

the test period after the action potentials were cut. Then, the mean µ
m

and the standard deviation σ

m
 of the voltage traces of the fi tted model

were also computed over the same test period. Finally, each parameter
value X of the model was affi ne-transformed in either of the follow-
ing two ways: X

transformed
 = σ

d
/σ

m
· (X − µ

m
) + µ

d
 (for parameter V

r
) or

X
transformed

 = σ
d
/σ

m
· X (for parameters α, Δ

T
, R).

Interestingly, for both challenges, best performance was achieved
by a simple model, the integrate-and-fi re model with adaptive
threshold: Γ = 0.54 ± 0.05 for challenge A and Γ = 0.76 ± 0.07 for
challenge B. The intrinsic reliability of the neurons can be defi ned
as the average gamma factor between trials (Γ

in
 = 0.78 for challenge

A and Γ
in

 = 0.74 for challenge B). Relative to the intrinsic reliability,

the performance was 69% and 102% respectively. The fact that
the performance on challenge B is greater than 100% probably
refl ects a drift in parameter values with successive trials, most likely
because the cell was damaged. Indeed, the performance was tested
on data that was not used for parameter fi tting, so it could not
refl ect overfi tting to noisy recordings but rather a systematic change
in neuron properties. Consistently with this explanation, in both
challenges the fi ring rate increased over successive trials (whereas
the input was exactly identical). This change in neuronal properties
was likely caused by dialysis of the cell by the patch electrode (the
intracellular medium is slowly replaced by the electrode solution)
or by cell damage.

A related model with an adaptive current instead of an adapta-
tive threshold performed similarly. The performance of the adaptive
exponential integrate-and-fi re model (Brette and Gerstner, 2005)
(AdEx), which includes a more realistic spike initiation current
(Fourcaud-Trocme et al., 2003), was not better. This surprising result
is explained by the fact that the optimized slope factor parameter (Δ

T
)

was very small, in fact almost 0 mV, meaning that spike initiation was
as sharp as in a standard integrate-and-fi re model. The Izhikevich
(2003) model, a two-variable model with the same qualitative proper-
ties as the AdEx model, performed poorly in comparison.

V
m

V
m

 (m
V

)
C

ur
re

nt
 (n

A
) 1.0

0.5

0

-0.5

-20

0

-40

-60

1

1.5

0.5

0
0 0.2 0.4 0.6 0.8 1.0

Time (s)

A

B

C

FIGURE 4 | Fitting a leaky integrate-and-fi re neuron with adaptive

threshold to electrophysiological recordings. (A) A fl uctuating in-vivo-like
current was injected intracellularly in the soma of a L5 fast spiking cell. (B) The

recorded spike train (black) is used to fi t an adaptive threshold integrate-and-fi re
model. (C) Voltage trace (blue, no unit) and time-varying threshold (green) of
optimized model. The gamma factor was 0.90 (precision δ = 2 ms).

Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 2 | 8

Rossant et al. Fitting spiking models

Table 2 | Optimization results for Challenge B. Four neuron models were

fi tted to the electro-physiological recordings of an L5 fast spiking cell

responding to in-vivo-like current injection. There were 9 trials with the same

input.

Model Gamma factor Parameters

ADAPTIVE IF

 0.77 ± 0.06 (104%) R = 2.25 ± 0.08 /nA

 (47.2 ± 3.4 MΩ)

 τ = 10.25 ± 1.33 ms

 τw = 7.53 ± 1.62 ms

 α = 1.47 ± 0.52

 (30.4 ± 9.7 mV)

 D = 1.79 ± 0.69 ms
ADAPTIVE THRESHOLD IF

 0.76 ± 0.07 (102%) R = 4.80 ± 1.69 /nA

 (59.9 ± 6.7 MΩ)

 τ = 22.09 ± 7.26 ms

 τt = 10.08 ± 2.77 ms

 a = 0.45 ± 0.21

 α = 1.39 ± 0.65

 (16.9 ± 7.2 mV)

 D = 1.95 ± 0.71 ms
ADAPTIVE EXPONENTIAL IF

 0.76 ± 0.05 (103%) R = 4.79 ± 2.49 /nA

 (58.9 ± 30.9 MΩ)

 τ = 22.41 ± 12.35 ms

 τw = 51.64 ± 96.44 ms

 a = 1.16 ± 1.12

 Vr =−2.00 ± 0.00

 (−84.9 ± 1.1 mV)

 ΔT = 0.0 ± 0.0

 (12.24 ± 0.34 µV)

 α = 1.00 ± 1.33

 (12.6 ± 16.5 mV)

 D = 1.63 ± 0.71 ms
IZHIKEVICH

 0.62 ± 0.08 (83%) R = 578 ± 387 /A

 a = 0.14 ± 0.10

 b = −3.09 ± 2.57

 c = −74.7 ± 75.0

 d = 1.56 × 103 ± 1.22 × 103

 D = 1.46 ± 1.35 ms

MODEL REDUCTION
Our model fi tting tools can also be used to reduce a complex
 conductance-based model to a simpler phenomenological one,
by fi tting the simple model to the spike train generated by the
complex model in response to a fl uctuating input. We show an
example of this technique in Figure 5 where a complex conduct-
ance-based model described in benchmark 3 of Brette et al. (2007)
is reduced to an adaptive exponential integrate-and-fi re model
(Brette and Gerstner, 2005). The complex model consists of a
membrane equation and three Hodgkin-Huxley-type differential
equations describing the dynamics of the spike generating sodium
channel (m and h) and of the potassium rectifi er channel (n).

In this example, the gamma factor was 0.79 at precision 0.5 ms.
This technique can in principle be applied to any pair of neuron
models.

BENCHMARK
To test the scaling performance across multiple processors, we used
a three machine cluster connected over a Windows network. Each
computer consisted of a quad-core 64 bit Intel i7 920 processor at
2.6 GHz, 6 GB RAM, and an NVIDIA GeForce GTX 295 graphics
card (which have two GPUs). The cluster as a whole then had 12
cores and 6 GPUs.

Performance scaled approximately linearly with the number of
processors, either with CPUs (Figure 6A) or GPUs (Figure 6B).
In the case of CPUs, performance was close to ideal (that is N
 processors performing N times faster than a single processor),
and was slightly lower than ideal with GPUs. With our relatively
inexpensive three machine cluster, we could achieve performance
approximately 300 times faster than with a single CPU, allowing us
to fi t models in hours which would previously have taken weeks.
A single GPU performed approximately 65× faster than a single
CPU (or around 16× faster than the four cores available on a single
machine in our cluster), and a dual-GPU GTX 295 card performed
around 108× faster than a single CPU (or around 27× faster than
the four CPUs alone).

DISCUSSION
We presented vectorized algorithms for fi tting arbitrary spiking
neuron models to electrophysiological data. These algorithms
can run in parallel on a graphics processing unit (GPU) or on
multiple cores. It appeared that the speed improved by a factor
of 50−80 times when the GPU was used for model simulations.
With three dual-GPU cards, the performance was about 300 times
faster than with one CPU, which makes it a cheap alternative to
clusters of PCs. The algorithms are included as a model fi tting
library for the Brian simulator (Goodman and Brette, 2009),
which is distributed under a free open-source license3. This
computational tool can be used by modellers in systems neu-
roscience, for example, to obtain empirically validated models
for their studies.

We chose to use the particle swarm algorithm for optimization,
but it can be easily replaced by any other global optimization algo-
rithm that uses simultaneous evaluations of different parameter
sets, such as genetic algorithms. Indeed, the optimization procedure
is defi ned at script level (in Python) and runs on the main processor.
The error criterion could also be modifi ed, for example to include
an error on the intracellular voltage trace, so that the model can
predict both spike times and voltage.

Other model fitting techniques have been previously
described by several authors, most of them based on maximum
likelihood (Paninski et al., 2004, 2007). Our initial motivation
for choosing a more direct approach based on general global
optimization methods was that it applies to arbitrary models,
including nonlinear ones, whereas maximum likelihood optimi-
zation is generally model-specific. Current maximum likelihood

3http://www.briansimulator.org

http://www.briansimulator.org

Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 2 | 9

Rossant et al. Fitting spiking models

Time (s)

V
m

V
m

 (m
V

)
C

ur
re

nt
 (n

A
)

40

0

-40

-80

6

4

2

0

0.4

0.2

0

-0.2

0 0.1 0.2 0.3 0.4 0.5

A

B

C

FIGURE 5 | Model reduction from a Hodgkin−Huxley model to an adaptive

exponential integrate-and-fi re model (AdEx). (A) A 500-ms fl uctuating current
is injected into a conductance-based model. (B) The output spike train is used to fi t

an AdEx model. (C) Voltage trace of the optimized AdEx model. The gamma factor
is 0.79 at precision 0.5 ms and the parameter values are τ = 12 ms, τw = 25 ms,
R = 7.0 × 109 A−1, VR = − 0.78, ΔT = 1.2, a = 0.079, α = 0 (normalized voltage units).

Num CPUs

S
pe

ed
up

 c
om

pa
re

d
to

 1
 C

P
U

2

2

4

4

6

6

8

8

10

10

12

12

A

Num GPUs

S
pe

ed
up

 c
om

pa
re

d
to

 1
 C

P
U

1 2 3 4 5 6
50

100

150

200

250

300

350

400B

FIGURE 6 | Speedup with multiple CPUs and GPUs. A fi tting task was
performed over 1-s-long electrophysiological data. (A) Speedup in the
simulation of 10 iterations with 400,000 particles as a function of the number
of cores, relative to the performance of a single CPU. We used different cluster
confi gurations using 1−12 cores spread among one up to three different

quad-core computers connected over a local Windows network. (B) Speedup
in the simulation of 10 iterations with 2,000,000 particles as a function of the
number of GPUs, relative to the performance of a single CPU (using the same
number of particles). GPUs were spread on up to three PCs with dual-GPU
cards (GTX 295).

techniques apply essentially to linear threshold models, which
constitute a large class of models but do not include, for exam-
ple, the AdEx model and Izhikevich model, which we could
evaluate with our algorithm. In Huys et al. (2006), a sophis-
ticated maximum likelihood method is presented to estimate
parameters of complex biophysical models, but many aspects

of the model must be known in advance, such as time constants
and channel properties (besides, the voltage trace is also used).
Another important difference is in the application of these tech-
niques. The motivation for maximum likelihood approaches is
to determine parameter values when there is substantial vari-
ability in the neural response to repeated presentations of the

Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 2 | 10

Rossant et al. Fitting spiking models

Our results on challenges A and B of the INCF Quantitative
Modeling competition confi rm that integrate-and-fi re models
with adaptation give good results in terms of prediction of cortical
spike trains. Interestingly, the adaptive exponential integrate-and-
fi re model (Brette and Gerstner, 2005) did not give better results
although spike initiation is more realistic (Badel et al., 2008). It
appears that the fi tting procedure yields a very small value for the
slope factor parameter Δ

T
, consistent with the fact that spikes are

sharp at the soma (Naundorf et al., 2006; McCormick et al., 2007).
The Izhikevich model also did not appear to fi t the data very well.
This could be because spike initiation is not sharp enough in this
model (Fourcaud-Trocme et al., 2003) or because it is based on the
quadratic model, which approximates the response of conductance-
based models to constant currents near threshold, while the recorded
neurons were driven by current fl uctuations.

Our technique can also be used to obtain simplifi ed phe-
nomenological models from complex conductance-based ones.
Although it primarily applies to neural responses to intracellular
current injection, it could in principle be applied also to extracel-
lularly recorded responses to time-varying stimuli (e.g. auditory
stimuli), if spike timing is reproducible enough. An interesting
extension, which could apply to the study of phase locking proper-
ties of auditory neurons, would be to predict the distribution of
spike timing using stochastic spiking models.

ACKNOWLEDGMENTS
This work was partially supported by the European Research
Council (ERC StG 240132).

Γ

0.0

1.0

0.8

0.6

0.4

0.2

0 125 250 375 500
Iterations

FIGURE 7 | Evolution of the fi tness values of particles during

optimization. The color-coded background shows the distribution of the
fi tness values (Γ) of the 10,000 particles in each of the 500 iterations of the
fi tting procedure for trial 3 of challenge B (darker means higher density). The
dotted line shows the gamma factor of the best particle. The neuron model
was the adaptive threshold IF model. The best gamma factor reaches a
plateau after 200 iterations but the other particles continue to evolve.

Proceedings of IEEE international
conference on neural networks,
Vol. 4. Piscataway, NJ, IEEE, pp.
1942−1948.

Klöckner, A., Pinto, N., Lee, Y., Catanzaro,
B., Ivanov, P., Fasih, A., Sarma, A. D.,
Nanongkai, D., Pandurangan, G.,
and Tetali, P. (2009). PyCUDA: GPU
run-time code generation for high-
 performance computing. Arxiv pre-
print arXiv:0911.3456.

Mainen, Z., and Sejnowski, T. (1995).
Reliability of spike timing in neocor-
tical neurons. Science 268, 1503.

McCormick, D. A., Shu, Y., and Yu, Y.
(2007). Neurophysiology: Hodgkin
and Huxley model-still stand-
ing? Nature 445, E1−E2; discussion
E2−E3.

Naundorf, B., Wolf, F., and Volgushev,
M. (2006). Unique features of action
potential initiation in cortical neurons.
Nature 440, 1060−1063.

Owens, J. D., Luebke, D., Govindaraju,
N., Harris, M., Kruger, J., Lefohn, A.
E., and Purcell, T. J. (2007). A survey
of general-purpose computation on
graphics hardware. Comput. Graph.
Forum 26, 80−113. Citeseer.

Paninski, L., Pillow, J., and Lewi, J.
(2007). Statistical models for neural
encoding, decoding, and optimal
stimulus design. Prog. Brain Res. 165,
493−507.

same stimulus, so that model fitting can only be well defined
in a probabilistic framework. Here, the goal was to determine
precise spike times in response to injected currents in intracel-
lular recordings, which are known to be close to deterministic
(Mainen and Sejnowski, 1995), so that probabilistic methods
might not be very appropriate.

REFERENCES
Badel, L., Lefort, S., Brette, R., Petersen, C.

C. H., Gerstner, W., and Richardson,
M. J. E. (2008). Dynamic I−V curves
are reliable predictors of naturalistic
pyramidal-neuron voltage traces. J.
Neurophysiol. 99, 656−666.

Brette, R. (2004). Dynamics of one-
dimensional spiking neuron models.
J. Math. Biol. 48, 38−56.

Brette, R., and Gerstner, W. (2005).
Adaptive exponential integrate-and-
fi re model as an effective description
of neuronal activity. J. Neurophysiol.
94, 3637−3642.

Brette, R., and Guigon, E. (2003).
Reliability of spike timing is a general
property of spiking model neurons.
Neural. Comput. 15, 279−308.

Brette, R., Rudolph, M., Carnevale, T.,
Hines, M., Beeman, D., Bower, J.
M., Diesmann, M., Morrison, A.,
Goodman, P. H., and Harris, F. C.
(2007). Simulation of networks of
spiking neurons: a review of tools
and strategies. J. Comput. Neurosci.
23, 349−398.

den Bergh, F. V. (2006). An Analysis of
Particle Swarm Optimizers. Ph. D.
Thesis, University of Pretoria, Pretoria.

Fourcaud-Trocme, N., Hansel, D., van
Vreeswijk, C., and Brunel, N. (2003).
How spike generation mechanisms
determine the neuronal response to

fluctuating inputs. J. Neurosci. 23,
11628−11640.

Gerstner, W., and Naud, R. (2009). How
good are neuron models? Science 326,
379−380.

Goldman, M. S., Golowasch, J., Marder,
E., and Abbott, L. F. (2001). Global
structure, robustness, and modula-
tion of neuronal models. J. Neurosci.
21, 5229−5238.

Goodman, D., and Brette, R. (2009). The
Brian simulator. Front. Neurosci. 3,
192−197.

Huys, Q. J. M., Ahrens, M. B., and
Paninski, L. (2006). Effi cient estima-
tion of detailed single-neuron models.
J. Neurophysiol. 96, 872−890.

Izhikevich, E. M. (2003). Simple model of
spiking neurons. IEEE Trans. Neural
Netw. 14, 1569−1572.

Jolivet, R., Kobayashi, R., Rauch, A., Naud,
R., Shinomoto, S., and Gerstner, W.
(2008). A benchmark test for a quan-
titative assessment of simple neuron
models. J. Neurosci. Methods 169,
417−424.

Jolivet, R., Lewis, T. J., and Gerstner,
W. (2004). Generalized integrate-
and-fi re models of neuronal activity
approximate spike trains of a detailed
model to a high degree of accuracy. J.
Neurophysiol. 92, 959−976.

Kennedy, J. and Eberhart, R. C. (1995).
Particle swarm optimization. In

Paninski, L., Pillow, J. W., and Simoncelli,
E. P. (2004). Maximum likelihood esti-
mation of a stochastic integrate-and-
fi re neural encoding model. Neural.
Comput. 16, 2533−2561.

Shi, Y. and Eberhart, R. (1998). Parameter
selection in particle swarm optimiza-
tion. Evol. Prog. VII, 591−600.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 17 December 2009; paper pend-
ing published: 12 January 2010; accepted:
02 February 2010; published online: 05
March 2010.
Citation: Rossant C, Goodman DFM,
Platkiewicz J and Brette R (2010)
Automatic fitting of spiking neuron
models to electrophysiological record-
ings. Front. Neuroinform. 4:2. doi:
10.3389/neuro.11.002.2010
Copyright © 2010 Rossant, Goodman,
Platkiewicz and Brette. This is an open-
access article subject to an exclusive license
agreement between the authors and the
Frontiers Research Foundation, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original authors and source are credited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

