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The complexity of the nervous system requires high-resolution microscopy to resolve the detailed 3D structure of nerve cells and supracel-
lular domains. The analysis of such imaging data to extract cellular surfaces and cell components often requires the combination of expert
human knowledge with carefully engineered software tools. In an effort to make better tools to assist humans in this endeavor, create a
more accessible and permanent record of their data, and to aid the process of constructing complex and detailed computational models,
we have created a core of formalized knowledge about the structure of the nervous system and have integrated that core into several soft-
ware applications. In this paper, we describe the structure and content of a formal ontology whose scope is the subcellular anatomy of the
nervous system (SAO), covering nerve cells, their parts, and interactions between these parts. Many applications of this ontology to image
annotation, content-based retrieval of structural data, and integration of shared data across scales and researchers are also described.
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INTRODUCTION
In neuroscience, scientifically relevant complexity occurs at every spatial
and temporal scale that is currently open to examination. Unfortunately,
our current complement of experimental and analytical techniques gener-
ally locks an investigation into a very limited dimensional range, leading
to a fragmented and incomplete view of nervous systems across scales.
This fundamental “multiscale problem” of neuroscience is, at its core, a
problem of information integration. One indication of the extreme diffi-
culty of information integration in the neurosciences is the conspicuous
lack of any widely practiced automated methods for integrating informa-
tion among major classes of neuroscientific data: structural, functional,
and behavioral. Many tools have been developed to provide infrastruc-
ture to organize and analyze brain data, resulting in large part from the
Human Brain Project, funded through the US National Institutes of Health
(Huerta et al., 1993; Koslow and Huerta, 1997). Such tools have included
databases for storing primary data (e.g., CCDB; Martone et al., 2003,
WebQTL; Wang et al., 2003, etc.), knowledge bases for derived informa-
tion (e.g., BAMS; Bota et al., 2005 and CoCoMac; Stephan et al., 2001),
tools for performing novel analyses of brain data and mining the literature
(e.g., Textpresso; Muller et al., 2004). However, the integration of diverse
types of information still occurs largely through the efforts of individu-
als who examine the data and construct the necessary bridges between
different data based on their knowledge of neuroscience.
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The grand challenge of neuroinformatics is the creation of systems
that seamlessly integrate data across spatial and temporal scales such
that information, for example, about white matter bundles derived from
diffusion tensor imaging can be analyzed in context with electrophys-
iological data recorded from the neurons whose axons make up the
bundles. The difficulties in performing this type of integration from data
alone is illustrated in Figure 1, which shows an intracellularly injected
medium spiny neuron from the mouse nucleus accumbens, imaged using
correlated light and electron microscopy. At each level, different types
of visualization and analytical tools are applied to extract meaningful
content, for example, the branching structure of the dendritic tree,
the surface area of dendritic spines. The knowledge required to richly
inter-relate these different data representations and analytical results,
however, largely resides in the domain scientists with specific, detailed
understanding of the links between the various data types and the
biological objects from which they derive.

In this paper, we describe specific steps toward creating generic infor-
mation bridges by constructing a formal ontology designed to provide the
knowledge necessary to integrate data acquired across multiple scales in
structural neuroscience. An ontology is a formal representation of knowl-
edge in a domain (Gruber, 1993). It defines the inter-related set of concepts
representing a knowledge area and the common terms used to describe
them, for example, “neuron is a cell” and “cell has part plasma mem-
brane.” A critical aspect of modern ontologies is the encoding of these
entities and relationships in a standard form where the semantics of
the domain are machine interpretable using open source tools and soft-
ware libraries. Ontologies are used by people, databases, and applications
to share information in a semantically precise way within and across
particular domains (Gruber, 1993).

The ontology for subcellular anatomy (SAO) focuses on the spatial
scale that has come to be known as the “mesoscale,” roughly defined as
the dimensional range encompassing macromolecular complexes, sub-
cellular structures up to the level of cells and cellular networks. The SAO
describes neurons, glia, their parts, and how these parts come together
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Figure 1. Multiple representations of the same medium spiny neuron taken from the CCDB. In (A), a light-level fill of the neuron. The yellow box shows the
portion of the dendritic branch shown in (C). In (B), the Neurolucida segmentation of that neuron. In (C), the EM image of the portion of the dendrite featured in
(A). In (D), the 3D reconstruction of the dendrite from (C) after segmentation.

to create the dense feltwork of processes that characterizes the nervous
system. The SAO was constructed through the Cell Centered Database
(CCDB) project (Martone et al., 2002, 2003, 2007), an on-line resource for
disseminating data derived from light and electron microscopic imaging.
The CCDB project, as its name implies, takes the view that the cell should
provide the rallying point for information integration in biological tissues.
Thus, the SAO starts with the cell and models how cell parts, including
molecules, fit into coarser levels of anatomy. This view contrasts with the
approaches of many ontologies that start at the level of gross anatomy and
traverse down to the level of the cell, for example, the Foundational Model
of Anatomy (FMA) (Rosse and Mejino, 2003) and BAMS (Bota et al., 2005).

The SAO was built as a reference ontology with the ultimate goal of
describing data, principally derived from light and electron microscopy,
through the use of multiple annotation applications. It is built using the Web
Ontology Language (OWL; http://www.w3.org/TR/owl-features/) a W3C
open standard for ontologies. Version 1.0 of the SAO was presented in Fong
et al. (2007), which concentrated on the use of OWL and the associated
tools for its construction. In this paper, we present an updated version (1.2)

of the SAO, provide considerably greater detail on the design principles
from a neuroscience point of view, describe new examples of reasoning,
and describe new examples of data that are marked up using the SAO.
We also briefly illustrate how it is being used as the semantic “glue” that
binds together an environment of tools capable of annotating disparate
types of structural data from imaging studies of the nervous system.

MATERIALS AND METHODS
The primary source for subcellular anatomy used for the construction of
the SAO was Peters et al. (1991) The Fine Structure of the Nervous Sys-
tem Ed 2, the standard reference for neuronal ultrastructure. Additions
and modifications to this framework were also made from more recent
literature. The source of each entity in the ontology is indicated as an
annotation to the concept. As a way to keep epistemological distinctions
clear, we adopted as an organizing framework the Basic Formal Ontology
version 1.0 (BFO 1.0; Grenon, 2003) (Figure 2). The structure/function
dichotomy is expressed in the BFO through the division of all possible
entities into continuants (objects, qualities, sites, etc.) and occurrents
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Figure 2. High level class structure of the SAO. The BFO entities are shown in (A) and in the green and pink boxes in (B). Spatial regions, subclasses of
occurrents, and subclasses of realizable entity have been omitted because the SAO does not currently use them. SAO classes that are under the BFO hierarchy
are shown in blue in (B).
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(dynamic processes, temporal intervals). A continuant is an entity in the
world that endures through time (Grenon et al., 2004). Examples of con-
tinuants are basic cell structures such as mitochondria and nuclei, as
well as lumens and membranes. On the other hand, an occurrent refers
to a process, event, activity, or change. Examples include the cell cycle
phases, cell secretion, and motility. The BFO further divides continuants
into dependent and independent continuants. An independent continuant
is an entity that exists irrespective of its relationship to anything else, for
example, cell, organism. A dependent continuant is an entity that inheres
in an independent continuant, for example, color, age.

The SAO is available for download and browsing at
(http://ccdb.ucsd.edu/SAO) and has been incorporated into the BioPortal1,
a resource maintained by the National Center for Biomedical Ontolo-
gies (http://www.bioontology.org/ncbo/faces/index.xhtml). The SAO is
expressed in OWL DL. OWL is a vocabulary extension of the Resource
Description Framework (RDF) and is derived from the DAML + OIL OWL.
Together with RDF and other components, these tools make up the
growing semantic web community (Neumann and Prusak, 2007). One
of the goals of the semantic web is to create tools for achieving highly
interoperable data resources. The SAO was composed using Protege
version 3, an open source authoring tool for OWL ontologies (Noy et al.,
2001). The OWL standard is designed as a kind of description logic, which
means that an application domain described in OWL is automatically
described using formal logic-based semantics. One benefit of this is that
tools like Protege and additional reasoning tools such as Pellet (Evren
et al., 2005) and Swoop (Kalyanpur et al., 2005) can identify statements
that are logically inconsistent. It also supports machine-based inferencing
to generate new knowledge and to provide classification. The other major
benefit is the machine-readability of OWL, which can be expressed as an
XML document. This means that arbitrary software applications can take
advantage of the knowledge and data that is encoded in an ontology as
their underlying data model. It also means that ontologies written in OWL
can be automatically imported and cross-linked by other ontologies.

An OWL ontology contains a series of classes, properties, and annota-
tions. The classes are simply the entities that are organized in a top-down
hierarchical graph structure (Figure 2A). Classes contain subclasses, for
example, neuron and glia are subclasses of nerve cell. Subclasses are
related to superclasses through the is a relationship, for example, neuron
is a nerve cell. Properties are parts or attributes a class, for example,
nucleus is a part of a cell; age is an attribute of organism. Properties are
typically related to a set of classes through some form of “has a” rela-
tionship, for example, cell has part nucleus. Properties may be related
to other properties through inverse, symmetric or transitive relationships,
for example, is part of is the inverse of has part. Annotations are used to
record metadata about the entity, for example, definitions, abbreviations,
synonyms, sources of data, comments, and references. OWL allows for
the placing of “restrictions” on classes, defining necessary and sufficient
conditions for classification, and providing constraints on what properties
need to be filled in for a given class, for example, (Neuron has regional part
some Regional Part of Neuron) is a restriction that requires that a Neuron
be related with the property has regional part to the class Regional Part of
Neuron.

In the OWL language, all properties are first-class entities, meaning
they exist independently of classes they are used to describe. Conse-
quently, whether using properties as attributes, or as relations, the same
underlying logical mechanism is invoked. Therefore, OWL properties do
not have the facility to distinguish between structural properties (i.e.,
attributes) and relationships between classes (i.e., relations). Instead,
structural properties are defined through the use of OWL restrictions,
which we have used throughout the SAO. These can be seen in Figure 3,
where arrows with blue text describe relationships enforced by restric-

1 http://www.bioontology.org/ ncbo/faces/pages/ontology details.xhtml? [ontology display name=
Subcellular%20Anatomy%20Ontology%20(SAO)].

tions, where arrows with black text describe relationships defined only for
this particular instance.

In constructing the SAO, we have tried to adhere to best practices
recommended by the OBO Foundry project (Smith et al., 2005). These
practices include unique identifiers for each concept, re-use of existing
ontologies where possible, provision of human-readable definitions that
are consistent with the machine interpretable definitions encoded within
the ontology. The SAO follows the principle of single inheritance as recom-
mended by Smith et al. (2005). Single inheritance results in a is a hierarchy
that is a simple tree, where children have only one parent. Through the
assignation of the part of relationships, we utilize some of the features of
OWL to cross-cut the is a hierarchy such that new hierarchies can be gen-
erated. Examples of this concept will be illustrated in the Results section.

For the SAO, we incorporated several existing ontologies using the
owl:imports mechanism of OWL within Protégé 3. In this way, we do not
reinvent content that is already substantially covered in other ontologies.
The import mechanism allows wholesale incorporation of existing ontolo-
gies into the SAO while maintaining the integrity and source of the original
ontology. In addition to the BFO, we imported an extensive set of annota-
tion properties from the BIRNLex (http://nbirn.net/birnlex). Entities may be
added to a merged resource, but entities may not be deleted or modified
nor the class structure changed. Additional resources of relevance, for
example, the cell component hierarchy from Gene Ontology, that were not
encoded in OWL, were imported manually and cross referenced to the
appropriate identifiers.

RESULTS
Structure of the SAO
Classes. The high level structure of the SAO is illustrated in Figure 2B.
The main classes of biological independent continuants within SAO are
Cell, Regional Part of Cell, Cell Component, Extracellular Structure, and
Molecule. The current version primarily covers structural entities that
would be observed within the adult mammalian nervous system. Each
class is assigned a unique identifier. We utilize the class identifier as the
class name, but also assign a commonly used human understandable
label to each class, for example, sao1224657022 corresponds to the
label “Nerve Cell”.

Cell. We have included a set of cell types found in the nervous system
(Figure S1) that include neurons and glial cells, as well as other classes
of cells that one would encounter in structural studies of the nervous
system, for example, vascular cells, endothelial cells, muscle cells, and
macrophages. The class “Nerve Cell” contains neurons and glia, that is,
cells that are derived from the neuroepithelium. We also include neu-
ronal stem cell under this category. The SAO lists neurons (Figure S2)
according to common names reflecting a mixture of classification criteria,
for example, morphology (“pyramidal neuron”), proper names (“Purk-
inje neuron”). The SAO utilizes these names merely as labels that were
assigned to cells and does not further classify cell types into subtrees
based on these names, except in instances where the hierarchy is fairly
straightforward, for example, layer 3 cortical pyramidal neuron is a cor-
tical pyramidal neuron. The name chosen is meant to have meaning to a
neuroscientist and not express the importance of a particular criterion for
classification. In other words, we chose the label “layer 3 cortical pyra-
midal neuron” because we believe that there is a class of cell defined
by a set of properties, not because we think its location in layer 3 is its
defining characteristic. We deliberately chose to keep the cell classifica-
tion flat because the SAO can be used to classify neurons along multiple
dimensions according to their specific properties (see Subsection User-
Defined Reclassification and Query). Rather, we have focused on providing
a comprehensive model of subcellular parts and how these parts relate
to the parent cell. As we discuss in a later section, we utilize the rela-
tionships between cell parts and features to infer hierarchies as they are
required. The SAO organizes glial cell types (Figure S3) from a morpholog-
ical perspective rather than from a strict lineage perspective. Macroglial
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Figure 3. Diagram of a Node of Ranvier instance description in the SAO. The boxes indicate instances of classes that are related to one another as a
description of a particular instance of a Node of Ranvier. The blue text indicates relationships that are enforced between classes through the use of OWL
restrictions, while the black text indicates relationships defined for this instance alone.

cells include astrocytes, ependymoglial cells, oligodendrocytes, and NG2
cells, according to classifications outlined in recent literature, for example,
Reichenbach and Wolberg (2005). The reference from which a particular
entity was drawn is included as an annotation property for that entity.

The SAO does not aim to provide a comprehensive list of nerve cells
as this domain is covered in other resources, for example, BAMS (Bota
et al., 2005) and the Cell Type Ontology (Bard et al., 2005). Because the
SAO is meant to be applied to data, we anticipate that users will add cell
types from these resources to the SAO as they are encountered.

Part of cell. The SAO comprises two main classes of cell parts, following
the structure of the FMA: regional part and component part. Regional part
of cell is elaborated under the BFO concept Fiat Object Part. A fiat object
part is a part of an object that possesses at least one boundary where there
is no obvious physical discontinuity or landmark structure. For example,
the transition between a dendrite and the cell soma has no clear boundary.
Regional parts of neurons include processes, such as dendrites and axons,
the cell soma and protrusions such as dendritic spines. Regional part of glia
include the cell soma and glial processes such as astrocytic endfeet and
myelinating processes. Each of these regional parts may in turn be further
subdivided into finer parcellations. For example, dendrites are divided
into trunk, that is, the primary dendrite emanating from the cell somata,
branches, and terminal specializations. Component parts are considered
to be independent objects and represent the building blocks common to

all cells, for example, plasma membrane, mitochondrion. Components
are largely drawn from the Gene Ontology cell component hierarchy (Gene
Ontology Consortium, 2002), with additional neuron-specific parts such
as post-synaptic density added when necessary.

Molecules. Macromolecules are also elaborated within SAO under the
independent continuant class. Just as with cell types, the SAO does not
contain an exhaustive list of macromolecules, because we anticipate that
these entities are covered in other resources. As molecules are encoun-
tered in biological data, they may be added to the SAO. Because the SAO
is designed for annotation of data, we include separate entities for the
RNA, DNA, and protein forms of a molecular entity. In this way, users can
capture the target of a labeling study according to the molecular species
localized and assign the species to the correct subcellular compartment.

Properties. We have devised three major groups of properties in the SAO:
part of, morphological and spatial relationships, again largely following
the model of the FMA. Regional parts are assigned to each cell class
using restrictions, for example, neurons may only have neuronal regional
parts. The geometrical relationships among cell parts are specified by
relationships such as continuous with, for example, dendrites are contin-
uous with the cell somata; dendritic spines are continuous with dendrites.
Thus, each regional part is assumed to belong to a parent cell. Although
some properties are assigned at the level of cell class, for example, mor-
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phological type, most are assigned at the level of cell part. In this way, cell
components and macromolecules are assigned to the particular part of the
nerve cell in which they are found. Similarly, because nerve cells are large
and may span many brain regions, the property has anatomical location,
designed to situate the cell within a regional part of the nervous system,
is assigned separately to each part of the cell. The SAO thus differs from
most anatomical ontologies, for example, BAMS (Bota et al., 2005) where
anatomical location is assigned at the level of cell class.

We have employed “restrictions” within OWL to associate regional
parts with the appropriate cell class. Thus, a neuron may only have regional
parts of a neuron; an astrocyte may only have regional parts of an astrocyte.
In contrast, component parts may be found in any cell. Although certain
neuronal classes are distinguished by features such as a characteristic
number of dendrites, the presence of spines or a myelinated axon, we have
largely avoided creating many restrictions along these lines. Unlike gross
anatomy, we usually have very few examples of a given class from which
to infer these types of rules and there tends to be considerable variation
within and across species of these parameters. We therefore have chosen
to create a fairly generic model of a neuron in the SAO which can be used
to describe individual instances of neuronal cell classes in a standard way.

The SAO places molecules within their cellular contexts through the
has molecular constituent property and its inverse is molecular constituent
of. This property is defined as a special type of has part. Most of these
molecules will be localized using techniques such as immunocytochem-
istry and in situ hybridization. Molecules may be assigned to any aspect
of the cell, both regional and component parts, and at whatever level of
granularity can be determined from the technique. An exception to this
rule is the assignment of neurotransmitter. Because neurotransmitter has
traditionally been one of the defining properties of a neuron to most neu-
roscientists, we included the property has neurotransmitter as a special
type of has molecular constituent and assigned it at the level of cell class.
In theory, we should be able to derive the neurotransmitter from a consid-
eration of the types of molecules located within the synaptic region, but
because techniques such as immunocytochemistry often determine neu-
rotransmitter indirectly, for example, through the localization of a synthetic
or degradative enzyme for a neurotransmitter, and because determination
of a neurotransmitter usually involves additional physiological or pharma-
cological criteria, we decided to assign this as a simple property for now.

Through the properties has anatomical location, the SAO situates cells
and parts of cells into higher order brain regions. The SAO divides anatom-
ical localization into three categories: has general anatomical location; has
specific anatomical location; has atlas location. General anatomical loca-
tion is assigned to the level of the cell class and is meant to encode the
generally known location of a cell class. This property again was included
for expediency, because neuroscientists are so used to naming individual
cells as parts of anatomical regions, even though only the cell soma may
be located there. The level of specification may be fairly coarse in this
case, for example, Purkinje cell has general anatomical location cerebel-
lar cortex. Specific anatomical location is meant to be assigned at the
instance level and is intended to be assigned at as fine a level of gran-
ularity as possible, for example, my Purkinje cell dendrite has specific
anatomical location outer third of cerebellar molecular layer. If known,
anatomical location can be recorded as a set of atlas coordinates through
the has atlas anatomical location property. This property type contains the
atlas referenced, the coordinates, and the reference point from which the
coordinates are derived, for example, bregma. Currently, the SAO assigns
anatomical location in the form of free text. We are in the process of chang-
ing the anatomical location to an object property that is drawn from the
BIRNLex anatomical ontology, which in turn draws its anatomical entities
largely from the Neuronames hierarchy (Dubach and Bowden, 2002).

Supracellular structures. One of the biggest challenges in construct-
ing the SAO was to provide the specification of supracellular entities like
the Node of Ranvier and the synapse. Although these entities are treated
by other ontologies (e.g., Zhang et al., 2007) as if they are independent

entities, in fact neither of these objects exist independently within com-
plex tissue. Rather, they represent sites where certain configurations of
subcellular objects are found (e.g., neuropil, synapses, glomeruli, and the
Node of Ranvier) and where certain functions are presumed to occur. Thus,
although in preliminary versions of the SAO, we classified synapses and
Nodes as objects, starting in v1.0 we utilized the structure of the BFO
to classify supracellular domains through the object aggregate and site
classes.

An object aggregate in BFO 1.0 is defined as “an independent con-
tinuant that is a mereological sum of separate objects and possesses
non-connected boundaries. Examples: a heap of stones, a group of com-
muters on the subway, a collection of random bacteria, a flock of geese,
the patients in a hospital.” A site is defined as “an independent continuant
consisting of a characteristic spatial shape in relation to some arrange-
ment of other continuants and of the medium which is enclosed in whole
or in part by this characteristic spatial shape. Sites are entities that can
be occupied by other continuants.” The BFO further clarifies sites in this
way: “In BFO, ‘site’ allows for a so-called relational view of space which is
different from the view corresponding to the class ‘spatial region.’ Space
and ‘spatial region’ entities are entities in their own rights which exist
independently of any entities which can be located at them. This view of
space is sometimes called ‘absolutist’ or ‘the container view.’ In BFO, the
class ‘site’ allows for a so-called relational view of space, that is to say, a
view according to which spatiality is a matter of relative location between
entities and not a matter of being tied to space. The bridge between these
two views is secured through the fact that while instances of ‘site’ are not
‘spatial region’ entities, they are nevertheless spatial entities.” (BFO 1.1;
http://www.ifomis.org/bfo/1.1).

We considered supracellular domains as object aggregates because
they represent a somewhat ad hoc grouping of cell parts into a higher order
structures. However, many of these ad hoc groupings are given special
designations because they are believed to be the locations at which a
particular function occurs. For example, the Node of Ranvier is the site
of action potential propagation down the axon; the synapse is the site at
which neurotransmission occurs. The location of that function is inferred
because of the presence of one of more molecules or cell components
that have been demonstrated to be involved in the expression of these
dynamic processes. Figure 3 shows the SAO structure for describing the
Node of Ranvier from the central nervous system. We define the Node of
Ranvier as a site on the axon in the gap between two segments of myelin.
Neuroscientists have identified different compartments of the node based
on the locations of certain structural configurations and molecules such as
ion channels. We thus constructed a set of entities, grouped under “Node
Related Sites,” utilizing the parcellation described in Sosinsky et al. (2005)
to describe the different sites, the cellular objects located at each site
and the spatial relationships among them. Note the difference between
“Internode” (transitively a subclass of “Site”) and “Internode Axon” (tran-
sitively a subclass of “FiatObjectPart”). “Internode” is not the parent class
of “Internode Axon,” because they refer to distinct entities in the axon.
The distinction between the two reflects the difference between material
and location. If we were to ask “what is the material located at the Intern-
ode site?” the answer would be not only “the Internode axon,” but would
also include compact myelin, protein channels and other macromolecules.
Conversely, if we were to ask “where is the Internode Axon?” in the sense
of asking where the material substance of this regional part of an axon is
located, the answer would be, “at the site called the Internode.” Similarly,
asking “where is there both compact myelin and a regional part of an
axon?” would also give the answer, “at the site called the Internode.” In
this way, the SAO can provide a very precise specification of the different
macromolecules and provides a formal basis for creating rules by which
a structure can be recognized.

The synapse is modeled using the object aggregate and site classes
(Figure 4). We created an aggregate object consisting of a pre-synaptic
part, a post-synaptic part, and a junctional part, similar to the Synapse
Ontology of Zhang et al. (2007) and then localize them to the synaptic site.
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Each of these parts have cell components, for example, synaptic vesicles,
located within them that define the extents of these parts, that is, the
pre-synaptic part is the part of the presynaptic structure (axon terminal,
dendrite, or soma) containing synaptic vesicles. In our earlier versions of
the SAO, which classified the synapse as a single material entity rather
than a site, we encountered the problem that our designation of cellular
structures as pre- or post-synaptic provided no way to distinguish the
part that participated in the synaptic contact from the whole structure.
When we say that the neuron soma is the post-synaptic structure, we are
usually saying is that there is a contact on a part of the cell body. Through
the relationships encoded in the SAO, we can restrict the definition of the
synapse to that part of the cellular structure where certain structures, for
example, synaptic vesicles, or molecules are localized.

Anatomical qualities. Version 1.2 of the SAO has included a more exten-
sive list of morphological qualities under the dependent continuant class
that are used to modify objects within the SAO (Figure S4). Generic mor-
phological qualifiers such as “round” or “spherical” are imported into SAO
through the Phenotype and Trait Ontology (Gkoutos et al., 2005). However,
we included a set of qualities that were specific for subcellular anatomy, for
example, spine shapes (mushroom, thin, stubby), nuclear shape (round,
lobulated, indented), and cell soma shape (pyramidal, fusiform). We
elected in most cases not to precoordinate these terms with the indepen-
dent continuants they describe, because these qualities can be assigned at
the time of annotation. By pre coordination, we mean the creation of a set
of independent continuants which incorporate the qualifier, for example,
mushroom-shaped spine; lobulated nucleus. Precoordination was used
for morphological classes that required unique identification like spine
classes, where the designation of mushroom shape confers a set of unique
properties to that class. We chose not to precoordinate when the qualifier
was considered descriptive of an instance and not necessarily indicative
of a member of a distinct class. In these cases, we apply the qualifier to
the instance, for example, instance of nucleus with morphological quality
“indented” at the time of annotation. In this way, we do not have to gen-
erate large numbers of classes that differ on what might be a superficial
detail. Additional qualities that are assigned to each object are morphome-
tric quantities such as length, surface area, etc., orientation, and polarity.

Annotation properties. Annotation properties contain information about
the ontology entities. We imported the annotation properties from the
BIRNLex, a lexicon developed for the Biomedical Informatics Research

Network (BIRN) project (www.nbirn.net/birnlex). These properties cover
lexical entities such as definitions, synonyms, alternative spellings, and
the curation status of each entity. The label assigned to the class
name is also an annotation property. The BIRNLex, in turn, imported
many entities from the Simple Knowledge Organization System (SKOS;
http://www.w3.org/2004/02/skos/), a set of RDF properties and classes
for describing the entities in a knowledge resource.

The definition property provides a human-readable definition for each
entity in the SAO. We believe that such definitions are critical for human
annotators to reference when using ontology class terms to describe data,
because the equivalence between the descriptions of objects observed in
an investigation and the ontology elements provides the ontology with
its semantic power. Thus, a human must clearly understand the way the
term is defined in the ontology in order to apply it. Because of the some-
what artificial and complicated structure imposed on some entities (see
Figures 3 and 4), the definition cannot be easily extrapolated by a human
from the structure of the ontology itself. Thus, following the recommen-
dations of the OBO Foundry, we provide a human-readable definition in
the form of A is a type of B which exhibits C. A is a B provides the
location of the entity within the class hierarchy, for example, A protoplas-
mic astrocyte is a type of astrocyte, translates easily into “protoplasmic
astrocyte” is a “astrocyte” in the SAO. “Which exhibits C” provides the
extensional property or properties differentiating the entity from others
in a class, for example, a protoplasmic astrocyte is a type of astrocyte
which is characterized by many fine processes and relatively few inter-
mediate filaments. From this definition, the property has regional part
process and has component intermediate filament may be inferred. The
goal is to provide a human-readable definition that is consistent with the
machine-processable definition encoded in the ontology.

User-defined reclassification and query
To illustrate how properties in OWL can be used to infer additional hierar-
chies from the SAO, we constructed some OWL classes which reclassify
the neuron cell types based on their properties assigned by the SAO. We
classified neurons based on neurotransmitter, morphological type, or the
presence of spines simply by defining using OWL and Protégé that these
categories ought to include any cell which had the main property of that
category (e.g., that the neuron was known to use glutamate or GABA as a
neurotransmitter, etc). After defining these categories, we used the open
source ontology reasoner Pellet (Sirin et al., 2007) to transform the flat

Figure 4. Diagram of a chemical synapse instance description in SAO. Sites are indicated by green backgrounds. The boxes indicate instances of classes
that are related to one another as a description of a particular instance of a chemical synapse.
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version of the SAO neuron type hierarchy in Figure 5A into the inferred
hierarchy in Figure 5B. The inferred hierarchy demonstrates that a cell
like the a Medium Spiny cell is both spiny and GABAergic while a Dentate
Gyrus granule cell can be classified as spiny, glutamatergic, and granule
at the same time. Any arbitrary reclassification may be performed using
the combinations of properties that suits the purpose of the user. Since the
parent-child (is-a) relationships of the inferred hierarchy are not written
back to the ontology, this allows us to maintain a hierarchy with single
parents in the authored version of the ontology. However, the classes of
the inferred hierarchy, Spiny Cell, Glutamatergic Neuron, Granule Cell, and
GABAergic Neuron are implicitly embedded in the authored ontology as
children of the class Neuron. These classes use OWL restrictions to define
the kinds of children that it must logically have, and thus implicitly allows
cells to exist in multiple inferred categories.

SAO as semantic “glue”
In order to use the standard names of the SAO to annotate images in
different data formats, the SAO is itself used as a data exchange format
between three image annotation software applications. To apply the ontol-
ogy to actual data, we have incorporated annotation with the SAO into our
routine segmentation tools for light and electron microscopy. We have
created a programmatic interface to the OWL ontology that may be called
by Jinx, our 3D segmentation tool for electron tomography data. Through
Jinx, users describe the objects contained in electron microscopic vol-
umes of neural tissue as instances of the SAO, rather than as a set of
user-defined objects with no relationship among them. The application

of SAO captures each object and allows the definition of related objects.
Instances of the SAO are then stored in a large instance store, which we
call the Cellular Knowledge Base (Fong et al., 2007), where they can be
queried (Chen et al., 2006). The data files used to generate the instances
are stored in the CCDB which tracks their experimental and data prove-
nance. We are in the process of incorporating SAO into additional analysis
tools for analyzing neuronal branching patterns and for annotation of spa-
tially varying signals using our GIS-based brain atlas, the SMART Atlas
(Martone et al., 2007b).

The SAO and Cellular Knowledge Base architecture enable us to
integrate these different data types through the shared semantic rep-
resentation of biologically significant elements. For example, the image
of a dendritic tree generated with two-photon fluorescent microscopy
(Figure 1A), is annotated as an instance of sao:Dendritic Tree, which is
part of medium spiny neuron, and has part dendrite. The instance of den-
drite has regional part dendritic segment. This same instance of dendritic
segment is visible in the correlated electron microscopic volume of the
same medium spiny neuron (Figure 1C), where we can further assign has
regional part Dendritic Spine to this dendrite. An algorithm with access
to the SAO infer that the dendritic spine is part of the dendritic tree,
and apply properties derived from the electron tomography study to that
acquired from the light microscopic imaging. Without this common inter-
lingua and the codified knowledge explicitly declaring the shared semantic
context, programmatic combination and cross query of these images and
data types is much more difficult and requires customized algorithms to
encode the semantic information.

Figure 5. Inferred hierarchies using OWL. On the left, a subset of the hierarchy under the Neuron class prior to inference. On the right, the automatic
reclassification of that subset under four user-defined groupings, Glutamatergic Neuron, GABAergic Neuron, Spiny Cell, Granule Cell, based on the properties
of the cells alone.
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By structuring the SAO in OWL, we have made its encoded knowl-
edge available to OWL reasoners and RDF query engines. Consequently,
we use instances stored in the Cellular Knowledge Base and the knowl-
edge encoded in the ontology to determine what molecular constituents
are found in the Node of Ranvier, and which sites on the Node are they
respectively found in. We can also query about the glial cell types asso-
ciated with the Node, and how the parts of the glial cells relate to the
different parts of the Node.

DISCUSSION
We created an OWL ontology representing the subcellular anatomy of the
nervous system to provide the necessary scaffold for integrating molecular
and anatomical data through accurate description of mesoscale anatomy.
By codifying it in OWL, we have enabled algorithmic query and analy-
sis of that knowledge. Moreover, we have enabled the use of formalized
knowledge as a standard for making connections between data formats,
making connections between other ontologies, and as a data exchange
format for image annotation tools. This scaffold is amenable both to tool
development and to semantically driven information exchange across the
field. It also provides individual researchers a means to perform reasoner-
based quality control and inferential analysis of annotated neuroimages.
Applying formal semantic representation techniques to neuroanatomical
structure has been preliminarily addressed in the macroscopic domain
(Martin et al., 2001; Mechouche et al., 2006); little exists in the meso-
scopic neuroanatomical domain as yet. A Synapse Ontology was recently
constructed (Zhang et al., 2007), but it does not situate synapses in their
cellular and tissue contexts, nor is it built on top of community-shared foun-
dational ontologies. Our motivation for creating the SAO was to provide the
necessary tools for describing the types of subcellular and supracellular
entities located in the dimensional range now termed the mesoscale. The
SAO is designed as a reference ontology, defined by Brinkley et al. (2006)
in the following way: “Unlike application ontologies, reference ontolo-
gies are not designed for any specific application, but are intended to be
re-used in multiple application contexts [. . .] Reference ontologies are
designed according to strict ontological principles, whereas application
ontologies are designed according to the viewpoint of an end-user in a
particular domain.” We elected to tackle the more difficult task of cre-
ating a reference ontology with formal semantics, because we believe
that such resources are needed to build models of mesoscale structures
that combine information from multiple domains and to be able to uti-
lize information obtained at the mesoscale at coarser and finer scales
of granularity. Through application of the ontology, researchers can work
in a narrow dimensional range, but their observations are immediately
linked across scales. For example, a researcher segmenting a recon-
struction derived from electron tomography may make the observation
that an endoplasmic reticulum of a dendritic spine from a Purkinje cells
expresses the IP3 receptor. Through the SAO, the following inferences
can be made: There exists a Purkinje cell dendrite that expresses the IP3
receptor; the cell class Purkinje cell expresses the IP3 receptor; the cere-
bellar cortex expresses the IP3 receptor; and the cerebellum expresses
the IP3 receptor.

The SAO is meant to describe structure, not function nor dynamic pro-
cesses, following the parcellation of biomedical reality established by the
BFO. However, although we try to adhere as much as possible to this dis-
tinction within the formal class structure of the ontology, as can be seen
by the labels assigned to SAO classes, many labels that are applied to
our SAO entities have a functional flavor to them, for example, “chemical
synapse”. Where possible, we tried to remove entities that mixed a struc-
ture with a function, for example, myelinating oligodendrocyte or with a
physiological state, for example, activated microglia. However, we also felt
in some cases that it was important to assign the labels that are commonly
employed by the community. Although these labels appear in the figures
and text provided in this paper, SAO classes are actually identified using
semantically neutral numeric labels (e.g., SAO class sao1507566336 has

the preferred label Post-synaptic Component). The human-readable pre-
ferred label is assigned as an annotation property, as are a variety of
lexical term variants, such as alternate labels, abbreviations, synonyms,
acronyms, and so on. This practice is standard in the ontology community,
and although it makes working with the ontology at times cumbersome
for humans because of the need to associate the label with the class, we
find it philosophically appealing. The entity is the same entity regardless
of what we call it, that is, “a rose by any other name would smell as
sweet.” So the fact that our neuron labels reflect mixtures of classification
schemes does not impact the class structure of the SAO; rather, the class
of neuron to which the label is applied is defined by the set of properties
assigned to it.

Ultimately, the goal of anatomy is to provide the structural substrate
for mapping function and understanding the structural constraints on
dynamic processes. Anatomy is a mature discipline with a rich history.
Many structures have been described, and continue to be described, par-
ticularly in electron microscopy, for which no functional property is known.
The classic view of structure-function relationships assumes that struc-
tural differences reflect functional differences as well. However, mapping
function onto structure is a complex issue that is currently beyond the
domain of the SAO. We chose to adhere to a strict structural approach
to keep the SAO scope tractable. We also, however, believe that by not
mixing structural and functional classes together, it will be easier in the
future to utilize the SAO within a functional ontology. As an example, the
term synapse, as is recounted in all introductory textbooks, was a func-
tional concept introduced by Sherrington to describe the transmission of
information between cells. The morphological correlate of the synapse
was described by Palay and colleagues using electron microscopy in the
1950s, and is also familiar to beginning students of neuroscience. SAO
currently provides a formal description of the set of entities to describe
the morphological correlates of what are assumed to be the sites and
machinery for synaptic transmission in the nervous system. Although the
labels employed, pre-synaptic and post-synaptic compartment, do have
functional significance, the precise mapping of the functional aspects onto
the morphological correlate is not straightforward. Though these familiar
functional labels date back to work on the cellular physiological correlate
of Sherrington’s synapse first described by Katz and colleagues in the
1940s, as a recent paper indicating evidence for “ectopic release” from
the chick ciliary ganglion synapse illustrates (Coggan et al., 2005), our
understanding of neural signaling at the cellular level continues to evolve.
If release of neurotransmitter can occur at sites other than the active zone
visualized in electron micrographs, then the functions associated with
a synapse cannot be restricted to this domain. However, by modeling a
synapse as a site where objects, and eventually dynamic processes, are
located, the definition of a synapse can expand as our functional under-
standing of synaptic transmission expands. We believe that mapping of
function onto structure will be one of the greatest challenges faced by
those who are creating ontologies for biomedical science.

Reasoning and inference with OWL
Biological objects are complex entities that do not fit neatly into single
hierarchies. We have chosen to follow the recommended practice of sin-
gle inheritance for all SAO classes, even when that means providing a very
flat hierarchy with minimal utility for classification purposes. However, the
power of OWL as an ontology formalism is that it not only enables us to
explicitly express the complex qualities and inter-relatedness of entities,
the standard tools built around the OWL formalism allows us to auto-
matically infer multiple valid hierarchies for an entity, depending on what
is required. For complex entities such as neuronal classes, we can use
the OWL inference engine to infer hierarchies based on neurotransmitter,
morphological properties, anatomical location, or circuit type (Figure 5).
The same can be done for other classes of subcellular structures, for
example, dendritic spines. This approach provides maximal flexibility to
the end user and allows us to begin to cluster and define neurons based
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on a set of properties rather than along a single dimension (Migliore and
Shepherd, 2005).

We have only begun to experiment with the power of OWL to infer new
knowledge about objects that is not explicitly encoded in the ontology that
allows information to be inferred across scales. In Larson and Martone
(2007), we provide an example of this cross scale reasoning using OWL
and rules about how cell parts relate to cells and brain regions. In this
example, we showed how annotation of a synapse between a terminal
of a thalamocortical axon and the dendritic spine of a cortical neuron
observed through axonal tracing and electron microscopy could be used
to infer knowledge about regional brain connectivity. Through relationships
encoded in SAO, we inferred from the presence of a labeled axon terminal
that there must be a neuron in the thalamus that has an axon projecting to
the cortex. From the presence of a spine, we inferred that there existed a
neuron to which the spine belonged in cortex. From the local observation
that an axon terminal synapsed on a dendritic spine, we could infer that
thalamic cells synapse with cortical cells, and that thalamus projects to
cortex. While the reasoning itself does not provide new insight about brain
function, we show here that a computational algorithm was able to infer the
same logical cross-scale consequences of the subcellular arrangement of
cell parts as would a neuroscientist without our having to write custom
code to embed that knowledge in the program.

Application of the ontology
In construction of the SAO, we have attempted to provide a formal struc-
ture for describing data, balancing the needs for a “top-down” versus a
“bottom-up” approach. By top-down, we mean that the biological theory
governing a domain is used to classify data products; by bottom-up, we
mean that we do not impose prior knowledge constraints on interpreting
data but let the data speak for themselves (Murphy, 2005). OWL classes
are essentially descriptive templates that constrain the possible proper-
ties and relationships which instances may have. As such, we only encode
knowledge into the class level when we are sure that it ought to constrain
all further instances that may be seen. This criterion enforces a certain
amount of rigor when describing the properties of biological entities. What
are those things that must always be true of a biological entity? Unlike
the case of gross anatomy, where we can be reasonably certain of the
canonical form taken by the human body, for example, we do not believe
that we are at the stage with subcellular anatomy where we can comfort-
ably define such canonical forms. Thus, although we sacrifice some of the
reasoning power of OWL through the minimal placement of restrictions on
the classes, we designed version 1.2 of the SAO to serve as the basis by
which such rules can be derived from the instances.

When describing data, we apply the ontology only down to the level
of granularity of which we are reasonably certain. For example, if we
know the type of neuron we are describing, we can assign instances of
properties to that specific class; if we do not, we can assign the observed
properties to the class “neuron.” Using the reasoning power of OWL, it
may turn out that the properties of this unidentified neuron are equivalent
to a known class, but that can be inferred from the actual instance. In this
way, the structure of the OWL standard forces the SAO to make careful and
conservative descriptions about subcellular anatomy while still allowing a
place for uncertainty.

Instances within the SAO also serve another important function by
allowing us to annotate the biological description of a piece of data with
the data and experimental properties from which it was derived. Entities
within SAO are not directly observable by humans but must be imaged
through a device such as a microscope and recorded in some form on a
particular medium. Biologists are well aware that how a specimen was
prepared, imaged, and analyzed will impact the types of observations
that are made. In many cases, subcellular structures that are observed
under certain conditions, for example, chemical fixation, are determined
to be artifactual when recorded under different conditions. Most experi-
mentalists are uncomfortable with knowledge management systems that
attempt to divorce the biological reality from the methods used for acquisi-

tion, visualization, and analysis, because these methods largely determine
the form that the reality will take. We must recognize, however, that the
entities that we are attempting to describe in the SAO are assumed to
transcend any technique. That is, we are assuming that there is such as
thing as a dendrite, even though its properties can only be described in a
specific experimental context. So, although the SAO itself does not assign
technique or data type to the biological entity, for each instance of the
entity, we provide a link to the experimental evidentiary context and the
data type from which it was derived (e.g., this “instance” of dendrite was
stained with a Golgi stain and imaged in a light microscope).

Through the construction of the SAO, we have made progress toward
the goals of building information bridges in neuroscience in three broad
areas: formalization, externalization, and standardization. By formaliza-
tion, we mean the process of describing concepts in a fully explicit manner
in order to clarify and sharpen the meanings of the terms being used. The
lengths that we have gone to either find or impose structure on implicit
concepts in subcellular anatomy reflect the absence of prior efforts to bring
them into a single cohesive framework. Such a framework is important
for the growing community interested in producing detailed computational
models of structure and function in the nervous system. It is vitally impor-
tant that experimental neuroscientists be able to communicate with this
community and provide increased levels of explanation of their experimen-
tal systems. Providing a formal way of communicating, these explanations
make it much easier to begin the modeling process. Ontologies in general,
and the SAO in particular, is crucial “connective tissue” to help place these
goals within reach for neuroscience.

In order for formalized information to be used by software applications,
the information must be capable of externalization. By externalization,
we mean to draw attention to the ability to transform the information
into “code,” as opposed to the translation of abstract concepts into a
human-only readable explicit representation. Once knowledge has been
formalized and subsequently codified into a computer-readable form, that
knowledge becomes externalized as an entity that is capable to program-
matically interact with other knowledge. This makes information much
more flexible than if it resided on the printed page, and it allows algo-
rithms to answer questions for us, saving time and effort. The process
of constructing an OWL ontology formalizes the knowledge it contains,
but encoding it in OWL and saving it on a computer in its underlying
RDF/XML format externalizes the information for other systems to digest
and manipulate via standard open source code frameworks.

Through externalization, we are able to remix knowledge into other
forms. It allows us to generate diagrams, to view it in different software
interfaces (e.g., Jinx), to reclassify hierarchies on demand, and to run
rule-based reasoning or other automatic inferencing mechanisms. The
benefits of this are obvious in the context of the goals of data sharing and
model construction. Externalization is also needed in order to construct
algorithms that are capable of assisting neuroscientists do their own work,
such as to guide them in a literature search or to suggest the name of a
structure they are segmenting.

Once an information bridge has been formalized, and also external-
ized, it can be used for the final important purpose of standardization. In
this context, the aspect of standardization that we focus on is the ability
for OWL ontologies to serve as semantic “glue” which allow disparate
data, ontologies, and applications to interoperate. The strategy we have
employed in our knowledge environment is to leverage the externalized
knowledge in the SAO by embedding it in tools that have first contact with
primary data. By embedding the SAO in these tools, we enable the user
not only easy access to SAO terms to use in annotating their data, but
also we make the tools more intelligent to minimize the amount of implied
knowledge that a user must contribute.

Future directions
We are continuing to develop the SAO, apply it to the type of biological
data contained within the CCDB and to refine the structure of the ontology.
Current development is focused on the development of a set of entities to
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describe cellular inclusions observed in neurodegenerative disease, and
entities from subcellular anatomy in domains outside of neuroscience. We
welcome any feedback or contributions to the ontology from the biolog-
ical community, and are working on a web-based interface through the
NCBO BioPortal (http://www.bioontology.org/ncbo/faces/index.xhtml) that
will facilitate this process. The process of ontology construction is labori-
ous and contains many fits and starts that leave legacy errors within the
ontology. Besides the complicated nature of the domain, we face additional
challenges in developing the SAO using emerging community standards,
(e.g., the BFO), that are themselves still developing. Consequently, we peri-
odically have to refactor the ontology as new versions of the constituent
come on-line. However, we believe that it is important for neuroscience
ontologies to align themselves as much as possible with the broader life
sciences community, because ultimately we hope to be able to integrate
neuroscience with the broader domains. The act of formalizing knowledge
is to make explicit what was once implicit, and in so doing clarifying the
boundaries of definitions. Giving something a name gives power over it
(Winston, 1992). Once we have assigned appropriate labels, the creation
of a system of axioms that interrelate the labeled entities gives us addi-
tional power to describe the interactions between the entities. This practice
has been at the heart of scientific understanding since the beginning of
history. The poster child of formalization is mathematics itself, which is a
system where the entities are variables, and the system of axioms consists
of mathematical operations. The impact of mathematics, a precise and
consistent means of communicating ideas, was to provide extraordinary
leverage to thinkers throughout history to build truths upon truths in the
service of understanding. A key example of this was the expression in
calculus of the fundamental relationships between electric fields, mag-
netic fields, electric charge, and electric current by Maxwell’s equations.
It required the formal language of calculus to clarify and distill the knowl-
edge of those physical concepts. As such, we see our attempt to formalize
the concepts of the structure and function of the brain with ontologies,
whose underpinnings are first-order logic, to be part of a broader pattern
in the history of science. The issues we have explored through our for-
malization efforts might be considered to be part of a larger movement
underway to develop formal means to describe biological entities.
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