
Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 18 November 2008
doi: 10.3389/neuro.11.005.2008

Brian: a simulator for spiking neural networks in Python

Dan Goodman* and Romain Brette

Département d’Informatique, École Normale Supérieure, Paris, France

“Brian” is a new simulator for spiking neural networks, written in Python (http://brian.
di.ens.fr). It is an intuitive and highly fl exible tool for rapidly developing new models,
especially networks of single-compartment neurons. In addition to using standard types of
neuron models, users can defi ne models by writing arbitrary differential equations in ordinary
mathematical notation. Python scientifi c libraries can also be used for defi ning models and
analysing data. Vectorisation techniques allow effi cient simulations despite the overheads of
an interpreted language. Brian will be especially valuable for working on non-standard neuron
models not easily covered by existing software, and as an alternative to using Matlab or C
for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching
computational neuroscience.

Keywords: Python, spiking neurons, simulation, integrate and fire, teaching, neural networks, computational

neuroscience, software

shows a more complicated example, illustrating many of the fea-
tures of Brian.

BACKGROUND
One of the diffi culties with current software for neural network simu-
lation is the necessity to learn and use custom scripting languages
for each tool: for example Neuron’s Hoc and NMODL (Carnevale
and Hines, 2006), NEST’s SLI (Gewaltig and Diesmann, 2007), and
Genesis’ SLI (Bower and Beeman, 1998), the last two being different
languages with the same name. This increases the learning curve and
is less fl exible than using an established language with strong support
and development tools such as integrated development environments
(IDEs), debuggers and profi lers. Data analysis is either limited to
those functions provided by the tool, or has to be carried out in
another application such as Matlab, which can slow down the process
of prototyping and refi ning models. Writing extensions to these tools
can be rather diffi cult or somewhat infl exible, depending on whether
extensions are written in the same language as the simulator itself.

To address this problem, there are projects in various stages of
completion to provide Python interfaces for each of the tools men-
tioned above (see other chapters in this special issue). Because it is
both easy and powerful, Python is rapidly becoming a standard tool
in the fi eld and in scientifi c computing more generally. In addition,
the PyNN project is working to provide a unifi ed Python interface
to each simulator. These projects have considerable benefi ts. Users
will only need to learn a single programming language rather than
one or more for each tool, and that language is easy to learn, highly
developed, very powerful, and has a large user base which provides
excellent support and tools. A great deal of time can be saved work-
ing in just one environment, rather than having to switch back
and forth between different applications and GUIs for developing
models, running simulations and analysing data.

Brian complements these projects and has some additional benefi ts
unique to it. Firstly, equations – differential equations in particular
– can be defi ned at the highest level using standard mathematical nota-
tion (see Figures 1 and 2). Brian does not restrict you to using standard
models of neurons and synapses (although many are provided in the

INTRODUCTION
A reasonable question to ask is whether there is any need for another
neural network simulator. There are now several mature simulators,
which can simulate sophisticated neuron models and take advan-
tage of distributed architectures with effi cient algorithms (Brette
et al., 2007). Yet, many researchers in the fi eld still prefer to use their
own Matlab or C code for their everyday modelling work. It might
be that currently available simulators do not fulfi ll the expectations
of those users. Generally, what we expect from simulation software
is that it should be able to run our specifi c model (fl exibility) in a
reasonable amount of time (effi ciency). However effi ciency is not
only about the speed of simulations. The time it takes the user to
implement the model is at least as important in many situations.
For example, if it takes only 1 s to simulate a model with a given
tool but 30 min to write the simulation script, one might prefer
to use a tool which simulates the model in 10 s but for which the
script can be written in 3 min. For those modelling situations, we
only want the simulation software to be “reasonably fast”.

Brian is a new project (http://brian.di.ens.fr) to create
a clock driven spiking neural network simulator with the goals of
being easy to learn and use, highly fl exible, and “reasonably fast”. It
is ideally suited to rapid prototyping and refi nement of networks of
single compartment model neurons. Brian is written entirely in the
Python programming language and will run on any platform that
supports Python (i.e. almost all platforms). Users with a C compiler
on their system can take advantage of a slight speed increase by
opting to use certain core routines written in optimised C code,
but these are strictly optional. Everything works the same without
them. The way Brian works is that it is a Python package providing
functions, classes and objects. It can be used either interactively
using a Python shell, or as part of a Python program (module).
Figure 1 shows a very simple Brian script. This script defi nes a ran-
domly connected network of 4000 leaky integrate-and-fi re neurons
with exponential synaptic currents. This is Brian’s implementation
of the current-based (CUBA) model network used as one of the
benchmarks in Brette et al. (2007). The simulation takes 3–4 s on
a typical PC, for 1 s of biological time (with dt = 0.1 ms). Figure 2

Edited by:

Rolf Kötter, Radboud University
Nijmegen, Netherlands Antilles

Reviewed by:

Robert C. Cannon, Textensor Limited, UK
Markus Diesmann, RIKEN Brain
Science Institute, Japan

*Correspondence:

Dan Goodman, Equipe Audition,
Département d’Etudes Cognitives,
Ecole Normale Supérieure, 29 rue
d’Ulm, 75230 Paris Cedex 05, France.
e-mail: dan.goodman@ens.fr

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 | 2

Goodman and Brette Brian: a neural simulator in Python

library), and neuron models based on new differential equations can
be used without writing or compiling any code. Secondly, as Brian
is written entirely in Python itself, it has all the advantages of the
projects above and some additional ones. Integration with Python
is tighter because the implementation is not in a separate language
to the interface. This means that Brian can be used more fl exibly, for
example to write code which reads and modifi es the variables of the
simulation as it runs. Additionally, extensions to Brian are easy to
write because everything is written in the same language.

TEACHING
Brian was originally designed for research, but it would also make
an ideal tool for teaching purposes. First of all, the Python language
is extremely quick and easy to learn and the syntax allows code to be
written very compactly, saving time and making it easier to present
examples. Secondly, since Brian is written in pure Python, it works
on almost every platform, so there are less compatibility issues
for students with different hardware or operating systems. Finally,
using Brian itself is very easy, and the core concepts and syntax of
Brian code correspond very straightforwardly to neuroscientifi c
concepts (see Figure 1). Equations are specifi ed using a familiar
mathematical syntax, for example eqs='dV/dt=-V/tau:volt',
where the only unfamiliar part of the syntax is the :volt term,
which specifi es that V has units of volts. Figure 1 shows that defi ning
thresholds and resets is typically just a single keyword term such as

threshold=−70*mV or reset=−55*mV, and creating groups of
neurons is as simple as writing G=NeuronGroup(N,model).

FEATURES
Brian is a clock driven simulator, that is, all events take place on a
fi xed time grid t = 0, dt, 2dt, 3dt,…. Neuron models are normally
defi ned by differential equations which can be arbitrary linear,
nonlinear or stochastic, specifi ed either by directly writing the
equations in a string, by using standard equations such as leaky
integrate-and-fi re, or by building more complicated sets of equa-
tions using standard components such as K+ and Na+ currents. Both
integrate-and-fi re and Hodgkin–Huxley type models can be used.
Multiple compartment models are possible, but at the moment
they are neither particularly convenient nor effi cient for more than
a few compartments. For linear differential equations, Brian uses
exact updates. For nonlinear differential equations, Euler (explicit)
and exponential Euler (semi-implicit) methods are available (and
more are planned).

Network connectivity can be built either directly by specifying
connectivity per pair of neurons (i, j), or more effi ciently with all-
to-all or random connectivity, where the synaptic weights can be
either single values or specifi ed by a weight function f(i, j). Synaptic
connections can include delays.

Network activity can be controlled in various ways. For spik-
ing behaviour there are various standard models such as Poisson

from brian import *
eqs =
dV/dt = (ge+gi-(V+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt

P = NeuronGroup(4000, model=eqs,
threshold=-50*mV, reset=-60*mV)

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, ge)
Ci = Connection(Pi, P, gi)
Ce.connect_random(Pe, P, p=0.02,

weight=1.62*mV)
Ci.connect_random(Pi, P, p=0.02,

weight=-9*mV)
M = SpikeMonitor(P)
P.V = -60*mV+10*mV*rand(len(P))
run(.5*second)
raster_plot(M)
show()

τm
dV

dt
= −(V − EL) + ge + gi

τe
dge

dt
= −ge

τi
dgi

dt
= −gi

FIGURE 1 | The CUBA network in Brian, with code on the left, neuron

model equations at the top right and output raster plot at the bottom

right. This script defi nes a randomly connected network of 4000 leaky integrate-
and-fi re neurons with exponential synaptic currents, partitioned into a group of
3200 excitatory neurons and 800 inhibitory neurons. The subgroup() method
keeps track of which neurons have been allocated to subgroups and allocates
the next available neurons. The process starts from neuron 0, so Pe has neurons
0 through 3199 and Pi has neurons 3200 through 3999. The script outputs a

raster plot showing the spiking activity of the network for a few hundred ms.
This is Brian’s implementation of the current-based (CUBA) network model used
as one of the benchmarks in Brette et al. (2007), based on the network studied
in Vogels and Abbott (2005). The simulation takes 3–4 s on a typical PC (1.8 GHz
Pentium), for 1 s of biological time (with dt = 0.1 ms). The variables ge and gi are
not conductances, we follow the variable names used in Brette et al. (2007). The
code :volt in the equations means that the unit of the variable being defi ned
(V, ge and gi) has units of volts.

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 | 3

Goodman and Brette Brian: a neural simulator in Python

spiking neurons, and more direct control mechanisms can be used
to specify spike times for a neuron with a list or Python function.
While the simulation is running, all the variables of the simulator
are directly accessible and this can be used for controlling almost
any aspect of the simulation. The emphasis is on fl exibility, and
most aspects of the way Brian works can be overridden.

Basic support for short term plasticity and spike timing depend-
ent plasticity is included. This will be standardised and made easier
to use in later releases.

Brian also has a system for specifying quantities with physical
dimensions, which makes things easier because variables can be
entered without having to look up the scale defi ned for that variable

CBA

FED

from brian import *
w = .5*mV
def adaptive_threshold_reset(P, spikes):

P.V[spikes] = 0*mV
P.Vt[spikes] = clip(P.Vt[spikes]+2*mV, 10*mV, 15*mV)

eqs = dV/dt = (5*mV-V)/(10*ms) + 4*mV*xi/(10*ms)**.5 : volt
tlov:)sm*03(/)tV-Vm*01(=td/tVd

group=NeuronGroup(100, model=eqs,
threshold=lambda V,Vt:V>=Vt,
reset=adaptive_threshold_reset)

C = Connection(group, group, V , delay=2*ms)
S = SpikeMonitor(group)
C.connect_full(group, group, weight=lambda i,j:w*cos(2.*pi*(i-j)*1./100))
group.V = rand(100)*5*mV+5*mV
group.Vt = 10*mV
run(2.5*second)
raster_plot(S)
show()

FIGURE 2 | An example showing many of the features of Brian in action. The
neuron model in this code follows a stochastic differential equation
d d () ()V T V E tl/ = − − / /τ σξ τ+ , dVt /dt = −(Vt − Vt0)/τt. Here all the undefi ned
symbols are constants except for ξ(t) which corresponds to the term xi in the
code, and represents a white noise term ξ ξ δ() () ()t t t t′ = − ′(). The rest of the
neuron model is defi ned by a custom reset function adaptive_threshold_
reset which increases the value of Vt by a constant each time a neuron spikes
(but never takes it above a fi xed ceiling), and a custom threshold function lambda
V,Vt:V>=Vt which defi nes the condition for a spike. The arguments to the
custom reset function are a NeuronGroup object P (a population of neurons),

and an array spikes containing the indices of the neurons in P that have spiked.
Together these two custom functions defi ne an adaptive threshold model. The
option to specify custom functions makes Brian’s reset and threshold mechanism
very fl exible. The code also shows synaptic delays, and setting the synaptic
weights with a custom function of (i, j), w*cos(2.*pi*(i-j)*1./100)). The
output of the code shown is the raster plot in (B), with the value w=.5*mV.
(A) shows w=.1*mV and (C) shows w=.65*mV. (D) shows the synaptic weight
matrix for the w=.65*mV case. (E) and (F) show the values of V (solid blue) and
Vt (dashed green) for the neuron with index 50 for the raster plots immediately
above them ((B) and (C)) with w=.5*mV and w=.65*mV respectively.

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 | 4

Goodman and Brette Brian: a neural simulator in Python

by the simulator package, and is useful because it helps to catch
hard to debug problems stemming from parameters or equations
having inconsistent units (see Physical Units).

Finally, Brian is fairly effi cient. Although Python is an inter-
preted language, it can still achieve speeds comparable to that of
code written directly in C, and typically better than code written
in Matlab. See the section “Simulation Speed” for a discussion of
performance issues.

HOW IT WORKS
Brian is designed to be easy to use, fl exible and reasonably fast. To
achieve the fi rst goal, Brian uses features of the Python program-
ming language, in particular its extremely dynamic typing which
allows code to be much simpler and more expressive. Flexibility in
Brian stems from using a single high-level language for user code
and the library itself, and from making differential equations a
fundamental high-level data structure (see Background). For the
third goal, Brian uses the strategy of vectorised code.

Brian makes considerable use of Python’s dynamic typing to
make writing models easier, and to make the syntax concise and
readable. So for example, in specifying a neuron model a thresh-
olding procedure is required for producing spikes. This can be
done by specifying a single number, a function, or a threshold
object. In the fi rst case, with the threshold specifi ed by a single
number V

t
 say, Brian infers the thresholding condition V ≥ V

t
. In

the second case, Brian examines the function provided. Consider
a neuron model with variables V and Vt, and the threshold speci-
fi ed as the function lambda V, Vt: V>=Vt (which is the Python
expression for a function of two variables V and Vt which returns
the value V>=Vt). In this case Brian examines the names of the
arguments to the function and passes the appropriate values so
that the code behaves as expected. This would be one way of
providing a variable threshold condition (because Vt is a variable
of the neuron model, and could evolve according to a differential
equation or function of other variables for example). Another way
is to provide a threshold object, either one of the standard types
in the library, or a user-defi ned one by writing a class that derives
from the Threshold class. The variable threshold condition above
corresponds to the standard object VariableThreshold('Vt')
for example.

Vectorising code is the strategy, familiar to users of Matlab, to
minimise the amount of time spent in interpreted code compared
to highly optimised array functions. This typically means trying to
minimise the number of for loops in code, and using data struc-
tures and algorithms that make this easier. Brian uses the NumPy
package (see below) which has an array data type that makes, for
example, the expression V [spikes]=Vr equivalent to but much
faster than for i in spikes: V[i]=Vr. In Matlab this would be V
(spikes)=Vr, and in many cases the NumPy syntax is very similar
to the Matlab syntax making the transition between the two very
easy. The issue of Brian’s speed and effi ciency is covered in more
detail in the section “Simulation Speed”.

Brian uses the following standard Python packages: Numerical
Python, which is designed for providing effi cient array data struc-
tures and operations (NumPy, http://www.scipy.org/NumPy,
Scientifi c Python, which extends NumPy to include more general
algorithms for scientifi c work (SciPy, http://www.scipy.org),

and PyLab/Matplotlib for plotting (http://matplotlib.
sourceforge. net/).

WORKED EXAMPLE
Figure 3 shows a slightly simplifi ed version of the code in Figure 1
with diagrams showing schematically the meaning or function of
each group of lines of code. Panels A through F illustrate lines
of code, and Panel F, which corresponds to actually running the
simulation, is composed of four sub-panels a through d which
illustrate the four steps involved in each timestep dt of the simula-
tion. We proceed to explain how this example works with reference
to the fi gure.

A Firstly, the differential equations for the model are defi ned.
This is illustrated in Panel A which shows the code which
defi nes the equations and the equations in a more standard
mathematical form. These equations will be used to defi ne
an integrate-and-fi re neuron with exponential inhibitory and
excitatory synapses with different time constants. The diffe-
rential equation for V defi nes a leaky integrator with currents
g

e
 and g

i
. The variable g

e
 is used for excitatory currents. When

an excitatory spike arrives, the value of g
e
 is increased instan-

taneously by a fi xed amount. The inhibitory variable g
i
 works

similarly. Technically then, the full mathematical differential
equations for the model would be:

τ

τ τ δ

d

d

d

d

V

t
V V g g

g

t
g W t t

j
j

r e
j

i
j

e
e
j

e
j

e e
kj

l
k

k

N

l

= − − + +

= − + −()
=

∑∑

()

1

ττ τ δi
i
j

i
j

i i
kj

l
k

k

N

l

g

t
g W t t

d

d
= − + −()

=
∑∑

1

 where the superscripts indicate neuron indices, W kj
* are the

excitatory and inhibitory weight matrices, N = 4000 is the
number of neurons, and t l

k is the time of the lth spike fi red
by neuron k. The spike propagation behaviour is defi ned in
Panels C and D, see the description below.

B Having defi ned the differential equations, a group P of
4000 neurons is created with these equations, a threshold
mechanism set to fi re spikes if V ≥ V

t
 = −50 mV, and a reset

V ← V
r
 = − 60 mV. The diagram in Panel B shows Brian’s

internal data structure for this group. It is a two-dimensional
array or matrix S. At a given time the ith column of S holds the
state variables for the ith neuron. Each row of the matrix is a
vector of length 4000 of the values of a particular variable for
all the neurons in the group.

C The next step is to create the network structure. We create two
subgroups Pe and Pi of 3200 and 800 neurons respectively.
The subgroup() method of the NeuronGroup object keeps
track of which neurons have been allocated to subgroups and
when called allocates the next available neurons. The process
starts from neuron 0, so Pe has neurons 0 through 3199 and
Pi has neurons 3200 through 3999. These two subgroups will
be the excitatory and inhibitory neurons. In the diagram in
Panel C, we have separated the columns of the state matrix S
corresponding to each neuron. The excitatory and inhibitory

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 | 5

Goodman and Brette Brian: a neural simulator in Python

from brian import *

eqs = '''
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
'''

P = NeuronGroup(4000 , model=eqs,
threshold=-50*mV, reset=-60*mV)

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, 'ge')
Ci = Connection(Pi, P, 'gi')

Ce.connect_random(Pe, P, 0.02

1.62 *mV)

Ci.connect_random(Pi, P, 0.02

9*mV)

P.V = -60*mV+ 10*mV*rand(len (P))

run(1*second)

Pe Pi

P

Ci
Ce

A

B

C

D

E

F

0 1 2 3 4 5 6 7

spikes = [2, 5, 6]

b. Thresholda. State update

c. Propagate d. Reset

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

exc.

inh.

+

=

FIGURE 3 | The code from Figure 1 expanded to show how Brian works

internally. In (A), the equations for the model are defi ned. In (B), a group of
4000 neurons is created with these equations. In (C), the logical structure of
the network is defi ned, partitioning the 4000 neurons into excitatory and
inhibitory subgroups with corresponding connections to the whole group.
In (D), the weight matrices for the excitatory and inhibitory connections

are defi ned. In (E), the membrane potential is initialised uniformly randomly
between reset and threshold values. In (F), the simulation is running,
consisting of repeated applications of four operations each time step;
(a) shows the update of the state matrix; (b) shows the thresholding
operation; (c) shows the propagation of spikes; and (d) shows the reset
operation.

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 | 6

Goodman and Brette Brian: a neural simulator in Python

subgroups are boxed and labelled Pe and Pi respectively. Next,
excitatory and inhibitory connections Ce and Ci are created.
The declaration of Ce specifi es that the group Pe (the exci-
tatory subgroup) should be connected to the variable g

e
 (the

excitatory current) of the group P (the whole group), and
similarly for Ci. This means that when a neuron in Pe fi res a
spike, the variable g

e
 will be increased for those neurons in P

which the neuron in Pe synapses onto.
D Having defi ned the logical network structure, we create the

weight matrix itself. Each pair of neurons (i, j) are connected
independently at random with probability 0.02. The excitatory
synapses have weight 1.62 mV and the inhibitory ones have
weight −9 mV (negative to make it inhibitory, and larger than
the excitatory synapses as there are less inhibitory neurons).
For effi ciency, the random connectivity function constructs
the sparse matrix row by row. For each row it generates a
binomial random number k from B(N, p) which is the num-
ber of synapses in that row, and then randomly allocates those
k synapses amongst the N possible target neurons, assigning
them with equal fi xed weight values. This process is illustrated
in the diagram in Panel D.

E Now we prepare to actually run the simulation. The fi rst step
is to initialise the variables. At the start, all variables have the
value zero. In Panel E, on the left hand side of the diagram, this
is indicated by the V row being white (as 0 is much bigger than
the threshold value which is negative), and the g

e
 and g

i
 rows

being almost black. We leave the values of g
e
 and g

i
 as 0, and set

V to be uniformly distributed between the reset and threshold
values. The notation P.V refers to the fi rst row, the V row, of
the state matrix S.

F Finally, we run the simulation. Panel F shows the four ope-
rations executed each time step dt of the simulation: state
update, threshold, spike propagation, and reset. In the state
update phase (sub-panel a), the state matrix S is updated from
t → t + dt, which as the differential equations are linear is just
multiplication of S by a fi xed matrix and addition of a fi xed
vector to each column of S. In the thresholding stage (sub-
panel b), each value of V is simply compared to V

t
 and a list

spikes of the indices of each of the neurons satisfying the
condition is returned. In the propagation phase (sub-panel c),
which is carried out separately for the excitatory and inhibi-
tory connections, for each index i ∈ spikes the ith row of
W

*
, W [i,:], is added to the row vector corresponding to the

variable g
*
. Finally, in the reset phase (sub-panel d), for each

index i in spikes, V is reset to V
r
.

This worked example shows the general anatomy of a Brian
script: import the Brian package and defi ne neuron models
(Panel A); create groups of neurons (Panel B); create synaptic con-
nections (Panels C and D); create monitors and other operations for
recording data and controlling variables as a simulation runs (not
shown in fi gure); initialise variables (Panel E); run the simulation
(Panel F); and fi nally analyse and plot the data using any Python
package (not shown in fi gure). Creating monitors and plotting out-
put is not shown in Figure 3 but can be seen in Figure 1. The lines
M=SpikeMonitor(P) and raster_plot(M) record and plot the
spikes produced by the neurons in P. The raster_plot function

is part of Brian, but there are many Python packages which can be
used for analysing and plotting data, including the ones used by
Brian itself, NumPy, SciPy and Pylab/Matplotlib.

PHYSICAL UNITS
Brian also features a system for specifying physical quanti-
ties with units. This is an independent package originally writ-
ten for Brian but now available as a standalone package called
Piquant (http://piquant.sourceforge.net/). It builds on
the NumPy and SciPy packages, adding support for physical quan-
tities. This has various benefi ts. It makes it possible to write code
which syntactically and semantically expresses both the physical
dimensions and scale of numbers. So for example, something like
conductance=36*mS rather than conductance=36. In the latter
case, the code alone does not express the value without knowing
the standard scale for the software, and this often leads to errors
which can be very hard to debug. In addition, because units retain
their physical dimensions as well as their scale, accidentally writing
something using the wrong units will cause an error (for example
in Brian, differential equation with inhomogeneous units will raise
an error).

A quantity with physical units is a standard fl oat value with an
additional array of the indices of the seven fundamental SI units
distance, mass, time, etc. The fl oat value expresses the quantity
at the standard SI scale, so that for example the fl oat value of 1
*mV is 0.001. Operating on quantities with physical units is clearly
more computationally demanding than operating on quantities
without. To ameliorate this problem, Brian does two things. First
of all, internal calculations done by Brian during a simulation only
use the underlying fl oat values, so that only initialisation code and
custom functions use the units system. Secondly, Brian includes
an option for switching the units system off globally. This only
requires the addition of a single line of code to the top of a Brian
program, and simply converts all the objects with units to their
underlying fl oat values. So for example with units turned off the
symbol mS becomes the fl oat value 0.001. The recommended usage
is to leave the units system on when developing a model or when
adding new code, and turning it off for longer and larger runs once
the code is stable.

TECHNICAL DETAILS
The user specifi es a model by providing the mathematical equa-
tions which defi ne it. This can either be done directly by writing
out the differential equations in full, or by building a set of equa-
tions using objects from the library (for things like ion channels or
synapses). The former is useful in situations where there are not too
many equations and where they are constantly being changed in the
process of developing the model. The latter is useful in situations
where the model is built from standard components and produces
an unwieldy number of equations.

Given a fi nal set of equations, Brian produces a StateUpdater
object. In general, this is an object that updates the state variables
of a group of neurons in any way. For differential equations, it per-
forms the integration step updating the state variables from times
t to t + dt. Brian automatically inspects the equations to choose the
most appropriate type of StateUpdater. For linear differential
equations for example, updates are exact. More precisely, if the

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 | 7

Goodman and Brette Brian: a neural simulator in Python

 equations are X M X B= −() then the exact solution for the update
step is X(t + dt) = eMdt(X(t) − B) + B, where eMdt is a constant matrix
and B is a constant vector evaluated (numerically) at initialisation
time (see Morrison et al., 2007 for a closed form method). Nonlinear
equations are integrated by default with Euler updates, and the
exponential Euler method (a semi-implicit method, MacGregor,
1987) is also implemented for Hodgkin–Huxley models. The
 second-order Runge-Kutta method is also implemented. Stochastic
differential equations are integrated with Euler updates (i.e., adding
normally distributed random numbers every time step). Nonlinear
equations given as text are compiled to Python functions at initiali-
sation time, then used directly during the update phase with vector
arguments [for example, x ← x + f(x)dt for a single state variable x
and equation dx/dt = f(x)].

A NeuronGroup object is created by specifying the number
of neurons in the group and a model. A model requires a set of
differential equations or a StateUpdater object, and can have
optional thresholding and reset mechanisms. A Connection object
is a mechanism for propagating spikes from one NeuronGroup to
another. It is specifi ed by an input group, an output group (which
can be the same) and a target state variable. When a neuron in the
input group fi res a spike, the target state variable is increased for all
the neurons in the output group to which that neuron is connected.
This mechanism is very general and allows for all the standard
types of synapses. Once a Connection object has been created,
the actual connectivity of neurons can be specifi ed in various ways.
The main four ways are full connectivity, random connectivity,
functionally specifi ed connectivity (e.g. for spatial distributions)
or by providing a connectivity matrix directly. The Connection
methods connect_random and connect_full, for random and
full connectivity respectively, take as their fi rst two arguments the
source and target neuron groups. This seems redundant because
the Connection object knows the source and target groups, but
the weight matrix can be constructed in blocks and the fi rst two
arguments to these methods can be subgroups of the groups speci-
fi ed in defi ning the Connection. In the present version, homo-
geneous synaptic delays can also be specifi ed. Each neuron group
stores a circular list of the last spikes over the required delay, each
element of that list being an array of the indexes of neurons that
spiked during one timestep. Spikes are then delivered in the same
way as explained in the section “Worked Example” (Panel F).

SIMULATION SPEED
Python is an interpreted language, and although it is very fast there
is an overhead for every Python operation. Brian can achieve very
good performances by using the technique of vectorisation, similar
to the same technique familiar to Matlab users. The idea is to replace
loops by operations on large vectors, so that the interpretation
overhead becomes negligible. Brian uses vectorisation for both the
simulation and the construction of the model (e.g., initialisation
of synaptic weights).

For example, for a single neuron i with state vector x
i
, the update

step from x
i
(t) to x

i
(t + dt) might be x

i
(t + dt) = Mx

i
(t) + b for a

matrix M and vector b. This operation is the same for every i so
rather than looping through all the neurons carrying out the same
operation, we write a state matrix S whose columns are the state
vectors of each neuron. Now the loop carrying out the operation for

each neuron i can be written in one operation, S(t + dt) = MS(t) + B
(where B is a matrix with every column equal to b). The number of
mathematical operations is the same, but the interpretation over-
head is reduced from N interpretation operations for N neurons
to 1 interpretation operation. Brian uses the NumPy package for
these vectorised operations. NumPy is written in optimised C code,
and for linear algebraic operations uses the Basic Linear Algebra
Subprograms (BLAS) application programming interface (API).
This means that NumPy can be combined with an implementa-
tion of the BLAS API that is optimised for the specifi c details of
the processor it is running on. For large networks, the time spent
on mathematical operations is much larger than the time spent on
interpretation operations and so Brian is very effi cient. For smaller
networks, the interpretation overhead is much larger in proportion
but in many situations it is not critical because the simulation time
is shorter too. The least favourable scenario for Brian is the simula-
tion of a small network for a long biological time.

PERFORMANCE OF VECTORISED SIMULATIONS
In this section, we outline an analysis of Brian’s performance. A
formula for the simulation time of a network with a clock-driven
algorithm is given in Brette et al. (2007):

Update Propagation+

× + × × ×c
N

t
c F N pU Pd

where c
U
 is the cost of one update and c

P
 is the cost of one spike

propagation, N is the number of neurons, p is the number of syn-
apses per neuron, F is the average fi ring rate and dt is the time
step (the cost is for 1 s of biological time). If the simulation is fully
vectorised, then interpretation can be included in this formula as
a constant overhead c

I
 per time step:

Update Propagation Interpretation+ +

× + × × × +c
N

t
c F N p

c

tU P
I

d d

and the interpretation overhead becomes negligible when the net-
work is large. In more detail, the update constant c

I
 grows with the

complexity of the model (in particular the number of variables)
and the interpretation constant c

I
 grows with the number of objects

created, such as groups of neurons. Therefore, the strategy for run-
ning effi cient simulations with Brian is to collect all neurons sharing
the same differential equations in the same group. It is still possible
to have heterogeneous groups in this way, for example the follow-
ing code defi nes a group of 100 integrate-and-fi re neurons with
membrane time constants between 5 and 30 ms:

eqs='''
dv/dt=-v/tau : volt
tau : second
'''
G=NeuronGroup(100,model=eqs,threshold=15*mV,
reset=0*mV) G.tau=linspace(5*ms,30*ms,100)

Here tau becomes a state variable instead of a parameter. The
same method can be used to obtain the results of a simulation for
different parameter values. Note that with this change the differential

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 | 8

Goodman and Brette Brian: a neural simulator in Python

equation becomes nonlinear with respect to the two variables; equa-
tions are then integrated with an approximation scheme (Euler by
default). A mechanism for declaring state variables to be constant so
that the above equation would be considered linear and integrated
with exact matrix updates (one matrix for each parameter value)
is in preparation for a future release of Brian.

In many cases, the initialisation can also be vectorised. For exam-
ple, the following instruction connects all pairs of neurons of a
group with a distance-dependent weight (the topology is a ring):

C.connect_full(group,group,weight=lambda i,j:
cos((2.*pi/N)*(i-j)))

The program builds the weight matrix row by row by calling the
weight function with arguments (i, j) where i is the row number
and j is the vector (0, 1,…, N − 1). Thus, the matrix is constructed
with N vector-based operations, in a way that is transparent to the
user. This is made possible by the fact that Python is a dynamically
typed language (functions do not need to specify the type of their
arguments in their defi nition).

COMPARISON WITH C AND MATLAB
In this section, we compare the empirical performance of Brian
with that of C and Matlab. We compare absolute performance and,
since it was always the fastest, times relative to C. The C code was
always compiled with the heaviest optimisations possible, the -O3
switch with the gcc compiler. Brian was always run with the
optional compilation switch on, and unit checking turned off.
This means that certain key routines (the thresholding operation
and the spike propagation phase) were written in C to avoid the
Python overheads. These key operations are very generic, and so
having them written in C rather than pure Python does not affect
the fl exibility of Brian as a whole. Note that this compilation switch
is optional, and on a system without a C compiler installed Brian
will use alternative versions of these core routines which are slightly
slower but still very usable. Typically, running Brian with pure
Python only takes about 25–50% longer than with the C routines.
In the following benchmarks, times were computed by running each
set of parameters 10 times and taking only the 7 best times, which

helps to remove outliers where performance is degraded due to
the operation of an unrelated process running on the system. The
comparisons shown were obtained using a 2.33 GHz Intel Xeon
processor with 2 GB RAM running on Windows XP. The version of
NumPy used was 1.1.1 with the default BLAS linear algebra package.
Using a custom build of NumPy with a BLAS package tuned for the
particular CPU architecture would give better performance. The
source code for the comparisons is available on request.

The fi rst benchmark we consider is a modifi ed version of the
CUBA network presented above in Figures 1 and 3. This is a net-
work of linear differential equations, and Brian does exact updates
for the state matrix for t �→ t + dt which amounts to a matrix mul-
tiplication. We used the same mechanism exactly for the C and
Matlab code. In all cases, the connection matrix uses a sparse matrix
data structure implemented in effectively the same way.

We fi rst modify the network so that instead of random con-
nectivity with each pair of neurons connected with probability
0.02, the probability is p/N, where N is the number of neurons,
making an average of p synapses per neuron independent of N. This
 guarantees that the fi ring rate of an individual neuron is independ-
ent of N. According to the calculations in the section “Performance
of Vectorised Simulations” then, the computation time as a function
of N should be proportional to N. Figure 4 shows the times for this
network. You can see that the performance of Brian is better than
Matlab, but not as good as C. You can also see that as N increases,
the relative performance of Brian compared to C improves. This is
because the Python overheads are a fi xed cost independent of N. At
N = 32,000, Brian takes approximately 2.4 times as long as C, and
we would expect that this ratio would improve further for larger N.
For this N, Matlab takes approximately seven times as long as C.

The next benchmark is the same CUBA network, but this time
with all synapses removed. Performance in general is largely domi-
nated by two factors: the state update phase, and the spike propaga-
tion phase. This benchmark gives an idea of how performance for
the state update phase alone scales. Figure 5 shows the comparison.
For large N, Brian takes around twice as long as C, and Matlab about
four times as long. The jump in the times for Brian going from
N = 16,000 to N = 32,000 may be due to CPU cache behaviour.

FIGURE 4 | Computation time for the CUBA network using Brian, C and

Matlab. This version of the CUBA network uses a fi xed 80 synapses per
neuron, and a varying number of neurons N. The fi gure on the left shows the

absolute time on the test machine. The fi gure on the right shows the time
compared to the C code. Theoretically, we would expect O(N) computation time
(see Performance of Vectorised Simulations).

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 | 9

Goodman and Brette Brian: a neural simulator in Python

The next benchmark uses a fi xed N, but varies the parameter w
e
,

the excitatory synaptic weight. Increasing this increases the fi ring
rate. Figure 6 shows the comparison. For the range of w

e
 shown,

leading to a range of fi ring rates from about 5 Hz to about 25 Hz,
the times appear to grow at a similar rate for each of C, Matlab
and Brian.

In conclusion, Brian is mostly around two to four times slower
than C code for the typical network considered, and Matlab is
around seven times slower. For smaller networks, Brian is slower
than this, and for larger networks, we expect Brian to be faster
than this. This seems like a reasonable trade off, given that smaller
networks tend to take less time to run in absolute terms than larger
networks.

DISCUSSION AND FUTURE WORK
Brian has been developed for quickly coding models of spiking
neural networks in everyday situations. It is easy to learn, intuitive
and fl exible, which also makes it ideal for teaching. Although it
is written in an interpreted language, it remains computationally

effi cient in many situations thanks to vectorised algorithms. It is
however not currently designed for very large scale simulations
which require clusters of computers, or for detailed biophysical
models with complex morphologies.

COMMUNITY
Brian is open source, and we are following the open source strategies
of code reuse and interoperability. To make the development effort
lighter and support easier, we chose to use existing packages and
components as much as possible, and only write what is necessary
on top of that. In writing Brian, we have used the NumPy, SciPy
and PyLab/Matplotlib packages. There is a PyNN module for Brian
currently in development, through which Brian will support open
standards such as NeuroML (Goddard et al., 2001) and other XML
description standards (Cannon et al., 2007).

We would also encourage others to make their code written
with Brian accessible to others. Complete models can be posted
to ModelDB (Hines et al., 2004), and in addition there is the new
“Computational Neuroscience Cookbook” project hosted on the

FIGURE 5 | Computation time for the CUBA network if all synapses are removed. This largely demonstrates the performance for the state update step, which in
this case is a matrix multiplication.

FIGURE 6 | Computation time for the CUBA network with on average

p = 500 synapes per neuron and N = 4000 at different fi ring rates. The
parameter we, the excitatory weight, was varied between 1.62 and 4.8 mV
which had the effect of varying the fi ring rate between about 5 Hz and about

25 Hz. This shows how performance scales with the number of spikes. Here the
fi ring rates as well as the times are averaged over the seven fastest trials, as
fi ring rates vary from trial to trial. Note that times due to spiking depend on both
the fi ring rate and the number of synapses per neuron.

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 | 10

Goodman and Brette Brian: a neural simulator in Python

NeuralEnsemble website (http://neuralensemble. org/cook-
book). The idea of the cookbook is for submission of fragments
of code which can be cut and pasted into others’ code. Finally, we
encourage others to contribute to the Brian project itself (http://
brian.di.ens.fr/contribute.html).

FUTURE WORK
In the near future, our priorities for improving Brian are increasing the
effi ciency of Brian simulations and adding more modelling features.
Specifi cally, we have started using the parallel processors present in
modern graphics cards (GPU, Graphics Processing Unit) to improve
the speed of Brian simulations with no additional work from the user
(Luebke et al., 2004). These can be used as parallel coprocessors for
vectorised calculations (Cummins et al., 2008). On the modelling side,

we are focusing our efforts on synaptic plasticity. It is already possible
to simulate spike timing dependent plasticity (STDP, as in e.g. Song
et al., 2000) and short term plasticity (STP; Tsodyks and Markram,
1997) with the current mechanisms implemented in Brian (since these
are defi ned as differential equations with resets in those references,
see Morrison et al., 2008 for a review of plasticity rules), and we are
working on making it as fl exible and simple to use as possible.

ACKNOWLEDGEMENTS
This work was partially supported by the European Union
(Visiontrain, a Marie Curie Research Training Network) and by
the French ANR (ANR-RIAM Wired Smart). The authors would
like to thank all those who tested early versions of Brian and made
suggestions for improving it.

REFERENCES
Bower, J. M., and Beeman, D. (1998).

The Book of GENESIS: Exploring
Realistic Neural Models with
the GEneral NEural Simulation
System, 2nd edn., Springer-Verlag,
New York.

Brette, R., Rudolph, M., Carnevale, T.,
Hines, M., Beeman, D., Bower, J. M.,
Diesmann, M., Morrison, A.,
Goodman, P. H., Harris, F. C.,
Z i r p e , M . , Na t s c h l ä g e r, T. ,
Pecevski, D., Ermentrout, B.,
Djurfeldt, M., Lansner, A., Rochel, O.,
Vieville, T., Muller, E., Davison, A. P.,
Boustani, S. E., and Destexhe, A.
(2007). Simulation of networks of
spiking neurons: a review of tools
and strategies. J. Comput. Neurosci.
23, 349–398.

Cannon, R., Gewaltig, M.-O., Gleeson, P.,
Bhalla, U., Cornelis, H., Hines, M.,
Howell, F., Muller, E., Stiles, J.,
Wils, S., and Schutter, E. D. (2007).
Interoperability of neuroscience
modeling software: current status and
future directions. Neuroinformatics 5,
127–138.

Carnevale, N. T., and Hines, M. L. (2006).
The NEURON Book. Cambridge
University Press, Cambridge, UK.

Cummins, G., Adams, R., and Newell, T.
(2008). Scientific computation
through a GPU. In Proceedings of
the Southeastcon 2008, an IEEE con-
ference, Huntsville, AL, pp. 244–246.
http://ieeexplore.ieee.org/xpl/freeabs_
all.jsp?arnumber=4494293

Gewaltig, O., and Diesmann, M. (2007).
NEST (neural simulation tool).
Scholarpedia 2, 1430.

Goddard, N. H., Hucka, M., Howell, F.,
Cornelis, H., Shankar, K., and
Beeman, D. (2001). Towards NeuroML:
model description methods for col-
laborative modelling in neuroscience.
Philos. Trans. R. Soc. Lond., B, Biol. Sci.
356, 1209–1228.

Hines, M. L., Morse, T., Migliore, M.,
Carnevale, N. T., and Shepherd, G. M.
(2004). ModelDB: a database to sup-
port computational neuroscience.
J. Comput. Neurosci. 17, 7–11.

Luebke, D., Harris, M., Krüger, J.,
Purcel l , T. , Govindaraju, N.,
Buck, I., Woolley, C., and Lefohn, A.

(2004). GPGPU: General Purpose
Computation on Graphics Hardware.
Los Angeles, CA, ACM, p. 33.

MacGregor, R. J. (1987). Neural and
Brain Modeling. Academic Press,
San Diego.

Morrison, A., Diesmann, M., and
Gerstner, W. (2008). Phenomenological
models of synaptic plasticity based on
spike timing. Biol. Cybern. 98, 459-478.
PMID: 18491160

Morrison, A., Straube, S., Plesser, H. E.,
and Diesmann, M. (2007). Exact sub-
threshold integration with continu-
ous spike times in discrete-time neural
network simulations. Neural Comput.
19, 47–79.

Song, S., Miller, K. D., and Abbott, L. F.
(2000). Competitive hebbian learn-
ing through spike-timing-dependent
synaptic plasticity. Nat. Neurosci. 3,
919–926.

Tsodyks, M. V., and Markram, H. (1997).
The neural code between neocorti-
cal pyramidal neurons depends on
neurotransmitter release probabil-
ity. Proc. Natl. Acad. Sci. U.S.A. 94,
719–723.

Vogels, T. P., and Abbott, L. F. (2005).
Signal propagation and logic gating
in networks of integrate-and-fi re neu-
rons. J. Neurosci. 25, 10786–10795.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 11 September 2008; paper
 pending published: 30 September 2008;
accepted: 26 October 2008; published
online: 18 November 2008
Citation: Goodman D and Brette R (2008)
Brian: a simulator for spiking neural net-
works in Python. Front. Neuroinform. (2008)
2:5. doi: 10.3389/neuro.11.005.2008
Copyright © 2008 Goodman and Brette.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

