
Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 19 December 2008
doi: 10.3389/neuro.11.006.2008

PyMOOSE: interoperable scripting in Python for MOOSE

Subhasis Ray and Upinder S. Bhalla*

National Centre for Biological Sciences, Bangalore, India

Python is emerging as a common scripting language for simulators. This opens up many
possibilities for interoperability in the form of analysis, interfaces, and communications
between simulators. We report the integration of Python scripting with the Multi-scale Object
Oriented Simulation Environment (MOOSE). MOOSE is a general-purpose simulation system
for compartmental neuronal models and for models of signaling pathways based on chemical
kinetics. We show how the Python-scripting version of MOOSE, PyMOOSE, combines the
power of a compiled simulator with the versatility and ease of use of Python. We illustrate this
by using Python numerical libraries to analyze MOOSE output online, and by developing a GUI
in Python/Qt for a MOOSE simulation. Finally, we build and run a composite neuronal/signaling
model that uses both the NEURON and MOOSE numerical engines, and Python as a bridge
between the two. Thus PyMOOSE has a high degree of interoperability with analysis routines,
with graphical toolkits, and with other simulators.

Keywords: simulators, compartmental models, systems biology, NEURON, GENESIS, multi-scale models, Python,

MOOSE

Beeman, 1998; Carnevale and Hines, 2006; Hines, 1993) included
optimized custom code that would allow the simulation to be run
in affordable time and memory. This process of building domain-
specifi c general simulators has continued with several simulators
devoted to different aspects of computational and systems biology
(e.g., VCell, Smoldyn, COPASI). This proliferation of simulators
brings back the problems of model exchange and interoperability,
albeit at a higher-level than raw Fortran or C code. While these
simulators now have a common set of shared higher-level concepts
(e.g., compartments, channels, synapses), they use entirely different
vocabularies and languages for set up and control.

MOOSE is a new simulator project that supports simulations
across a wide range of scales in computational biology, includ-
ing computational neuroscience and systems biology. In order to
improve interoperability, MOOSE uses two existing languages:
the GENESIS scripting language, and Python. The Neurospaces
(Cornelis and De Schutter, 2003; http://neurospaces.sourceforge.
net/) project takes a distinct approach to supporting some GENESIS
capabilities using backward-compatible scripting, and it too can
utilize Python.

Most established simulators have their own scripting languages.
For example, NEURON uses hoc along with modl fi les to set up
simulations. GENESIS has its own custom scripting language.
MOOSE avoids introducing a new language, and instead inherits
the GENESIS parser. To increase compatibility, MOOSE has equiva-
lents for most objects in GENESIS, and many old scripts can be
run on MOOSE with little or no modifi cation. Given these existing
capabilities, why add Python scripting? Despite its fl exibility, the
GENESIS scripting language has several limitations:

1. Domain specifi city: It is not used outside GENESIS. This forces
the user to learn a special-purpose scripting language.

2. Problem with extensibility: While it is easy to write a script to
defi ne functions that can be included in other scripts, these

INTRODUCTION
In computational biology there are two approaches to developing
a simulation. First, write your custom program to do a specifi c
simulation, and second, write a model and run it in a general-
purpose simulator. While the fi rst approach is very common, it
requires the scientist to be a good programmer (or have one at
her/his disposal) and moves the focus towards programming rather
than science. Furthermore, it is very diffi cult for others to read such
a program and understand how it relates to the targeted biological
system. In this context, a model is a well-defi ned set of equations
and parameters that is meant to represent and predict the behavior
of a biological system. Ideally, a general-purpose simulator allows
the model to be separated from the low-level data-structures and
control. The scientist is no longer concerned with minutiae of soft-
ware engineering and can concentrate on the biological system of
interest. The model can be shared by other people and understood
relatively easily using intermediate-level descriptions of the model
with a more obvious mapping to the real biological system. General
simulators also lend themselves to declarative, high-level model
descriptions that have now become important part of scientifi c
interchange in the computational neuroscience and systems biol-
ogy communities (Beeman and Bower, 2004; Cannon et al., 2007;
Goddard et al., 2001; Hucka et al., 2002; http://www.morphml.org/;
http://neuroml.org, http://sbml.org). The goal of this paper is to
show how the simulator Multi-scale Object Oriented Simulation
Environment (MOOSE; http://moose.ncbs.res.in/, mirrored at
http://moose.sourceforge.net/) uses Python to address these issues
of interoperability with analysis software, graphical interfaces, and
other simulators.

General-purpose simulators have been in use since the venerable
circuit simulator SPICE was utilized to solve compartmental mod-
els (Bunow et al., 1985; Segev et al., 1985). While this level of gen-
erality ran into limitations of computing power, more specialized
neuronal simulators such as GENESIS and NEURON (Bower and

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Michael Hines, Yale University, USA
Hugo Cornelis, UTHSCSA, USA

*Correspondence:

Upinder S. Bhalla, National Centre for
Biological Sciences, Tata Institute of
Fundamental Research, Bellary Road,
Bangalore 560065, India.
e-mail: bhalla@ncbs.res.in

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 2

Ray and Bhalla Python interface for MOOSE

interpreted functions are much slower than compiled code. The
GENESIS scripting language itself provides for some degree of
extensibility, but this is diffi cult to implement. Adding a sin-
gle command requires implementation in C, as well as defi -
nition of the command in a confi guration fi le that must be
pre- processed to include into the interpreter. The addition of a
new class is still more involved.

3. Lack of existing libraries: The GENESIS scripting language is a
special-purpose language and has no additional features other
than those written into the language.

4. Syntax: The syntax is complex and inconsistent as a result
of accretion of features by many developers and users. For
 example, arrays are implemented in three inconsistent ways in
the GENESIS scripting language: as arrays of elements, entries
within tables and extended fi elds.

To harness the capabilities provided by a modern widely used
scripting language, we chose a Python interface. Among the plethora
of programming languages, Python has some special advantages:

1. Interactive: We need a scripting language that comes with a
command line interpreter. Python is suited for this. User
interaction is as important as running standalone scripts.
Simulations are built incrementally, and it is important that
users can try out bits and pieces of code and get quick feedback
from the system. Moreover, this practice helps in identifying
errors early in the development process, which saves conside-
rable time and computational resources.

2. It is easy to interface with other programming languages:
Python itself is written in C. It has a standard developers’ API
for creating extension libraries. This simplifi es creating Python
interface for C/C++ code. Moreover, tools like Simplifi ed
Wrapper and Interface Generator (SWIG), Qt sip, boost-
Python can automate the task of creating a Python interface
from existing C/C++ code.

3. It is portable: Python runs on Linux, Solaris, Macintosh and
Windows operating systems and many other platforms (http://
www.python.org/about/).

4. Free: Python is free and open-source.
5. Widely used: Python is widely used in scientifi c community.

There is a large repertoire of third-party libraries for Python.
Many of these libraries are free, open source and mature.

In this study we show how PyMOOSE harnesses each of these
capabilities.

MATERIALS AND METHODS
There are two common approaches to create a Python interface to
a C/C++ library: (1) statically link it with the Python interpreter –
which involves compiling the Python interpreter source-code,
(2) create a dynamic link library and provide it as a Python mod-
ule. We took the second approach as it provides more fl exibility
on the choice of the Python interpreter and reduces the burden
on the maintainer.

MAPPING MOOSE CLASSES INTO PYTHON
MOOSE has a set of built-in classes for representing simulation
entities. These classes provide a mapping from the concept space

to the computational space. Physical or chemical properties and
other relevant parameters are accessible as member fi elds of the
classes and the time-evolution of these parameters is calculated by
a special process method of each class. These classes add another
layer over ordinary C++ classes to provide messaging and sched-
uling as well as customized access to the member fi elds. MOOSE
provides introspection (Maes, 1987; Smith, 1982), so that full fi eld
information for each class is accessible to the programmer. This
class information is statically initialized for each class at startup
time. We utilized this class information and SWIG (Beazley, 1996;
http://www.swig.org) to build the Python interface.

SWIG is a mature software with good support for Python and
C/C++ interfacing as well as many other languages. While it is rather
simple to create an interface for ordinary C++ class using SWIG, our
task was complicated because MOOSE classes have another layer
over ordinary C++ classes. For this reason we created a framework
for Python interface with additional C++ classes to wrap MOOSE
classes and a few classes to manage the system.

SIMULATOR CONTROL THROUGH PYTHON
All operations on MOOSE objects are carried out via a special
class, Shell, of which there is a single instance on each processor
node that is running MOOSE. In PyMOOSE we implemented
a singleton context object to communicate with the Shell. The
context object provides a set of functions that can be called to
pass appropriate messages to the Shell. The user can call global
MOOSE functions by calling the corresponding methods of the
context object. Operations like creation of objects, setting integra-
tion time step, running the simulation are all done through the
context object.

We created a one-to-one mapping of MOOSE classes to Python
classes by means of light-weight C++ wrapper classes. All the wrap-
per classes were derived from one common base class. Each MOOSE
object is identifi ed by an Identifi er (ID) fi eld. The main data content
of a wrapper class instance is the ID of the corresponding object in
MOOSE. Additionally, the wrapper classes have a static pointer to
the single instance of the context object. Wrapper classes provide
accessor methods that can be used to access the fi elds in the cor-
responding MOOSE object.

These C++ wrapper classes were input to SWIG to create the
Python module. After translation to Python, the user sees the mem-
ber fi elds in the Python classes in place of the accessor methods in
the C++ wrapper classes. Behind the scene the Python interpreter
calls these accessor methods whenever the user script tries to access
MOOSE object fi elds (Figure 1A).

Manually developing C++ wrapper classes for all MOOSE classes
was a tedious but repetitive task. We therefore embedded stub code
in the MOOSE initialization code to generate most of the wrap-
per code programmatically using Run-Time Type Information
in C++. This auto-generated code was used with a few modifi ca-
tions to generate a Python module using SWIG. SWIG takes an
interface fi le with SWIG-specifi c directives and generates a single
C++ fi le for the library and a Python source-code fi le that contains
support code. We completed the PyMOOSE code generation by
compiling and linking the SWIG-generated C++ source-code as
a dynamic library. This dynamic library can be imported in any
Python program.

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 3

Ray and Bhalla Python interface for MOOSE

LEGACY MODELS AND PyMOOSE
The PyMOOSE context object keeps a single instance of the
GenesisParser class in order to run legacy GENESIS scripts.
Whenever the user asks for executing a GENESIS statement, the
context object disconnects itself from the Shell and connects the
GenesisParser object instead. The GENESIS statement string is
passed to the GenesisParser object, which executes it as if the user
typed it in at the MOOSE command prompt. After execution of the
statement (or script) the GenesisParser object is disconnected from
the Shell and the context object is reconnected (Figure 1B).

While it is valuable to run GENESIS scripts within PyMOOSE,
this feature is intended only to support legacy code and is better
avoided in new model development. The use of GENESIS scripting
language inside Python defeats the whole purpose of moving to
a general-purpose programming language. It reduces readability
and the user needs to know both languages in order to understand
the code.

RESULTS
We used the Python interface of MOOSE to achieve three key tar-
gets: (1) Interfacing with standard libraries in a mature scientifi c
computing language, (2) giving access to a portable GUI library
for developing user interface and (3) enabling MOOSE to work
together with other simulators.

INTERFACING SIMULATIONS WITH PYTHON LIBRARIES
We used Python scientifi c and graphing libraries to analyze and
display the output of a PyMOOSE simulation. The interface with
Python gives the user freedom to choose from a wide variety of
scientifi c and numerical libraries available from third parties. We
demonstrate the use of two libraries along with PyMOOSE for
developing simulations with plotting and data analysis within
Python. The fi rst of these, NumPy, is a library that provides data
structures and algorithms for fast matrix manipulation (http://
numpy.scipy.org/). Even though Python is interpreted, with attend-
ant slow execution, NumPy library provides access to compiled code
and hence the functions from the library are as fast as compiled
code. The second library, matplotlib, provides a rich set of func-
tions for plotting 2D data both in hardcopy formats and interac-
tively (http://matplotlib.sourceforge.net/). It can use NumPy for

fast matrix operations in Python and several portable GUI toolkits
(GTK/Qt/Tk/wxWidgets) as graphical back-end.

We implemented a simulation of the squid giant axon using
Hodgkin–Huxley Na+ and K+ channels and parameters (script
attached in Appendix). We applied an injection current with
random amplitude uniformly distributed between 0 and 100 nA.
We recorded the time-series for the membrane potential during
the simulation in a MOOSE table object, which can accumulate
a time-series of simulation output (Figure 2A). The interface
to Python was done using the MOOSE table class. This class is
exposed to Python with methods to emulate iterable type (Martelli
et al., 2005). The array constructor in NumPy accepts an iter-
able object and creates a NumPy array with a copy of the con-
tents of the object. Thus the user is relieved of explicitly iterating
over the table entries and copying them to a NumPy array. This
completes the interface from the MOOSE simulation output to
NumPy (Figure 2B). We used the fast Fourier transform operation
available in NumPy to compute the discrete Fourier transform of
the time-series of the simulated membrane potential. We used
matplotlib to plot the original time-series, as well as the output
of the FFT (Figure 2C).

Overall, this example simulation illustrates how PyMOOSE
facilitates interoperability of Python numerical and graphing
libraries with MOOSE.

PORTABLE GUI THROUGH PYTHON
The use of Python separates the problem of GUI development
from simulator development. Moreover, it gives one the freedom
to choose from a number of free GUI toolkits. The major platform
independent GUI toolkits with Python interfaces are Qt(TM) avail-
able as PyQt, wxWidgets (wxPython), Tk and GTK (http://wiki.
python.org/moin/GuiProgramming; http://www.python.org/doc/
faq/gui/). We used PyQt4 to develop a simple user interface for a
clone of the GENESIS squid tutorial in MOOSE. We selected Qt4
as it is a mature and clean toolkit that is freely distributed and runs
well on all the major operating systems.

The program was divided into three modules – (1) the squid
axon compartment with Hodgkin–Huxley channels, (2) a model
object which combined a few tables with the squid compartment to
record various parameters through the time of the simulation, and

context

Python

Compartment
ID: 314

Channel
ID: 271

MOOSE

shell

Compartment
ID: 314
Vm
Rm
Cm

Channel
ID: 271
Ik

A

PyMooseContext

Shell

GenesisParser

Python phase

Legacy phase

B

FIGURE 1 | PyMOOSE interface. (A) Communication between
Python and MOOSE. MOOSE represents concepts through objects and
manipulates them using the singleton Shell object. PyMOOSE provides a
light-weight mirror representation of each MOOSE object. Operations on
PyMOOSE objects are communicated to MOOSE via the context and

the Shell object. (B) Accessing legacy scripts through PyMOOSE.
The Shell object is usually controlled through the PyMooseContext. When
loading a GENESIS script, control is temporarily passed to the legacy
GENESIS script language parser, and then returned to the
PyMooseContext.

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 4

Ray and Bhalla Python interface for MOOSE

(3) the GUI to take user inputs and to plot data. We implemented
the squid axon model as described in the previous section, using
PyMOOSE to set up and parameterize the model. As before, the
model was interfaced with table objects to monitor time-series out-
put of the simulation. Finally, we implemented the GUI by loading
in the PyQt4 libraries, and using Python calls to set up the inter-
face (Figure 3). While there are Qt IDEs available (http://trolltech.
com/products/qt/), we constructed the interface through explicit
Python calls to create widgets, assign actions, and manage output
data. Qt uses a signal-slot mechanism for passing event informa-
tion. PyQt allows the use of arbitrary Python methods to be used
as slots. Hence we could connect the GUI widgets to methods in
the PyMOOSE model class and thus provided simulation control
through the GUI in a clean manner. We used PyQwt, a Python
interface of the Qt-based plotting library Qwt, for creating output
graphs. Since PyQwt can take NumPy arrays as data, we converted
the tables in MOOSE to NumPy arrays and used PyQwt plotting
widgets to display them.

We based the layout of the simulation on the widely used GENESIS
Squid tutorial program. To confi rm portability of the system, we ran
the model on Linux as well as the Windows operating system.

This exercise demonstrated the capability of PyMOOSE to draw
upon existing graphical libraries for its graphical requirements. This
is an important departure from GENESIS. The GENESIS graphical
libraries (XODUS) were an integral part of the C code-base and
XODUS objects were visible as, and manipulated in the same way
as other GENESIS objects. In contrast, PyMOOSE did not need to
implement any graphical objects within the MOOSE C++ code,
but instead reused extant third-party graphical libraries available
for Python. Furthermore the existing libraries are professionally
designed and have a much more consistent look-and-feel than did
the original GENESIS graphical library, XODUS (Bhalla, 1998).

SIMULATOR INTEROPERABILITY
With Python becoming a popular language for developing platform
independent scripts, several neuronal simulators have implemented

80
100
120

A
injection current (nA)

membrane voltage (mV)

PyMOOSE Table

__getitem__(index)

B

20

0

40

60

80

100

P
o

w
er

C

-100
-80
-60
-40
-20

0
20
40
60

0 50 100 150 200

time (ms)

__setitem__(index, value)
__len__()
__iter__()

NumPy
array constructor

NumPy array

matplotlib
plot

0 2 4 6 8 10 12 14 16 18

FIGURE 2 | Analysis and graphing of a PyMOOSE simulation. (A) Simulation
input (random input current) and output (membrane potential). (B) Data fl ow. The
simulation time-series is recorded in the MOOSE table object, which is visible to

Python as a sequence object. This is accessed as an array in NumPy. The fast
Fourier transform is applied to this array, and the result plotted in Matplotlib.
(C) Output of FFT analysis (with the fundamental frequency removed).

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 5

Ray and Bhalla Python interface for MOOSE

Python interfaces. This raises the possibility of using Python as a
glue language to run simulations that span different simulators.
As a fi nal demonstration of interoperability, we used PyMOOSE
with PyNEURON to build a multi-scale, multi-simulator model
that incorporates neuronal electrical activity as well as biochemical
signaling (Figure 4A).

We used NEURON to model a multicompartmental electri-
cal model of a Type A neuron from the CA3b region of the rat
hippocampus (Migliore et al., 1995; http://senselab.med.yale.
edu/ModelDB/ShowModel.asp?model=3263). This is a morpho-
logically detailed model with experimentally constrained distri-
bution of membrane ion channels. It reproduces experimental
observations of fi ring behavior and intracellular Ca2+ dynamics.
We modifi ed the hoc script for the model, to run it for arbitrary
time intervals. We directed the output data to Vector objects in
NEURON. The Python wrapper class for this model provided
a handle for the simulation parameters and functions defi ned
in the hoc script. As described in the PyNEURON documen-
tation (http://www.neuron.yale.edu/neuron/docs/help/neuron/
neuron/classes/python.html), Python commands were directed
to the NEURON engine by constructing hoc statement strings
and executing them through the hoc interpreter instance pro-
vided by the neuron module. Moreover, hoc object references are
directly available in Python as attributes of the hoc interpreter
object. Thus accessing hoc objects was quite clean in Python
(Figure 4A).

We used MOOSE to model calcium-triggered biochemical
signaling events at the synapse. We used a model of a bistable
MAPK-PKC-PLA2 feedback loop that was originally implemented
in GENESIS/Kinetikit (Ajay and Bhalla, 2004; Bhalla and Iyengar,
1999; Bhalla et al., 2002) and uploaded to the DOQCS database
(http://doqcs.ncbs.res.in/template.php?&y=accessiondetails&an=
79). The model was defi ned in the GENESIS scripting language. We
used the legacy scripting mode of PyMOOSE to load the GENESIS/
kinetikit model. The simulation objects thus instantiated were
standard MOOSE objects, and were accessible using Unix-like path
strings. The PyMOOSE interface exposed these objects as regular
Python objects. Thus access to the MOOSE objects, represent-
ing GENESIS data concepts, was also straightforward in Python
(Figure 4A).

We used the Python interface to accomplish three critical opera-
tions to combine the two simulations: (1) Initialization, (2) run-
time control and synchronization, and (3) variable communication
and rescaling.

1. To initialize the models, we used PyNEURON command load_
fi le to load the hoc script. Once the script is loaded, variables
and functions defi ned in the script become available as mem-
bers of the hoc interpreter instance inside Python. In this case
we defi ned a setup function to initialize the NEURON simula-
tion. This function is called in the constructor (__init__) of the
Python wrapper class over the NEURON simulation. At this

FIGURE 3 | Screen shot of PyMOOSE/Qt interface for the Hodgkin–Huxley model. The layout is closely modeled on the Squid demo from GENESIS.

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 6

Ray and Bhalla Python interface for MOOSE

stage we applied a test pulse of 1 nA for 250 ms to measure the
fi ring properties of the neuron before potentiation. We then
ran the NEURON model for 1 s to allow the model to settle.
Similarly we loaded the GENESIS/Kinetikit model using the
loadG command, and ran this simulation for 1800 s to settle.

2. In the Python wrapper class for each model, we defi ned a
run method to advance the simulation in time. That for the
NEURON model uses a run function we defi ned in the custom

hoc script. This run function calls NEURON’s fadvance com-
mand to advance the simulation. In the wrapper class for the
GENESIS/Kinetikit model the run method calls the step com-
mand to advance the simulation (Figure 4B).

3. We used the Python interface to read out somatic calcium
levels from the NEURON model and insert them into the
MOOSE model, and to feed back MAPK activity changes from
the MOOSE model to modulate KCa conductances.

0
0.2
0.4
0.6
0.8

1

0 50 100 150 200

C
on

ce
nt

ra
tio

n

D [Ca2+] relative

[MAPK*] relative

-100
-80
-60
-40
-20

0
20
40
60

0 50 100 150 200

V
m

 (m
V

)

Time (s)

E

10

15

Python

NEURON
hoc interpreter

hoc script

load file

loadG

MOOSE
genesis parser

Kinetikit

GENESIS-kkit script

read kkit dump

F

B

A

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

1.00 1.05 1.10 1.15 1.20 1.25

V
m

 (m
V

)

Time (s)

C

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

192.25 192.30 192.35 192.40 192.45 192.50

V
m

 (m
V

)

Time (s)

Time (s)

in
je

ct
io

n
cu

rr
en

t
(n

A
)

G

0 1 1.25 2.25 9.25 192.25 192.5

MOOSE

NEURON

Time (seconds)
1800

2.25
190

0.25

Set up
Combined simulation

Test pulse

MOOSE NEURON

[MAPK*]

[Ca2+]

1

FIGURE 4 | A combined, multi-scale NEURON and GENESIS model. (A) Setup
of combined model, using NEURON and GENESIS model defi nition fi les.
(B) Information fl ow during simulation. The two models were run independently
for an initial settling period and for the test pulse to the NEURON model. During
the combined simulation phase, each model was advanced for 1 s and then data
was transferred via Python to the other model. Finally a second test pulse was
delivered. (C) Response of NEURON model to fi rst test pulse. (D) Calcium and

MAPK levels in the signaling model. (E) Voltage responses from the NEURON
model. (F) Experiment design and input to NEURON model. A test current pulse
of 0.15 nA was delivered for 0.25 s to the NEURON model in the initialization
phase. At the start of the combined simulation, a stimulus of 10 nA was
delivered for 7 s. After 180 s of combined simulation a second test pulse
(0.15 nA, 0.25 s) was applied. (G) Response of NEURON model to second test
pulse. The difference is due to modulation of KCa by the elevated MAPK activity.

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 7

Ray and Bhalla Python interface for MOOSE

We wrote another higher-level function run to advance the
 coupled simulations using the two wrapper classes (not to be con-
fused with the member method run of these classes). This function
(1) creates instances of both wrappers, which involves initializing
the models, (2) runs the NEURON simulation for 1 s, (3) reads
out the calcium level, performs rescaling and updates the kinetic
model with this value, (4) advances the kinetic simulation for 1 s
to catch up with the electrical model, (5) reads out the activity
level of MAPK from the GENESIS/Kinetikit model and modifi es
the [Ca2+] dependent K+ channel conductances in the NEURON
model in inverse proportion to this (Figures 4E,F).

Our simulated experiment is illustrated in Figure 4F. We loaded
the models and allowed them to settle. We measured baseline
neuronal responses at this stage using a 250-ms, 0.15 nA current
pulse. Following this we used the run function for the further time-
 evolution of the system. We applied a strong LTP-inducing stimulus
to the neuronal model for 7 s, and then allowed the simulation to
continue for 183 s. Finally we repeated the 250 ms, 0.15 nA test for
neuronal responses.

The time-evolution of membrane potential, Ca2+ levels, and
MAPK activity are shown in Figures 4D,E. The initial and fi nal
burst waveforms of the neuron are shown in Figures 4C,G. We
observe that the coupled model shows how electrical stimulation
can lead to signaling events, with feedback effects on the electri-
cal properties of the neuron. We should point out that this simu-
lation is only a demonstration and the relationship between the
chemical system and the biophysical properties of the neuron is
over- simplifi ed, although the two component models we used are
realistic within their respective domains.

This example also illustrates the effi ciency of using Python
for data transfer when traffi c volumes are small compared to the
computational times. The neuronal calculations in NEURON took
about 91% of the simulation run-time, the signaling calculations
in MOOSE took ∼8.5%, and the data transfer through Python
accounted for only around 0.5%. As we discuss below, there may
be other interface contexts where more effi cient, low-level data
transfer protocols may be needed, and the relatively facile Python
interface may not be appropriate.

DISCUSSION
We have used PyMOOSE, the Python interface to MOOSE, to
achieve interoperability at three levels. First, we used standard
mathematical packages in Python to analyze MOOSE output.
Second, we used the QT graphical toolkit from within Python to
build a GUI for a MOOSE simulation. Third, we used Python as a
glue language to run a cross-simulator model combining an elec-
trophysiological model set up in NEURON with a biochemical
signaling model set up in GENESIS/Kinetikit.

ISSUES WITH PYTHON INTEROPERABILITY
The strengths of the Python language make it perhaps too easy to
repeat well-known mistakes in simulation development. We con-
sider two such issues. First, Python is an interpreted language in
most implementations. In the context of simulations, it is not meant
for number crunching. Well-designed libraries like NumPy can
hide some of these limitations from the user, and fast hardware can
conceal other ineffi ciencies. However, given the same specialized

algorithms, a compiled language will perform better than an inter-
preted one. Therefore, for large simulations, we need to combine the
best possible algorithms with optimized and compiled languages.
MOOSE has as one of its goals the capability of managing the
low-level, high-traffi c fl ow of data between different numerical
engines incorporated into MOOSE. We do not consider Python
appropriate for such operations. Second, many aspects of model
specifi cation should be done using declarative rather than proce-
dural approaches (Cannon et al., 2007; Crook et al., 2005, 2007).
However, Python makes procedural model defi nition very easy, and
may even provide a certain level of interoperability if several simu-
lators provide equivalent calls for model setup. For example, there
are some impressive recent efforts to develop a standard vocabulary
for network defi nitions across simulators (http://neuralensemble.
org/trac/PyNN/; this issue). While the presence of Python as a
common link language may temporarily address the interoper-
ability issues of this approach, we feel that it would be a cleaner
design to use a separate, declarative defi nition for networks such as
NeuroML (http://neuroml.org). Nevertheless, we completely agree
that a standard vocabulary for model defi nitions is an important
fi rst step toward this goal.

MODEL SPECIFICATION VS. SIMULATOR CONTROL
Model specifi cation and exchange issues have been ably addressed
by the communities developing model specifi cation languages
(Le Novère et al., 2005; Qi and Crook, 2004; http://neuroml.org;
http://sbml.org). The current paper focuses on the second prob-
lem, that of making it easier for researchers to control and set up
these diverse simulation tools. We have shown how this can be
done with the simulator MOOSE, using Python as a glue language.
Run-time communication between simulators has previously been
achieved using the NEOSIM framework, which uses Java (Goddard
et al., 2001; Howell et al., 2002). More recently, the MUSIC frame-
work specifi es an API for simulators to use to communicate with
each other (Ekeberg and Djurfeldt, 2008). Our study is novel in
two respects. First, we use the built-in Python capabilities of two
simulators to achieve run-time communication, without the need
to modify either simulator or to build an additional framework
for communication. Second, we carry out bidirectional commu-
nications across scales (biophysical to biochemical models) and
involving continuous data types (channel conductance and calcium
concentrations) rather than spike events.

The evolution of neuronal simulator technology has seen a grad-
ual separation of different aspects of modeling, with a correspond-
ing improvement in interoperability. The fi rst step was to develop
higher-level simulation tools (e.g., NEURON and GENESIS) to
separate the numerical and housekeeping code from the model-
specifi c code. This let people share models, provided they were
written for the same simulator. The second was the development
of declarative model specifi cations that were separate from the
simulator. This initially took the form of semi-declarative cell
morphology fi les (NEURON ‘.geom’ fi les and GENESIS ‘.p’ fi les),
which required additional fi les for channel specifi cation. This proc-
ess of separation of model defi nition from simulator control has
continued. The Neuroconstruct suite refi nes the declarative defi -
nition of models, with NeuroML and ChannelML as declarative
defi nitions suffi cient for most single-neuron models. Importantly,

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 8

Ray and Bhalla Python interface for MOOSE

at this level quite different simulators can use the same original
model defi nition to run simulations. A third stage is the conver-
gence of different simulators to use the same link language, in this
case Python. This makes it possible to explicitly separate model
defi nition from simulator control. In the current paper, we have
illustrated this with a composite signaling-neuronal model drawing
on NEURON and MOOSE. We have utilized two legacy models,
one written for NEURON, and one written for GENESIS. Even
though the legacy models themselves were not entirely set up in a
declarative manner, we used the original model defi nitions only to
load in the model specifi cations. We used Python as the procedural
language to control these operations, and to mediate communica-
tion between the models at run-time.

SUSTAINABILITY OF PYTHON INTEROPERABILITY
Simulator interoperability has long been regarded as important
(Crook et al., 2005, 2007; Goddard et al., 2001). Such projects have
been diffi cult to execute, and still harder to maintain, because they

depend on multiple underlying simulator projects, each with differ-
ent APIs, directions and life-cycles. Python is a potential way out of
this problem. First, Python itself is a well-established language with
a strong community and support. Second, the issues of interfacing
to Python are now being undertaken by individual simulator devel-
opment teams. Interoperability emerges from these independent
efforts rather than requiring a separate project to achieve coordina-
tion. Third, PyMOOSE itself will be maintained for the long-term,
since Python will be the default scripting language for MOOSE.
We suggest that long-term improvements in interoperability will
be driven both by widespread simulator support for declarative
model specifi cations, and by a richer ecosystem of simulators fl u-
ent in Python.

APPENDIX
Program listing: ca3_db.hoc provides the functions to load and
initialize the NEURON CA3 cell model as well as for advancing the
simulation for a specifi ed interval and for updating parameters.

/**

 * Derived from Hippocampal CA3 pyramidal neuron model from the paper

 * M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer

 * simulations of morphologically reconstructed CA3 hippocampal neurons, J.

 * Neurophysiol. 73, 1157-1168 (1995).

 * The original model is available in modeldb: accession no: 3263

 * http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=3263

 *

 * Modifi ed by: Subhasis Ray , 2008

 **/

objref cvode, vecCai, vecT, vecV, outFile, stim1, stim2, stim3, fi h

vecV = new Vector()

vecCai = new Vector()

vecT = new Vector()

outFile = new File()

cvode = new CVode(0)

cvode.active(1)

cvode.atol(1e-3)

START = 2

AMP = 1.0

// ************* NEURON A **********

FARADAY=96520

PI=3.14159

secondorder=2

dt=0.025

celsius=30

fl agl=0

xopen("ca3a.geo")

proc conductances() {

 forall {

 insert pas e_pas=-65 g_pas=1/60000 Ra=200

 insert cadifus

 insert cal gcalbar_cal=0.0025

 insert can gcanbar_can=0.0025

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 9

Ray and Bhalla Python interface for MOOSE

 insert cat gcatbar_cat=0.00025

 insert kahp gkahpbar_kahp=0.0004

 insert cagk gkbar_cagk=0.00055

 }

 soma {

 insert nahh gnabar_nahh=gna

 insert borgkdr gkdrbar_borgkdr=gkdr

 insert borgka gkabar_borgka=gka

 insert borgkm gkmbar_borgkm=gkm

 }

 for i=0,1 dend2[i] {

 insert nahh gnabar_nahh=gna

 insert borgkdr gkdrbar_borgkdr=gkdr

 insert borgka gkabar_borgka=gka

 insert borgkm gkmbar_borgkm=gkm

 }

 for i=0,2 dend3[i] {

 insert nahh gnabar_nahh=gna

 insert borgkdr gkdrbar_borgkdr=gkdr

 insert borgka gkabar_borgka=gka

 insert borgkm gkmbar_borgkm=gkm

 }

 for i=37,38 dend3[i] {

 insert nahh gnabar_nahh=gna

 insert borgkdr gkdrbar_borgkdr=gkdr

 insert borgka gkabar_borgka=gka

 insert borgkm gkmbar_borgkm=gkm

 }

}

proc init() {

 t=0

 coord_cadifus()

 forall {

 cao=2

 cai=50.e-6

 ek=-91

 v=-65

 if (ismembrane("nahh")) {ena=50}

 }

 vecV.record(&soma.v(0.5))

 vecCai.record(&soma.cai(0.5))

 vecT.record(&t)

 fi nitialize(v)

 fcurrent()

 forall {

 if (ismembrane("nahh")) {e_pas=v+(ina+ik+ica)/g_pas} else {e_pas=v+(ik+ica)/g_pas}

 }

 cvode.re_init()

}

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 10

Ray and Bhalla Python interface for MOOSE

proc setup(){

 strength = 1.0 /*namps*/

 tstim = 50

 tstop=500

 gna=0.015

 gkdr=0.03

 gka=0.001

 gkm=0.0001

 conductances()

 /* The schedule of experiment is as follows:

10nA

0.15nA 0.15nA

1s 0.25s 7s 183s 0.25s 0.05s

 The 1800 s runs with 1 s intervals interspersed with 1 s of

 kinetic simulation and update of gkbar for all ca dependent k

 channels.

 The genesis model needs over 1 uM [Ca2+] for 10 s.

 */

 soma {

 // fi rst test pulse

 stim1 = new IClamp(0.5)

 stim1.amp = 0.15

 stim1.del = 1000.0

 stim1.dur = 250

 // tetanus pulse

 stim2 = new IClamp(0.5)

 stim2.amp = 1.0

 stim2.del = 2250

 stim2.dur = 7e3

 // fi nal test pulse

 stim3 = new IClamp(0.5)

 stim3.amp = 0.15

 stim3.del = 192.25e3

 stim3.dur = 250

 }

 init()

}

proc update_gkbar(){/* multiply all Ca2+ dependent K+ conductance by $1 */

 forall {

 gkahpbar_kahp = gkahpbar_kahp * $1

 }

 soma {

 print "soma gkdrbar before:", gkdrbar_borgkdr

 gkdrbar_borgkdr = gkdrbar_borgkdr * $1

 gkmbar_borgkm = gkmbar_borgkm * $1

 print "soma gkdrbar after", gkdrbar_borgkdr

 }

 for i=0,1 dend2[i] {

 gkdrbar_borgkdr = gkdrbar_borgkdr * $1

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 11

Ray and Bhalla Python interface for MOOSE

 gkmbar_borgkm = gkmbar_borgkm * $1

 }

 for i=0,2 dend3[i] {

 gkdrbar_borgkdr = gkdrbar_borgkdr * $1

 gkmbar_borgkm = gkmbar_borgkm * $1

 }

 for i=37,38 dend3[i] {

 gkdrbar_borgkdr = gkdrbar_borgkdr * $1

 gkmbar_borgkm = gkmbar_borgkm * $1

 }

 fcurrent()

}

access soma

distance()

/* run for interval specifi ed as argument# 1 */

proc run(){

 t_start = t

 while (t < (t_start + $1)){

// print "run() - @t=", t

 fadvance()

 }

// print "run(): t_start =", t_start, " current time =", t, "run interval =", $1

}

proc do_run(){

 setup()

 print "setup done. running 7.25s"

 run(12250)

 print "t = ", t, "ms. done running. dumping data in test_neuron1.dat"

 outFile.wopen("test_neuron1.dat")

 for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %g\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6,

vecV.x(ii)) // the original GUI plots this function of cai instead of absolute

value - unit is nM*2

 }

 outFile.close()

 print "done dumping. running for 5s with 0.5nA"

 run(5000)

 print "t =", t, "ms. soma.Cai = ", soma.cai(0.5), ". now updating gkbar"

 update_gkbar(10.0)

 print "done updating. writing to fi le"

 outFile.wopen("test_neuron2.dat")

 for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %g\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6,

vecV.x(ii)) // the original GUI plots this function of cai instead of absolute

value - unit is nM*2

 }

 outFile.close()

 print "done dumping. now running the rest"

 run(1800300)

 print "t = ", t, "ms. done running. writing to fi le"

 outFile.wopen("test_neuron3.dat")

 for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6,

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 12

Ray and Bhalla Python interface for MOOSE

vecV.x(ii)) // the original GUI plots this function of cai instead of absolute

value - unit is nM*2

 }

 outFile.close()

}

Program listing 2: moosenrn.py – this program wraps the GENESIS model and the NEURON model and provides simulation control and data exchange

between the two simulators.

#!/usr/bin/env python

Author: Subhasis Ray

import sys

sys.path.append("/home/subha/lib/python2.5/site-packages")

sys.path.append("/home/subha/lib/python2.5/site-packages/neuron")

import pylab

import numpy

import neuron

import moose

class NeuronSim:

 """Wrapper class for the neuron simulation"""

 def __init__(self, fi leName="ca3_db.hoc"):

 """Load the fi le specifi ed by fi leName"""

 self.hoc = neuron.h

 self.hoc.load_fi le(fi leName)

 self.hoc.setup()

 def run(self, interval):

 """Simulate for interval time in second"""

 self.hoc.run(interval * 1e3) # neuron keeps time in milli second

 def cai(self):

 """Returns cai of in nM"""

 return self.hoc.soma(0.5).cai

 def cai_record(self):

 """Returns a tuple containing the array of time points and the array

of cai values at the corresponding points"""

 timeVec = numpy.array(neuron.h.vecT)

 caiVec = numpy.array(neuron.h.vecCai)

 return (timeVec, caiVec)

 def v_record(self):

 """Returns a tuple containing the array of time points and the array

of membrane potential values at the corresponding points"""

 timeVec = numpy.array(neuron.h.vecT)

 vmVec = numpy.array(neuron.h.vecV)

 return (timeVec, vmVec)

 def update_kconductance(self, factor):

 """Modify the k hcannel conductances in inverse proportion of mapk_star_conc"""

 self.hoc.update_gkbar(factor)

 self.hoc.fcurrent()

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 13

Ray and Bhalla Python interface for MOOSE

 def saveplots(self, suffi x):

 cai = "nrn_cai_" + str(suffi x) + ".plot"

 vm = "nrn_vm_" + str(suffi x) + ".plot"

 t_series, vm_series, = self.v_record()

 t_series, cai_series, = self.cai_record()

 numpy.savetxt(cai, cai_series)

 numpy.savetxt(vm, vm_series)

 numpy.savetxt("nrn_t_" + str(suffi x) + ".plot", t_series)

class MooseSim:

 """Wrapper class for moose simulation"""

 volume_scale = 6e20 * 1.257e-16

 def __init__(self, fi leName="acc79.g"):

 self._settle_time = 1800.0

 self._ctx = moose.PyMooseBase.getContext()

 self._t_table = []

 self._t = 0.0

 self._ctx.loadG(fi leName)

 self.ca_input = moose.Molecule("/kinetics/Ca_input")

 self.mapk_star = moose.Molecule("/kinetics/MAPK*")

 self.pkc_active = moose.Molecule("/kinetics/PKC-active")

 self.pkc_active_table = moose.Table("/graphs/conc2/PKC-active.Co")

 self.pkc_ca_table = moose.Table("/graphs/conc1/PKC-Ca.Co")

 self.mapk_star_table = moose.Table("/moregraphs/conc3/MAPK*.Co")

 self.mapk_star_table.stepMode = 3

 self.mapk_star_table.connect("inputRequest", self.mapk_star, "conc")

 self.mapk_star_table.useClock(2)

 self.ca_input_table = moose.Table("/moregraphs/conc4/Ca_input.Co")

 self.ca_input_table.stepMode = 3

 self.ca_input_table.connect("inputRequest", self.ca_input, "conc")

 self.ca_input_table.useClock(2)

 self._ctx.reset()

 self._ctx.reset()

 def set_ca_input(self, ca_input):

 """Sets the conc. of Ca_input molecule"""

 print "set_ca_input: BEFORE: nInit =", self.ca_input.nInit, ", n =",

self.ca_input.n, ", setting to: ", ca_input* MooseSim.volume_scale

 self.ca_input.nInit = ca_input * MooseSim.volume_scale

 self.ca_input.n = ca_input * MooseSim.volume_scale

 print "set_ca_input: AFTER: nInit =", self.ca_input.nInit, ", n =",

self.ca_input.n

 def ca_input(self):

 """Returns scaled value of Ca_input conc."""

 return self.ca_input.conc

 def run(self, interval):

 """Run the simulation for interval time."""

 self._ctx.step(fl oat(interval))

 # Now expand the list of time points to be plotted

 points = len(self.pkc_ca_table) - len(self._t_table)

 delta = interval * 1.0 / points

 for ii in range(points):

 self._t_table.append(self._t)

 self._t += delta

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 14

Ray and Bhalla Python interface for MOOSE

 def pkc_ca_record(self):

 """Returns the time series for pkc_ca conc."""

 return (self._t_table, self.pkc_ca_table)

 def pkc_active_record(self):

 """Returns time series for pkc_active conc."""

 return (self._t_table, self.pkc_active_table)

 def mapk_star_conc(self):

 """Returns MAPK* conc. in uM"""

 return self.mapk_star.n / MooseSim.volume_scale

 def mapk_star_record(self):

 """Returns time series for [MAPK*]"""

 return (self._t_table, self.mapk_star_table)

 def saveplots(self, suffi x):

 pkc_a = "mus_pkc_act_" + str(suffi x) + ".plot"

 pkc_ca = "mus_pkc_ca_" + str(suffi x) + ".plot"

 mapk_star = "mus_mapk_star_" + str(suffi x) + ".plot"

 ca_input = "mus_ca_input_" + str(suffi x) + ".plot"

 numpy.savetxt("mus_t_" + str(suffi x) + ".plot", self._t_table)

 self.mapk_star_table.dumpFile(mapk_star)

 self.pkc_ca_table.dumpFile(pkc_ca)

 self.pkc_active_table.dumpFile(pkc_a)

 self.ca_input_table.dumpFile(ca_input)

 def test_run(self):

 self.run(500)

 print "After 500 steps of uninited run: [MAPK*] =", self.mapk_star_conc()

 self.ca_input.nInit = 10 * MooseSim.volume_scale

 self.ca_input.n = 10 * MooseSim.volume_scale

 self.run(5)

 print "After another 5 s with 10uM ca input: [MAPK*] =", self.mapk_star_conc()

 self.ca_input.nInit = 0.08 * MooseSim.volume_scale

 self.ca_input.n = 0.08 * MooseSim.volume_scale

 self.run(500)

 print "fi nished run. going to plot"

 print "After another 500 s with 0.08 uM ca input: [MAPK*] =",

self.mapk_star_conc()

 pylab.plot(pylab.array(self._t_table),

 pylab.array(self.pkc_active_table),

 pylab.array(self._t_table),

 pylab.array(self.pkc_ca_table))

 pylab.show()

if __name__ == "__main__":

 mus = MooseSim()

 mus.set_ca_input(0.08)

 mus.run(1800.0)

 mus.saveplots("1")

 start_mapk = mus.mapk_star_conc()

 nrn = NeuronSim()

 nrn.run(2.25)

 nrn.saveplots("1")

 fi le_ = open("cai_setings.txt", "w")

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 15

Ray and Bhalla Python interface for MOOSE

 # Interleaved execution of MOOSE and NEURON model

 # Synchronizing after every 1 s of simulation

 while nrn.hoc.t < 192.25e3

 scaled_cai = scale_nrncai(nrn.cai())

 mus.set_ca_input(scaled_cai)

 print "scaled_cai =",scaled_cai

 fi le_.write(str(nrn.cai()) + " " + str(scaled_cai)+"\n")

 mus.run(1.0)

 gkbar_scale = start_mapk / mus.mapk_star_conc()

 start_mapk = mus.mapk_star_conc()

 print "[mapk*] = ", start_mapk

 nrn.update_kconductance(gkbar_scale)

 nrn.run(1.0)

 print "time is ", nrn.hoc.t * le-3, "s"

 fi le_.close()

 nrn.saveplots("2")

 mus.saveplots("2")

 # fi nal test pulse run

 nrn.run(0.3)

 nrn.saveplots("3")

 t_series, vm_series, = nrn.v_record()

 t_series, cai_series, = nrn.cai_record()

 pylab.subplot(121)

 pylab.plot(t_series, numpy.array(vm_series), t_series, numpy.array(cai_series)

* 1e6)

 t_series, pkc_act, = mus.pkc_active_record()

 t_series, pkc_ca, = mus.pkc_ca_record()

 t_series, mapk_star, = mus.mapk_star_record()

 pylab.subplot(122)

 pylab.plot(numpy.array(t_series), numpy.array(pkc_act), numpy.array(t_series), numpy.array(pkc_

ca), numpy.array(t_series), numpy.array(mapk_star))

 pylab.show()

ACKNOWLEDGEMENTS
The development of MOOSE is supported by grants from the
Department of Biotechnology, India, and the NIGMS/Systems

Biology Center of New York. We acknowledge support from FACETS
to S. Ray to attend the FACETS/CodeJam meeting at CNRS, Gif-sur-
Yvette, which further stimulated PyMOOSE development.

REFERENCES
Ajay, S. M., and Bhalla, U. S. (2004).

A role for ERKII in synaptic
 pattern selectivity on the time-scale
of minutes. Eur. J. Neurosci. 20,
2671–2680.

Beazley, D. M. (1996). SWIG: an easy to
use tool for integrating scripting lan-
guages with C and C++. In Proceedings
of the 4th Annual USENIX Tcl/Tk
Workshop, Monterey, CA.

Beeman, D., and Bower, J. M. (2004).
Simulator-independent representa-
tion of ionic conductance models with
ChannelDB. Neurocomputing 58–60,
1085–1090.

Bhalla, U. S. (1998). Advanced XODUS
techniques. In The Book of GENESIS:
Exploring Realistic Neural Models with
the General Neural Simulation System,
2nd edn, J. M. Bower and D. Beeman,
eds (New York, Springer).

Bhalla, U. S., and Iyengar, R. (1999).
Emergent properties of networks of
biological signaling pathways. Science
283, 381–387.

Bhalla, U. S., Ram, P. T., and Iyengar, R.
(2002). Map kinase phosphatase as
a locus of flexibility in a mitogen-
 activated protein kinase signaling
network. Science 297, 1018–1023.

Bower, J. M., and Beeman, D. (1998). The
Book of GENESIS: Exploring Realistic
Neural Models with the General
Neural Simulation System, 2nd edn.
New York, Springer.

Bunow, B., Segev, I., and Fleshman, J. W.
(1985). Modeling the electrical behav-
ior of anatomically complex neurons
using a network analysis program:
excitable membrane. Biol. Cybern.
53, 41–56.

Cannon, R. C., Gewaltig, M. O., Gleeson, P.,
Bhalla, U. S., Cornelis, H., Hines, M. L.,

Howell, F. W., Muller, E., Stiles, J. R.,
Wils, S., and De Schutter, E. (2007).
Interoperability of neuroscience
modeling software: current status and
future directions. Neuroinformatics 5,
127–138.

Carnevale, N. T., and Hines, M. L. (2006).
The NEURON Book. Cambridge,
Cambridge University Press.

Cornelis, H., and De Schutter, E. (2003).
NeuroSpaces: separating modeling
and simulation. Neurocomputing
52–54, 227–231.

Crook, S., Beeman, D., Gleeson, P., and
Howell, F. (2005). XML for model
 specifi cation in neuroscience. In Special
Issue on Realistic Neuro Modeling –
Wam-Bamm ‘05 Tutorials. J.M.
Bower and D. Beeman (eds.). Brains
Minds Media, Vol. 1, bmm228 (urn:
nbn:de:0009-3-2282). http://www.
brains-minds-media.org/archive/228

Crook, S., Gleeson, P., Howell, F., Svitak, J.,
and Silver, R. A. (2007). MorphML: level
1 of the NeuroML standards for neuro-
nal morphology data and model specifi -
cation. Neuroinformatics 5, 96–104.

Ekeberg, Ö., and Djurfeldt, M. (2008).
MUSIC – multisimulation coordina-
tor: request for comments. Nature
Proceedings. Available at: http://dx.
doi.org/10.1038/npre.2008.1830.1.

Goddard, N., Hood, G., Howell, F.,
Hines, M., and De Schutter, E. (2001).
NEOSIM: portable large-scale plug
and play modelling. Neurocomputing
38–40, 1657–1661.

Goddard, N., Hucka, M., Howell, F.,
Cornelis, H., Shankar, K., and
Beeman, D. (2001). Towards NeuroML:
model description methods for col-
laborative modeling in neuroscience.
Philos. Trans. R. Soc. Lond., B, Biol. Sci.
356, 1209–1228.

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 | 16

Ray and Bhalla Python interface for MOOSE

Hines, M. (1993). NEURON – a pro-
gram for simulation of nerve equa-
tions. In Neural Systems: Analysis and
Modeling, F. Eeckman, ed. (Norwell,
MA, Kluwer), pp. 127–136.

Howell, F., Bazhenov, M., Rogister, P.,
Seznowski, T., and Goddard, N.
(2002). Scaling a slow-wave sleep cor-
tical network model using NEOSIM.
Neurocomputing 44–46, 453–458.

Hucka, M., et al. (2002). The systems
biology markup language (SBML):
a medium for representation and
exchange of biochemical network
models. Bioinformatics 19, 524–531.

Le Novère, N., Finney, A., Hucka, M., Bhalla,
U. S., Campagne, F., Collado-Vides, J.,
Crampin, E. J., Halstead, M., Klipp,
E., Mendes, P., Nielsen, P., Sauro, H.,

Shapiro, B., Snoep, J. L., Spence, H. D.,
and Wanner, B. L. (2005). Minimum
information requested in the annota-
tion of biochemical models (MIRIAM).
Nat. Biotechnol. 23, 1509–1515.

Maes, P. (1987). Concepts and experi-
ments in computational reflection.
In Proceedings of the Conference
on Object-Oriented Programming
Systems, Languages, and Applications
(OOPSLA). Orlando, FL, ACM,
pp. 147–155.

Martelli, A., Ravenscroft, A. M., and
Ascher, D. (2005). Python Cookbook,
O’Reilly, p. 14

Migliore, M., Cook, E. P., Jaffe, D. B.,
Turner, D. A., and Johnston, D.
(1995). Computer simulations of
 morphologically reconstructed CA3

hippocampal neurons. J. Neurophysiol.
73, 1157–1168.

Qi, W., and Crook, S. M. (2004). Tools
for neuroinformatic data exchange:
an XML application for neuronal
morphology data. Neurocomputing
58C–60C, 1091–1095.

Segev, I., Fleshman, J. W., Miller, J. P.,
and Bunow, B. (1985). Modeling the
electrical behavior of anatomically
complex neurons using a network
analysis program: passive membrane.
Biol. Cybern. 53, 27–40.

Smith, B. C. (1982). Reflection and
Semantics in a Procedural Language.
Ph.D. thesis, MIT, Cambridge, MA.

Confl ict of Interest Statement: The authors
declare that the research was conducted in

the absence of any commercial or fi nancial
relationships that could be construed as a
potential confl ict of interest.

Received: 15 September 2008; paper pend-
ing published: 13 October 2008; accepted:
01 November 2008; published online: 19
December 2008.
Citation: Ray S and Bhalla US (2008)
PyMOOSE: interoperable scripting in Python
for MOOSE. Front. Neuroinform. (2008) 2:
6: xx–xx. doi: 10.3389/neuro.11.006.2008
Copyright © 2008 Ray and Bhalla. This is
an open-access article subject to an exclusive
license agreement between the authors and
the Frontiers Research Foundation, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original authors and source are credited.

