
Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 08 January 2009
doi: 10.3389/neuro.11.008.2008

Modular toolkit for Data Processing (MDP): a Python data
processing framework

Tiziano Zito1*, Niko Wilbert1,2, Laurenz Wiskott1,2 and Pietro Berkes3

1 Bernstein Center for Computational Neuroscience, Berlin, Germany
2 Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Germany
3 Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA

Modular toolkit for Data Processing (MDP) is a data processing framework written in Python.
From the user’s perspective, MDP is a collection of supervised and unsupervised learning
algorithms and other data processing units that can be combined into data processing
sequences and more complex feed-forward network architectures. Computations are
performed effi ciently in terms of speed and memory requirements. From the scientifi c
developer’s perspective, MDP is a modular framework, which can easily be expanded. The
implementation of new algorithms is easy and intuitive. The new implemented units are then
automatically integrated with the rest of the library. MDP has been written in the context of
theoretical research in neuroscience, but it has been designed to be helpful in any context
where trainable data processing algorithms are used. Its simplicity on the user’s side, the
variety of readily available algorithms, and the reusability of the implemented units make it
also a useful educational tool.

Keywords: Python, Modular toolkit for Data Processing, computational neuroscience, machine learning

and NIPALS), several Independent Component Analysis algorithms
(CuBICA, FastICA, TDSEP, and JADE), Locally Linear Embedding,
Slow Feature Analysis, Gaussian Classifi ers, Fisher Discriminant
Analysis, Factor Analysis, and Restricted Boltzmann Machine (see
Table 1 for a more exhaustive list and references). Particular care has
been taken to make computations effi cient in terms of speed and
memory. To reduce memory requirements, it is possible to perform
learning using batches of data, and to defi ne the internal parameters
of the nodes to be single precision, which makes the usage of very
large data sets possible. Moreover, an MDP subpackage in its fi nal
stages of development offers a parallel implementation of the basic
nodes and fl ows.

From the developer’s perspective, MDP is a framework that makes
the implementation of new supervised and unsupervised learning
algorithms easy and straightforward. The basic class, Node, takes care
of tedious tasks like numerical type and dimensionality checking,
leaving the developer free to concentrate on the implementation of
the learning and execution phases. Because of the common interface,
the node then automatically integrates with the rest of the library
and can be used in a network together with other nodes. A node can
have multiple training phases and even an undetermined number
of phases. This allows the implementation of algorithms that need
to collect some statistics on the whole input before proceeding with
the actual training, and others that need to iterate over a training
phase until a convergence criterion is satisfi ed.

MDP is distributed under the open source LGPL license. It has
been written in the context of theoretical research in neuroscience,
but was designed to be helpful in any context where trainable data
processing algorithms are used. Its simplicity on the user’s side
together with the reusability of the implemented nodes make it
also a useful educational tool.

INTRODUCTION
The use of the Python programming language in computational
neuroscience has been growing steadily during the past few years.
The maturation of two important open source projects, the sci-
entifi c libraries NumPy1 and SciPy2, gives access to a large col-
lection of scientifi c functions that rivals in size and speed well
known commercial alternatives like The MathWorks™ Matlab®3.
Furthermore, the fl exible and dynamic nature of Python offers the
scientifi c programmer the opportunity to quickly develop effi cient
and structured software while maximizing prototyping and reus-
ability capabilities. The Modular toolkit for Data Processing (MDP)
package4 contributes to this growing community a library of widely
used data processing algorithms, and the possibility to combine
them according to a pipeline analogy to build more complex data
processing software.

MDP has been designed to be used as-is and as a framework for
scientifi c data processing development. From the user’s perspec-
tive, MDP consists of a collection of supervised and unsupervised
learning algorithms, and other data processing units (nodes) that
can be combined into data processing sequences (fl ows) and more
complex feedforward network architectures. Given a set of input
data, MDP takes care of successively training or executing all nodes
in the network. This allows the user to specify complex algorithms
as a series of simpler data processing steps in a natural way. The
base of available algorithms is steadily increasing and includes, to
name but the most common, Principal Component Analysis (PCA

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Nicholas T. Carnevale, Yale University
School of Medicine, USA
Thomas Natschläger, Software
Competence Center Hagenberg
GmbH, Austria

*Correspondence:

Tiziano Zito, Bernstein Center for
Computational Neuroscience,
Philippstraße 13, House 6, Humboldt-
Universität zu Berlin, 10115 Berlin,
Germany.
e-mail: tiziano.zito@bccn-berlin.de

1http://numpy.scipy.org
2http://www.scipy.org
3http://www.mathworks.com/products/matlab/
4http://mdp-toolkit.sourceforge.net

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 | 2

Zito et al. Modular toolkit for Data Processing

THE PACKAGE STRUCTURE
The MDP framework consists of a library of data processing nodes
with a common Application Programming Interface (API) and a
collection of objects which are used to connect nodes together
to implement complex data processing workfl ows. In the follow-
ing sections the framework structure is outlined followed by an
example application. The full API together with an extensive tuto-
rial covering both usage and instruction for writing extensions are
available at the MDP homepage.

NODES
A node is the basic building block of an MDP application. It represents
a data processing element, like for example a learning algorithm, a
data fi lter, or a visualization step (see Table 1 for a list of some of
the available algorithms). Each node is characterized by an input
dimension (i.e., the dimensionality of the input vectors), an output
dimension, and a dtype, which determines the numerical type of
the internal structures and of the output signal. By default, these
attributes are inherited from the input data.

Nodes can have a training phase, where training data is analyzed
in order to adapt the internal variables, and an execution phase,
where new data can be processed using the learned parameters.
For example, the Principal Component Analysis (PCA) algorithm
(Jolliffe, 1986) requires the computation of the mean and cov-
ariance matrix of a set of training data from which the principal
eigenvectors of the data distribution are estimated. MDP offers
an implementation of this algorithm in the class PCANode. The
node can be trained on the data using the interface common to all
nodes: PCANode.train(x) analyzes a new batch of data x, and
updates the estimation of mean and covariance matrix; PCANode.
stop_training() fi nalizes the algorithm by computing and
selecting the principal eigenvectors. Once the training is fi nished,

new data can be projected on the principal components calling the
PCANode.execute(y) method. If the transformation specifi ed by
the underlying algorithm is invertible, the node can also be executed
“backwards” using the PCANode.inverse(z) method. In the case
of PCA, for example, this corresponds to projecting a vector in the
principal components space back to the original data space.

Node was designed to be applied to arbitrarily long sets of data:
if the underlying algorithms support it, the internal structures can
be updated incrementally by sending multiple batches of data. It
is thus possible to perform computations on amounts of data that
would not fi t into memory or to generate data on-the-fl y. The
general form of the training phase thus is:

create an instance of the desired node
node_instance = mdp.nodes.XXXNode()

for data_batch in data_source:
 node_instance.train(data_batch)

node_instance.stop_training()

In the code, data_source can be any Python iterator5 (e.g. a
list, an iterator object, or a generator function) that returns an array
with a batch of training data. The last line fi nalizes the training
phase. It is shown here for completeness, but can replaced by a call
to the execute or inverse methods. Nodes also defi ne some util-
ity methods, like for example copy and save, that return an exact
copy of a node and save it in a fi le, respectively. Additional methods
may be present, depending on the algorithm. The PCANode.get_
projmatrix method, for example, returns the matrix projecting
input data into the principal components’ space. For a toy signal-
denoising application that makes use of the basic Node features
just described in Figure 1.

Table 1 | Some of the nodes available in MDP.

Node class name Algorithm and Reference

PCANode Principal Component Analysis (Jolliffe, 1986)

NIPALSNode Nonlinear Iterative Partial Least Squares PCA (NIPALS) (Fritzke, 1995)

CuBICANode Cumulant-based Independent Component Analysis (CuBICA) (Blaschke and Wiskott, 2004)

FastICANode Independent Component Analysis (FastICA) (Hyvärinen, 1999)

JADENode Cumulant-based Independent Component Analysis (JADE) (Cardoso, 1999)

TDSEPNode Temporal blind-source separation algorithm (TDSEP) (Ziehe and Müller, 1998)

LLENode Locally Linear Embedding Analysis (Roweis and Saul, 2000)

HLLENode Hessian Locally Linear Embedding Analysis (Donoho and Grimes, 2003)

FDANode Fisher Discriminant Analysis (Bishop, 1995)

SFANode Slow Feature Analysis (Wiskott and Sejnowski, 2002)

ISFANode Independent Slow Feature Analysis (Blaschke et al., 2007)

RBMNode Restricted Boltzmann Machine (Hinton et al., 2006)

GrowingNeuralGasNode Growing Neural Gas (learn a graph structure of the data) (Fritzke, 1995)

FANode Factor Analysis (Bishop, 2007)

GaussianClassifierNode Supervised gaussian classifi er

PolynomialExpansionNode Expand the signal in a polynomial space

TimeFramesNode Expand the signal using a sliding temporal window (temporal embedding)

HitParadeNode Record local minima and maxima in the signal

NoiseNode Additive and multiplicative noise injection

5http://docs.python.org/lib/typeiter.html

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 | 3

Zito et al. Modular toolkit for Data Processing

Some nodes, namely the one corresponding to supervised
algorithms, e.g. Fisher Discriminant Analysis (Bishop, 1995), may
need some labels or other supervised signals to be passed during
training:

input = {’a’: data_a, ’b’:data_b, ’c’:data_c}
fdanode = mdp.nodes.FDANode()
for label in [’a’, ’b’, ’c’]:
 fdanode.train(input[label], label)

A node could also require multiple training phases. For example,
the training of fdanode is not complete yet, since it has two training
phases: The fi rst one computing the mean of the data conditioned
on the labels, and the second one computing the overall and within-
class covariance matrices and solving the FDA problem. The fi rst
phase must be stopped and the second one trained:

fdanode.stop_training()
for label in [’a’, ’b’, ’c’]:
 fdanode.train(input[label], label)

The easiest way to train multiple phase nodes is using fl ows,
which automatically handle multiple phases (see Flows).

MDP makes it easy to write new nodes that interface with the
existing data processing elements. The Node class is designed to
make the implementation of new algorithms easy and intuitive.
This base class takes care of setting input and output dimension
and casting the data to match the numerical type (e.g. fl oat or
double) of the internal variables, and offers utility methods that
can be used by the developer. To expand the MDP library of imple-
mented nodes with user-made nodes, it is suffi cient to subclass
Node, overriding some of the methods according to the algorithm
one wants to implement, typically the _train, _stop_train-
ing, and _execute methods. Figure 2 shows an example of a
simple node that removes the mean of the signal. A more detailed

introduction to writing new nodes in MDP can be found in the
online tutorial6.

It is also possible to specify multiple training phases by defi ning
additional training methods and overwriting the _get_train_seq
method. For example

class MultiplePhaseNode(mdp.Node):
 def _get_train_seq(self):
 return [(self._train_A, self._stop_A),
 (self._train_B, self._stop_B)]
 [...]

defi nes a new node with two training phases, one updated by the
method _train_A and fi nalized using _stop_A, and analogously
the second is defi ned by the methods _train_B and _stop_B.
The fi nal user will still perform the training phase by calling the
usual methods train and stop_training (although multiple
times), and need not know about the specifi c implementation of
the algorithm.

FLOWS
A fl ow is a sequence of nodes that are trained and executed together
to form a more complex algorithm. Input data is sent to the fi rst
node and is successively processed by the subsequent nodes along
the sequence. Using a fl ow as opposed to handling manually a set
of nodes has a clear advantage: The general fl ow implementation
automates the training (including supervised training and multiple
training phases), execution, and inverse execution (if defi ned) of
the whole sequence. For example, suppose we need to analyze a
very high-dimensional input signal using Independent Component
Analysis (ICA). To reduce the computational load, we would like to
reduce the input dimensionality of the data using PCA. Moreover,

Simple denoising algorithm
Given is a set of multidimensional signals, for example
EEG waves, from which normal statistics are learned,
and a set of noisy signals to be denoised.

1 - Create an instance of the PCA algorithm
The argument output_dim = 0.9 tells the node to retain
a number of principal components such that the
explained variance is at least 90%
A fixed number of output components can be specified
for example by output_dim=10
pcanode = mdp.nodes.PCANode(output_dim = 0.9)

2 - Perform PCA on the set of training signals
pcanode.train(signals)

3 - Stop learning and estimate the principal components
pcanode.stop_training()

4 - Project noisy signals in the principal component space
proj_signals = pcanode.execute(noisy_signals)

5 - Project the data back to the input space for visualization
and comparison with original data
denoised_signals = pcanode.inverse(proj_signals)

FIGURE 1 | A simple denoising application.

6http://mdp-toolkit.sourceforge.net/tutorial.html

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 | 4

Zito et al. Modular toolkit for Data Processing

we would like to fi nd the data that produces local maxima in the
output of the ICA components on a new test set (this information
could be used for instance to characterize the ICA fi lters). To imple-
ment this algorithm using MDP, we need to generate an instance
of Flow using the appropriate nodes:

Define a data processing sequence.
- PCANode(output_dim=5) performs PCA and keeps
the first 5 principal
components only
- CuBICANode() is a cumulant-based ICA algorithm
- HitParadeNode(3) records the 3 largest local
maxima from the output of
the previous node
flow = mdp.Flow([mdp.nodes.PCANode(output_dim=5),
 mdp.nodes.CuBICANode(),
 mdp.nodes.HitParadeNode(3)])

The training and execution are performed as for the Node
class:

Train all the nodes using the data array ‘x’
flow.train(x)
Compute the output of the node sequence
when presented with array ‘x_test’
output = flow.execute(x_test)

A single call to the fl ow’s train method will automatically take
care of training nodes with multiple training phases, if such nodes
are present.

Flow objects are defi ned as Python containers, and thus are
endowed with most of the methods of Python lists: one can
obtain slices, append new nodes, pop or insert nodes, and con-
catenate fl ows. For example, to get the maxima computed by the

class MeanFreeNode(mdp.Node):
 def �init�(self, input_dim=None, dtype=None):
 super(MeanFreeNode, self).�init�(input_dim=input_dim, dtype=dtype)
 self.avg = None
 self.tlen = 0

 def _train(self, x):
 # Initialize the mean vector with the right
 # size and dtype if necessary:
 if self.avg is None:
 self.avg = mdp.numx.zeros(self.input_dim, dtype=self.dtype)
 # Update the average
 self.avg += mdp.numx.sum(x, axis=0)
 # Update the number of data points examined
 self.tlen += x.shape[0]

 def _stop_training(self):
 # Compute the average signal
 self.avg /= self.tlen

 def _execute(self, x):
 return x - self.avg

 def _inverse(self, y):
 return y + self.avg

FIGURE 2 | Defi nition of a new node that removes the mean of the signal.

HitParadeNode, one can refer to the last node using the list
 construct flow[-1]:

maxima, indices = flow[-1].get_maxima()

The Flow class defi nes a number of utility methods, includ-
ing save and copy methods. It also implements a crash recovery
mechanism that can be activated by setting a fl ag: in case an excep-
tion is thrown during training, the current state of the fl ow is saved
for later inspection.

HIERARCHICAL NETWORKS
In case the desired data processing application cannot be defi ned
as a sequence of nodes, the hinet subpackage makes it possible
to construct arbitrary feed-forward architectures, and in par-
ticular hierarchical networks. It contains three basic building
blocks (which are all nodes themselves): Layer, FlowNode, and
Switchboard.

The fi rst building block, Layer, works like a horizontal version
of fl ow. It acts as a wrapper for a set of nodes that are trained and
executed in parallel. For example, we can combine two nodes with
100-dimensional input to construct a layer with a 200-dimensional
input:

node1 = mdp.nodes.PCANode(input_dim=100,
 output_dim=10)
node2 = mdp.nodes.SFANode(input_dim=100,
 output_dim=20)
layer = mdp.hinet.Layer([node1, node2])

The fi rst half of the 200-dimensional input data is then auto-
matically assigned to node1 and the second half to node2. We
can train and execute a layer just like any other node. In order to
be able to build arbitrary feed-forward node structures, hinet

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 | 5

Zito et al. Modular toolkit for Data Processing

provides a wrapper class for fl ows (i.e., vertical stacks of nodes)
called FlowNode. For example, we can replace node1 in the above
example with a FlowNode:

node1_1 = mdp.nodes.PCANode(input_dim=100,
 output_dim=50)
node1_2 = mdp.nodes.SFANode(input_dim=50,
 output_dim=10)
node1_flow = mdp.Flow([node1_1, node1_2])
node1 = mdp.hinet.FlowNode(node1_flow)
node2 = mdp.nodes.SFANode(input_dim=100,
 output_dim=20)
layer = mdp.hinet.Layer([node1, node2])

node1 has two training phases in this example, one for each
internal node. Therefore layer now has two training phases as
well and behaves like any other node with two training phases. By
combining and nesting FlowNode and Layer, it is thus possible
to build complex node structures.

When implementing networks one might have to route different
parts of the data to different nodes in a layer in complex ways. This
is done by the Switchboard node, which can handle such routing.
A Switchboard is initialized with a 1-dimensional array with one
entry for each output connection, containing the corresponding
index of the input connection that it receives its input from, e.g.:

switchboard = mdp.hinet.Switchboard(
 input_dim=6,
 connections=[0,1,2,3,4,3,4,5])
print switchboard
should print: Switchboard(input_dim=6,
output_dim=8,
dtype=None)
x = mdp.numx.array([[2,4,6,8,10,12]])
print switchboard.execute(x)
should print:
array([[2, 4, 6, 8, 10, 8, 10, 12]])

The switchboard can then be followed by a layer that splits the
routed input to the appropriate nodes, as illustrated in Figure 3.

Since hierarchical networks can become quite complicated to
build and debug, hinet includes the class HiNetHTML that translates
an MDP fl ow into a graphical visualization in an HTML fi le.

A COMPLETE APPLICATION
In this section we show a complete example of MDP usage in a
machine learning application, and use non-linear Slow Feature
Analysis for processing of non-stationary time series. We consider a
chaotic time series derived by a logistic map (a demographic model
of the population biomass of species in the presence of limiting
factors such as food supply or disease) that is non- stationary in
the sense that the underlying parameter is not fi xed but is vary-
ing smoothly in time. The goal is to extract the slowly varying
parameter that is hidden in the observed time series. This example
reproduces some of the results reported in Wiskott (2003). The
complete code is shown in Figure 4.

We fi rst generate the slowly varying driving force parameter r
t

as a combination of three sine waves r
t
 = sin(10πt) + sin(22πt) +

sin(26πt). We then generate the time series using the logistic

 equation x
t +1

 = (3.6 + 0.13r
t
)x

t
 (1 − x

t
). The resulting time series x

is shown in Figure 5.
To reconstruct the underlying parameter, we defi ne a Flow

to perform SFA in the space of polynomials of degree 3. We
fi rst use a node that embeds the 1-dimensional time series in a
10-dimensional space using a sliding temporal window of size 10
(TimeFramesNode). Second, we expand the signal in the space of
polynomials of degree 3 using a PolynomialExpansionNode.
Finally, we perform SFA on the expanded signal and keep the slowest
feature using the SFANode. In order to measure the slowness of the
input time series before and after processing, we put at the begin-
ning and at the end of the node sequence a node that computes the
η-value (a measure of slowness, see Wiskott and Sejnowski, 2002)
of its input (EtaComputerNode). The slow feature should match
the driving force up to a scaling factor, a constant offset and the
sign. To allow a direct comparison we rescale the driving force to
have zero mean and unit variance. The real driving force is plotted
together with the driving force estimated by SFA in Figure 6.

FUTURE DEVELOPMENT
MDP is currently maintained by a core team of three developers,
but it is open to user contributions. Users have already contributed
some of the nodes, and more contributions are currently being
reviewed for inclusion in future releases of the package. The pack-
age development can be followed on the public subversion code
repository7. Questions, bug reports, and feature requests are typi-
cally handled by the user mailing list8.

Development of the core functionality of MDP continues and
the next release of MDP is going to include a new package for
parallelization, designed for nodes in which a large part of the com-
putation is embarrassingly parallel 9 (e.g. calculating the covariance

FIGURE 3 | Example of feed-forward network topology.

7http://mdp-toolkit.svn.sourceforge.net
8http://sourceforge.net/mail/?group_id = 116959
9In the jargon of parallel computing, an embarrassingly parallel problem is one
for which no particular effort is needed to segment the problem into a very large
number of parallel tasks, that can be executed more or less independently, without
communication among tasks (Foster, 1995, Section 1.4.4.).

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 | 6

Zito et al. Modular toolkit for Data Processing

import mdp
N = mdp.numx

def logistic_map(x,r):
 return r*x*(1-x)

time axis is 1 second sampled at 10KHz
t = N.linspace(0,1,10000,endpoint=0)
driving force
dforce = N.sin(10*N.pi*t) + N.sin(22*N.pi*t) + N.sin(26*N.pi*t)

resulting time series
series = N.zeros((10000,1),’d’)
series[0] = 0.6 # initial condition
for i in range(1,10000):
 series[i] = logistic_map(series[i-1],3.6+0.13*dforce[i])

define the flow
sequence = [mdp.nodes.EtaComputerNode(), mdp.nodes.TimeFramesNode(10),
 mdp.nodes.PolynomialExpansionNode(3), mdp.nodes.SFANode(output_dim=1),
 mdp.nodes.EtaComputerNode()]

flow = mdp.Flow(sequence, verbose=1)
train the flow
flow.train(series)

execute the flow to get the SFA estimate of the driving force
slow = flow.execute(series)

rescale driving force to compare with SFA estimate
resc_dforce = (dforce - N.mean(dforce,0))/N.std(dforce,0)

verify that the results are correct
result should be > 0.99
print mdp.utils.cov2(resc_dforce[:-9],slow)
result should be ˜= 3000
print ’Eta value (time-series): ’, flow[0].get_eta(t=10000)
result should be ˜= 10
print ’Eta value (slow feature): ’, flow[-1].get_eta(t=9996)

FIGURE 4 | Python code to reproduce the results in Wiskott (2003).

0 0.2 0.4 0.6 0.8 1
–3

–2

–1

0

1

2

3

driving force
SFA estimate

FIGURE 6 | The real driving force and the driving force as estimated by SFA.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

x

FIGURE 5 | Chaotic time series generated by the logistic equation.

matrix to perform PCA). The new parallel package will consist of
two parts: The fi rst part introduces parallel versions of the familiar
MDP structures (nodes and fl ows, including hinet) that are able
to split the computations for some of the algorithms (e.g. PCA and

SFA). The second part of the package consists of schedulers that
take individual jobs and execute them in a parallel way. Currently
a scheduler for parallelization across multiple processors (or cores)
is provided. Since the scheduler code is largely independent of

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 | 7

Zito et al. Modular toolkit for Data Processing

component analysis. IEEE Trans.
Neural Netw. 10, 626–634.

Jolliffe, I. (1986). Principal Component
A n a l y s i s . Ne w Yo r k , N Y,
Springer-Verlag.

Roweis, S., and Saul, L. (2000). Nonlinear
dimensionality reduction by locally
linear embedding. Science 290,
2323–2326.

Solé, V. A., Papillon, E., Cotte, M., Walter,
P., and Susini, J. (2007). A multiplat-
form code for the analysis of energy-
dispersive x-ray fl uorescence spectra.
Spectrochim. Acta Part B 62, 63–68.

Wiltschko, A. B., Gage, G. J., and Berke, J.
D. (2008). Wavelet fi ltering before spike
detection preserves waveform shape
and enhances single-unit discrimina-
tion. J. Neurosci. Methods 173, 34–40.

Wiskott, L. (2003). Estimating Driving
Forces of Nonstationary Time Series
with Slow Feature Analysis. arXiv.
org e-Print archive, http://arxiv.
org/abs/cond-mat/0312317/.

Wiskott, L., and Sejnowski, T. (2002). Slow
feature analysis: unsupervised learn-
ing of invariances. Neural Comput.
14, 715–770.

Ziehe, A., and Müller, K.-R. (1998).
TDSEP – an effi cient algorithm for
blind separation using time structure.
In Proceeding of the 8th International

MDP, one can write simple adapters for other schedulers like for
example Parallel Python10. The new parallel subpackage can be
tested already and it is available on the public code repository.

Another new, large MDP package is currently under develop-
ment that will extend MDP with more complex data fl ows, includ-
ing back-propagation and loops. This framework will be integrated
with both the parallel and the hinet package to allow for large and
complex data processing networks.

MDP could also act effi ciently as a wrapper for the plethora of
statistical data analysis algorithms already available in other libraries
and languages. A prominent example is the R Project for Statistical
Computing11 with the Python wrappers RPy12 and R/S Plus13.

CONCLUSIONS
With over 10,000 downloads since its fi rst public release in 2004,
MDP has become one of Python’s major scientifi c packages. The
package has minimal dependencies, requiring only the NumPy
numerical extension, is completely platform-independent, and is
available in the Linux Debian distribution and the Python(x,y)14
scientifi c Python distribution.

MDP has been used to implement a model of the visual system
of a virtual rat moving around in a virtual environment (Franzius
et al., 2007), to perform pattern recognition (Franzius et al., 2008)
and handwritten digit recognition (Berkes, 2006), to analyze

 intra-cerebral array-recorded neurophysiological data in the audi-
tory forebrain of song birds15, and to perform PCA and spike-sorting
of electrophysiological data (Wiltschko et al., 2008), to name a few
of the applications in computational neuroscience. MDP has also
been used embedded in the X-ray fl uorescence mapping package
PyMCA (Solé et al., 2007), to implement auto tagging capabilities
into the personal organizer application Chandler16 by OSAF17, and as
a framework for the implementation of data processing algorithms
in the context of an advanced course in scientifi c computing (Zito
and Wilson, 2008) aimed at graduate students.

As the number of its users and contributors is increasing, MDP
appears to be a good candidate for becoming a community-driven
common repository of user-supplied, freely available, Python
implemented data processing algorithms.

ACKNOWLEDGMENTS
We wish to heartily thank Mathias Franzius for discussion and
help during the early phases of the project, for being our main
beta-tester afterwards, and for his code contributions. For con-
tributing code and comments we thank Gabriel Beckers, Farzad
Farkhooi, Susanne Lezius, Michael Schmuker, and Jake VanderPlas.
For maintaining the Debian package we are grateful to Yaroslav
Halchenko. We fi nally wish to acknowledge all those users who
reported bugs and feature requests, which helped us making MDP
a better library.

10http://www.parallelpython.com
11http://www.r-project.org/
12http://rpy.sourceforge.net/
13http://www.omegahat.org/RSPython/
14http://www.pythonxy.com

15Gabriel J.L. Beckers, Max Planck Institute for Ornithology, Starnberg, Germany,
personal communication.
16http://chandlerproject.org/
17http://www.osafoundation.org/

REFERENCES
Berkes, P. (2006). Temporal Slowness

as an Unsupervised Learning
Principle. Ph.D. Thesis, Humboldt-
Universität zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultät I,
http://edoc.hu-berlin.de/docviews/
abstract.php?id = 26704.

Bishop, C. M. (1995). Neural Networks for
Pattern Recognition. New York, NY,
Oxford University Press.

Bishop, C. M. (2007). Pattern Recognition
and Machine Learning. New York, NY,
Springer-Verlag.

Blaschke, T., and Wiskott, L. (2004).
CuBICA: independent component
analysis by simultaneous third- and
fourth-order cumulant diagonaliza-
tion. IEEE Trans. Signal Process. 52,
1250–1256.

Blaschke, T., Zito, T., and Wiskott, L. (2007).
Independent slow feature analysis and
nonlinear blind source separation.
Neural Comput. 19, 994–1021.

Cardoso, J. (1999). High-order contrasts
for independent component analysis.
Neural Comput. 11, 157–192.

Donoho, D. L., and Grimes, C.
(2003). Hessian eigenmaps: locally
linear embedding techniques for
high-dimensional data. Proc. Natl.
Acad. Sci. U.S.A. 100, 5591–5596.

Foster, I. (1995). Designing and Building
Parallel Programs. Reading, MA,
Addison-Wesley.

Franzius, M., Sprekeler, H., and Wiskott, L.
(2007). Slowness and sparseness lead to
place, head-direction, and spatial-view
cells. PLoS Comput. Biol. 3, e166.

Franzius, M., Wilbert, N., and Wiskott, L.
(2008). Invariant object recogni-
tion with slow feature analysis. In
Proceeding of the 18th International
Conference on Artificial Neural
Networks (ICANN 2008), Prague,
Czech Republic, September 3–6, 2008.
Lecture Notes in Computer Science
Series, Part I, Vol. 5163 (Berlin, Springer
Verlag). http://www.springerlink.
com/content/v20024g580t1/.

Fritzke, B. (1995). A growing neural gas
network learns topologies. In Advances
in Neural Information Processing
Systems 7. Proceedings of the 1994
Conference, November 28 to December
1, 1994, Denver, Colorado, G. Tesauro,
D. S. Touretzky and T. K. Leen, eds.
(Cambridge, MIT Press), pp. 625–632.

Hinton, G., Osindero, S., and Teh, Y.
(2006). A fast learning algorithm for
deep belief nets. Neural Comput. 18,
1527–1554.

Hyvärinen, A. (1999). Fast and robust
fi xed-point algorithms for independent

Conference on Artificial Neural
Networks (ICANN 1998), Vol. 2,
M. B. Boden, L. F. Niklasson and
T. Ziemke, eds. (London, Springer),
pp. 675–680.

Zito, T., and Wilson, G. (2008). Software
Carpentry for Scientists. http://itb.biol-
ogie.hu-berlin.de/˜zito/teaching/SC/.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial or
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 05 September 2008; paper pend-
ing published: 26 October 2008; accepted:
19 December 2008; published online: 08
January 2009.
Citation: Zito T, Wilbert N, Wiskott L and
Berkes P (2009) Modular toolkit for Data
Processing (MDP): a Python data process-
ing framework. Front. Neuroinform. (2009)
2:8. doi: 10.3389/neuro.11.008.2008
Copyright © 2009 Zito, Wilbert, Wiskott and
Berkes. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

