
Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 24 March 2009
doi: 10.3389/neuro.11.008.2009

Topographica: building and analyzing map-level simulations
from Python, C/C++, MATLAB, NEST, or NEURON components

James A. Bednar*

Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK

Many neural regions are arranged into two-dimensional topographic maps, such as the
retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable
insights about how cortical topography develops and functions, but further progress has been
hindered by the lack of appropriate tools. It has been particularly diffi cult to bridge across levels
of detail, because simulators are typically geared to a specifi c level, while interfacing between
simulators has been a major technical challenge. In this paper, we show that the Python-based
Topographica simulator makes it straightforward to build systems that cross levels of analysis,
as well as providing a common framework for evaluating and comparing models implemented
in other simulators. These results rely on the general-purpose abstractions around which
Topographica is designed, along with the Python interfaces becoming available for many
simulators. In particular, we present a detailed, general-purpose example of how to wrap an
external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines
of Python code, making it possible to use any of the extensive input presentation, analysis, and
plotting tools of Topographica. Additional examples show how to interface easily with models in
other types of simulators. Researchers simulating topographic maps externally should consider
using Topographica’s analysis tools (such as preference map, receptive fi eld, or tuning curve
measurement) to compare results consistently, and for connecting models at different levels.
This seamless interoperability will help neuroscientists and computational scientists to work
together to understand how neurons in topographic maps organize and operate.

Keywords: Python, simulators, interoperability, interfacing, topographic maps, large-scale, cortex, visual

spiking neurons, while NEST provides only limited support for
fi ring-rate neurons (necessary for the largest scale models) or for
more detailed individual neuron models, and does not provide a
GUI for large-scale visualizations. Combining multiple simulators
to bridge between these levels of analysis could provide a complete,
biologically grounded explanation of how single-neuron properties
lead to large-scale topographic maps. Even for models at the same
level, interfacing multiple simulators into a coherent framework can
also help provide a uniform means for comparing and evaluating
them. However, interconnecting simulators has previously been a
signifi cant technical challenge (Cannon et al., 2007; Djurfeldt and
Lansner, 2007).

This paper describes how the Topographica map-level simu-
lator can be used to achieve important types of interoperability
between a very wide range of simulators with surprisingly little
coding or development effort. One reason that interoperability is
practical in Topographica is that Topographica is implemented in
the Python scripting language, and many neural simulators now
include Python interfaces. Another reason is that Python is a very
high level language, known as a glue language (Ousterhout, 1998),
that makes it easy to connect different interfaces for rapid software
development. Even more important, however, is that Topographica
is built around a high-level abstraction of the properties of topo-
graphic maps, which is relatively simple to adapt to components
implemented in any particular simulator yet provides access to a

INTRODUCTION
In mammals, much of the cortical surface (and many subcorti-
cal structures) can be partitioned into topographic maps (Kaas,
1997; Van Essen et al., 2001). These maps contain systematic two-
dimensional representations of features relevant to sensory and
motor processing, such as retinal position, sound frequency, line
orientation, and motion direction (Blasdel, 1992; Merzenich et
al., 1975; Ohki et al., 2005; Weliky et al., 1996; Xu et al., 2007).
Figure 1 shows an example retinotopic and orientation map from
the primary visual cortex (V1). Understanding the development
and function of topographic maps is crucial for understanding
brain function, and will require integrating large-scale experimental
imaging results with single-unit studies of the individual neurons
and their connections that make up these maps. In principle, com-
putational modeling can help make these links explicit, in order
to explain how topographic maps can emerge from the behavior
of single neurons.

However, existing simulators typically address only a small range
of levels of analysis. For instance, NEURON (Hines and Carnevale,
1997) and GENESIS (Bower and Beeman, 1998) primarily focus
on detailed studies of individual neurons or very small networks
of them, rather than enough neurons to form a meaningful topo-
graphic map. Topographica (Bednar, 2008) and NEST (Diesmann
and Gewaltig, 2002) allow much larger scale simulations of sim-
pler neurons, but Topographica provides only limited support for

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Stephen Eglen, University of
Cambridge, UK
Marc-Oliver Gewaltig, Honda Research
Institute Europe GmbH, Germany

*Correspondence:

James A. Bednar, Institute for Adaptive
and Neural Computation, University of
Edinburgh, 10 Crichton Street,
Edinburgh, EH8 9AB, UK.
e-mail: jbednar@inf.ed.ac.uk

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 | 2

Bednar Topographica: interoperable map-level simulations

large range of useful tools. Simply put, if a simulation in any other
simulator or language contains a large number of neurons (at any
level of complexity) arranged into a two-dimensional sheet or array
(or a three-dimensional stack of such two-dimensional arrays),
then it will be practical to use that simulation or parts of it within
Topographica.

In turn, integrating such a simulation into Topographica will be
useful if it can make use of analyses that rely primarily on an average
(fi ring rate) activation level for each neuron, particularly if they
are based on measuring responses to an input pattern. Many such
routines are already implemented in Topographica, such as meas-
uring receptive fi elds, tuning curves, or feature preference maps of
any type, decoding activity values, and 1D, 2D, or 3D plotting of
these and other measurements. Other simulators implement some
of these functions, but rarely in a fully general form that can be
applied to any neural area and any type of input feature. To make
the most use of these components, it is helpful if each sheet of
neurons in the underlying model can be separated from the others
with well-defi ned interfaces, but even relatively monolithic models
can be analyzed if they include at least one sheet of neurons that can
accept an external input, and at least one neuron or set of neurons
whose fi ring-rate activity patterns are of interest. Any such model
can then be compared and tested against any similar model, using a
consistent analysis and visualization framework. Similar considera-
tions apply to using small parts of external models, such as a model
retinal or cortical area, as part of a larger hierarchical or network
model of a neural system connected in Topographica.

These features make it surprisingly straightforward to use
Topographica for simulating and analyzing large-scale, detailed
 models of topographic maps, using either native or externally imple-
mented components. Topographica is an open source project, and
binaries and source code are freely available through the internet
at topographica.org for interfacing to external code on Linux,
Microsoft Windows, and Macintosh OS X platforms. In the sections
below, we describe the main assumptions and abstractions used by
Topographica, provide a detailed example of interfacing to an external
spiking simulator, show how to interface to a wide variety of other
external systems and simulators, and discuss in more detail which types
of models are most suitable for interfacing with Topographica.

SOFTWARE DESCRIPTION AND METHODS
Models supported natively by Topographica typically consist of a
collection of topographic maps in cortical or subcortical regions,
such as an auditory or visual processing pathway. Figure 2 shows
an example simulation along with various types of analysis and
plotting. This simple model consists of four separate populations
of neurons, called Sheets: one sheet of retinal photoreceptors
(labeled Retina), a sheet of ON retinal ganglion cell (RGC)/lat-
eral geniculate nucleus (LGN) cells labeled LGNON, a sheet of OFF
cells labeled LGNOFF, and a sheet of V1 pyramidal cells labeled V1.
Neurons in each sheet are arranged topographically, with similar
properties but at different spatial locations.

Topographica is a general-purpose discrete-event simulator,
simulating a set of EventProcessors (any object in a Simulation

FIGURE 1 | Retinotopic and orientation map in V1. Given a particular fi xation
point (marked with a red + symbol above), the visual fi eld seen by an animal can
be divided into a regular grid, with each square representing a 1° × 1° area of
visual space. In cortical area V1 of mammals, neurons are arranged into a
retinotopic map, with nearby neurons responding to nearby areas of the retina.
As an example, the image on the right shows the retinotopic map on the surface
of V1 of a tree shrew for an 8° × 7° area of visual space (adapted from
Bosking et al., 2002 with permission; scale bar is 1 mm). A stimulus presented
in a particular location in visual space (such as the thick black bar shown) evokes
a response centered around the corresponding grid square in V1 (6°, 2°). Which

specifi c neurons respond within that general area, however, depends on the
orientation of the stimulus. The V1 map is color coded with the preferred
orientation of neurons in each location; e.g. the black bar shown at left will
primarily activate neurons colored in purple in the corresponding V1 grid
squares. Similar maps could be plotted for this same area showing preference
for other visual features, such as motion direction, spatial frequency, color,
disparity, and eye preference (depending on species). Other cortical areas are
arranged into topographic maps for other sensory modalities, such as touch and
audition, and for motor outputs. Topographica is designed to simulate any of
these cortical or subcortical areas.

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 | 3

Bednar Topographica: interoperable map-level simulations

capable of receiving and sending Events) connected into a graph
by EPConnections. An EPConnection ensures that Events are
delivered to the appropriate target after a specifi ed delay. The pat-
tern of connections and delays in a certain network determines
how a simulation will progress, with events being generated at a
certain EventProcessor, processed by the target EventProcessor,
and potentially leading to additional Events delivered to other
EventProcessors. Of course, any pattern of connection is allowed,
including lateral and feedback connections. This approach is gen-
eral enough to simulate any physical system as a collection of inter-
connected entities that can interact and change over time.

To make it practical to model large-scale topographic maps, the
most common type of EventProcessor in Topographica is a two-
dimensional Sheet of neurons as in the example above, rather than
a neuron or a part of a neuron. Each Sheet is typically a population
of similar neurons, and multiple Sheets can be used for each neural
area, e.g. to represent different laminae or qualitatively different cell

classes. Conceptually, a sheet is a continuous, two-dimensional area
(as in Amari, 1980; Roque Da Silva Filho, 1992), which is typically
approximated by a fi nite array of neurons. This approach is crucial
to the simulator design, because it allows user parameters, model
specifi cations, and interfaces to be independent of the details of
how each Sheet is implemented.

Apart from accepting and generating Events, all a Sheet is required
to do is to have a fi xed area and density of neurons, and to be able
to generate a fl oating-point array of the appropriate size when
asked for its current pattern of activity. Once this activity matrix
is available for a new Sheet type, then nearly all of Topographica’s
analysis and plotting code can be used with the new Sheet type,
e.g. to decode neural responses from the fi ring rate, or to measure
a topographic map. This general-purpose interface is what makes it
practical to wrap around a wide variety of external simulations, as
long as they can be interpreted as a two-dimensional array whose
elements can have some average fi ring-rate activity value.

FIGURE 2 | Topographica software screenshot. This image shows a sample
session from Topographica version 0.9.3, available freely at topographica.
org. Here the user is studying the behavior of an orientation map in the primary
visual cortex (V1), using a model of photoreceptors as the input to the Retina,
ON and OFF RGC/LGN cells, and a simple V1 model. The window at the left
labeled “Orientation Preference” shows a self-organized orientation map in V1.
The window labeled “Activity” shows (from left to right) a sample visual image
input to the retina, the ON and OFF channel responses to that input, and (on the
right) an orientation-color-coded representation of activity in the V1 Sheet of
neurons. The input patterns were generated using the Test Pattern “Preview”

dialog at the right. The window labeled “Connection Fields” shows the
strengths of the connections to one neuron in V1. The lateral weights for a 9 × 9
sampling of the V1 neurons are shown in the “Weights Array” window in the
center; neurons tend to connect to their immediate neighbors and to distant
neurons of the same orientation. The “Topographic Mapping” window shows
how retinotopy has been distorted by the orientation map, and the “FFT Plot”
shows that the orientation map repeats regularly in all dimensions, as in animals.
This type of large-scale analysis is diffi cult with other simulators, but typically
requires no new coding or software development once a network simulation has
a basic connection to Topographica.

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 | 4

Bednar Topographica: interoperable map-level simulations

Topographica comes with a variety of Sheet types, plus a
large library of other simulation objects, such as projections
(EPConnections between Sheets), activation functions, learning
rules, analysis routines, and visualizations. The most extensive sup-
port is for models of the visual system, and Topographica includes
fl exible components for generating visual inputs (based on geomet-
ric patterns, mathematical functions, and photographic images),
plus general-purpose mechanisms for measuring maps of visual
stimulus preference, such as orientation, ocular dominance, motion
direction, and spatial frequency maps. But many of the primitives
are usable for any topographically organized system, and there are
already Topographica models of somatosensory areas (e.g. monkey
skin and rat whisker barrel areas), auditory inputs, and motor areas
(e.g. for driving visual saccades). Moreover, additional components
can be added easily to make external simulations visible from within
Topographica, or to implement new functionality in general.

INTEROPERABILITY
To demonstrate concretely the procedure for connecting external
simulations to Topographica, in this section we present a detailed
example of wrapping an external NEST simulation using the
Topographica Sheet interface. Shorter examples of how to interface
with a variety of other simulators follow.

INTERFACING TO PERRINET RETINAL MODEL IN PyNN
For this example, we wrapped a spiking retinal ganglion cell model
that is being developed by Laurent Perrinet (INCM/CNRS) as part
of the FACETS project1 and being used in a large-scale spiking
model of cortical columns in V1 (Kremkow et al., 2007). Writing
this interface was surprisingly simple, taking about 2 h to adapt
one of the example Topographica simulations to send output to
an external simulator and retrieve input from it, and we expect
interfacing to other models to be similarly straightforward if they
meet the assumptions laid out in the “Discussion” section.

The Perrinet retina model is specifi ed in PyNN (Davison et al.,
2007)2, a Python wrapper that sets up and runs simulations of
neural models relatively independently of the underlying simula-
tion engine. This particular script calls the NEST simulator, which
is well adapted for large-scale spiking neural networks (Diesmann
and Gewaltig, 2002), but it could also be run under NEURON by
changing one line of declaration.

The model contains two populations of spiking retinal ganglion
cells, a 32 × 32 array of ON cells and a 32 × 32 array of OFF cells,
receiving input from a 32 × 32 array of photoreceptors whose acti-
vation level can be controlled externally. The code can be obtained
and run by downloading Topographica release 0.9.6 (or SVN ver-
sion 9857 or later) of Topographica, and installing PyNN, NEST,
and PyNEST using Topographica’s copy of Python (as described
in examples/perrinet_retina.ty in the distribution).

Figure 3 shows the Python code for wrapping this network as a
Photoreceptor Sheet (Photoreceptors), a connection to PyNN
(PyNNR), and two ganglion cell Sheets (ON_RGC and OFF_RGC), and
Figure 4 shows the resulting simulation running in Topographica.
The example code would be nearly the same for interfacing to any

other external simulation that consists of two-dimensional arrays
of neurons, and so we will step through each part of this code to
show how the interface is achieved. In each case, the relevant line of
code is marked with a circled number, which can be found on the
code listing. Note that this code constitutes the complete, runnable
model specifi cation for Topographica; it is not a code excerpt or a
high-level interface to some underlying, complicated interfacing
code, but instead it is all that was required to connect to and run
the external simulation within Topographica.

1 First, the external simulation is imported, making anything
available to Python from that simulation also available to
Topographica. For this import to succeed, PyNN, NEST, and
PyNEST need to be installed, and each need to have been
given Topographica’s copy of Python during installation so
that they will be available to Topographica.

2 Next, we defi ne a new type of Topographica EventProcessor
PyNNRetina to handle communication between Topographica
and the external simulator. This class simply accepts an inco-
ming event from Topographica that contains a matrix of pho-
toreceptor activity, passes the matrix to the external spiking
simulator, collects the fi ring-rate-averaged results, and sends
them out to any Topographica sheets that may be connected.

3 More specifi cally, the class fi rst declares that it can accept an
incoming event on a port labeled Activity, and that it will
generate two separate types of output data to be made avai-
lable on the ONActivity and OFFActivity dest_ports.
It also declares that it has two user-controlled parameters, N
(size of array of neurons) and simtime (duration to run the
simulation for each input). (Additional parameters from the
underlying simulator can be declared similarly, or all of the
underlying parameters could be exposed as a batch using sui-
table gluing code.)

4 The constructor (__init__) does any initialization that
should be done once per run, here consisting only of defi ning
some parameters, but potentially including launching an
external simulator, making a connection to a remote simula-
tor already running, etc.

5 The input_event method is called by Topographica whe-
never an Event delivers data to this object’s src_port
(Activity). In this case, the method adds the incoming acti-
vity matrix into its parameters data structure (ps), and then
calls the external function run_retina to run the underlying
simulation. When the external simulator completes, two lists
of spikes are returned, one for ON and one for OFF, and these
are processed using the helper function process_spike-
list. For each list, process_spikelist computes the
fi ring rate of each neuron and sends the resulting fl oating-
point arrays out the appropriate port.

6 The remainder of the code instantiates a model network to
display the results from this class, defi ning one PyNNR object,
a Photoreceptors Sheet to generate input patterns, two
RGC Sheets to display the resulting activity patterns, and con-
nections between them.

Running this model (or other Python-based simulations) within
Topographica adds only a tiny amount of computational cost.
For this example running on a 3GHz Intel Core 2 Duo machine,

1http://facets.kip.uni-heidelberg.de.
2http://neuralensemble.org/trac/PyNN.

http://facets.kip.uni-heidelberg.de
http://neuralensemble.org/trac/PyNN

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 | 5

Bednar Topographica: interoperable map-level simulations

 simulating in batch mode with N=8 and simtime=4 s takes 16.07 s
in Topographica, versus 15.88 s using the native PyNN version
(averages of 5 trials; variance negligible). This 0.2-s time difference

consists mainly of libraries that Topographica imports when it starts
up, and the ongoing cost is normally negligible for a non-trivial
external Python model.

FIGURE 3 | Sample Topographica interface code. This Python code shows a
complete, runnable Topographica 0.9.6 simulation interfacing with an external
PyNN/PyNEST spiking simulation of ON and OFF retinal ganglion cells. The text
in bold starts the PyNN simulation and retrieves the results, and would need to

be changed for interfacing to a new external simulation. The other text sets up
an appropriate Topographica simulation framework, and only needs changing to
e.g. match the number and type of sheets that you want to expose from the
underlying external simulation.

 import numpy
 from topo import sheet, numbergen, pattern, param, projection
 from topo.base.simulation import EventProcessor
1 import perrinet_retina_pynest as pynr

2 class PyNNRetina(EventProcessor):
3 dest_ports=["Activity"]
 src_ports=["ONActivity","OFFActivity"]
 N = param.Number(default=8,bounds=(0,None), doc="Network width")
 simtime = param.Number(default=4000*0.1,bounds=(0,None),
 doc="Duration to simulate for each input")

 def__init__(self,**params):
 super(PyNNRetina,self).__init__(**params)
4 self.ps=pynr.retina_default()
 self.ps.update("N":self.N)
 self.dt=self.ps["dt"]

5 def input_event(self, conn, data):
 self.ps.update("simtime":self.simtime
 self.ps.update("amplitude":.10*data)
 on_list,off_list=pynr.run_retina(self.ps)
 self.process_spikelist(on_list,"ONActivity")
 self.process_spikelist(off_list,"OFFActivity")

 def process_spikelist(self,spikelist,port):
 spikes=numpy.array(spikelist)
 spike_time=numpy.cumsum(spikes[:,0]) * self.dt
 spike_out=pynr.spikelist2spikematrix(
 spikes,self.N,self.simtime/self.dt,self.dt)
 self.send_output(src_port=port,data=spike_out)

6 N=32
 topo.sim["PyNNR"]=PyNNRetina(N=N)

 topo.sim["Photoreceptors"]=sheet.GeneratorSheet(
 nominal_density=N, period=1.0, phase=0.05,
 input_generator=pattern.Gaussian(
 orientation=numbergen.UniformRandom(lbound=-pi,ubound=pi,seed=l)))

 topo.sim["ON_RGC"] =sheet.ActivityCopy(nominal_density=N, precedence=0.7)
 topo.sim["OFF_RGC"]=sheet.ActivityCopy(nominal_density=N, precedence=0.7)

 topo.sim.connect("Photoreceptors","PyNNR",name='.',
 delay=0.05,src_port="Activity",dest_port="Activity")
 topo.sim.connect("PyNNR","ON_RGC",name='..',
 delay=0.05,src_port="ONActivity",dest_port="Activity")
 topo.sim.connect("PyNNR","OFF_RGC",name='...',
 delay=0.05,src_port="OFFActivity",dest_port="Activity")

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 | 6

Bednar Topographica: interoperable map-level simulations

With this interface in place, the external simulation can be used
with nearly all of Topographica’s features. For instance, Figure 4
shows one example input pattern and the resulting pattern of ON
and OFF RGC activity. For this example, the main benefi t to having
the Topographica wrapper is to be able to present any of the types
of input patterns in Topographica’s large library of input patterns,
using either the GUI so that the results can be seen interactively, or
systematically using Python code. For other simulations, e.g. those
including cortical areas such as V1, Topographica can compute tun-
ing curves, receptive fi elds, many types of preference maps, and other
analyses and plots for any of the neurons and Sheets available to
Topographica, with no coding required. As long as the computa-
tion only requires average fi ring rates, no special-purpose code or
additional interface will be needed beyond what is shown in this
example. Thus Topographica can be used to provide a consistent set
of analyses and plots for a wide variety of underlying simulations.

INTERFACING TO OTHER PYTHON CODE (E.G., PyNEST, NEURON)
The general approach outlined in the section “Interfacing to Perrinet
Retinal Model in PyNN” can be used for any other model running in
an external simulator that has a Python interface or is written directly
in Python. In each case, a new Topographica EventProcessor class can
be created to accept incoming events, process them somehow, and
generate appropriate output. For instance, similar steps would have
been used if the retina model had been written in PyNEST directly
rather than PyNN, or in NEURON’s own Python interface. As long
as the external simulator can be told to use Topographica’s copy
of Python, then Topographica can import the required functions,
execute them as part of such a class, and thus control its input and
output. As a result, the main issues with interfacing to other Python-
based simulators are not so much technical as conceptual; these
conceptual issues will be reviewed in the “Discussion” section.

INTERFACING TO MATLAB
Topographica can also connect easily to external simulations
 running in Matlab, using the Python ↔ Matlab interface package
mlabwrap3 that is supplied with Topographica.

For instance, the following complete, runnable Topographica
script defi nes a Python/numpy array a and then calls a Matlab
function “nestedsum” on it:

 from mlabwrap import mlab
 import numpy
 len=100000
 a=numpy.array(range(len))
 print mlab.nestedsum(a, len)

Here nestedsum.m is an arbitrary example of a Matlab function
placed somewhere in Matlab’s path, containing:

 function s = nestedsum(a,len)
 s=0.0;
 for i=1:len
 s=s+sum(a);
 end

(This code prints 5.0000e+14 when run from Matlab, and
4.99995000e+14 when run from Topographica/Python.) Any
built-in or user-supplied Matlab function can be called similarly
(including plotting code like mlab.plot(a)), with nearly seam-
less interchange of scalar and array data between the two systems.
This capability makes it simple to develop interfaces like that in
the section “Interfacing to Perrinet Retinal Model in PyNN”,
or just to use small bits of Matlab code or visualizations when
appropriate.

The mlabwrap package performs some data conversion behind
the scenes, but the overhead is still usually negligible. The exam-
ple above run on the same machine as for PyNN takes 12.27 s in
Topographica, versus 11.57 s for a pure Matlab version. Again, this
0.7 s difference includes the entire startup time, and increases little
with simulation size (e.g. 0.8 s out of 44 for len=200000).

The main technical limitation of the mlabwrap Matlab
 interface is that at present it only supports 1D and 2D arrays,
because the mlabwrap author has not yet added n-dimensional
array support. More importantly, interfacing to external Matlab
models can be diffi cult because of the monolithic (as opposed to
object-oriented) programming style typically used for Matlab pro-
gramming. For instance, the Olshausen and Field (1996) model

FIGURE 4 | Example architecture. This fi gure shows the simulation from
Figure 3 running in Topographica. On the input sheet is a 2D Gaussian pattern
generated by Topographica and presented to the underlying spiking network,

with the resulting spike count responses shown on the ON and OFF RGC
sheets. The type of input pattern and its parameters can be manipulated as
shown.

3http://mlabwrap.sourceforge.net.

http://mlabwrap.sourceforge.net

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 | 7

Bednar Topographica: interoperable map-level simulations

available from4 is a good match to Topographica conceptually, but
running it within Topographica in a useful way requires splitting
up the Matlab code into three components to handle the input
pattern generation, response to the input, and the weights update
separately. These functions were originally controlled by a single
Matlab script. Thus in practice how diffi cult it would be to interface
to Matlab code depends on the programming style and complexity,
with simple functions being simple to access but complicated mod-
els potentially requiring prior reorganization on the Matlab side.

INTERFACING TO C/C++
Python offers a wide variety of methods for interfacing to C or C++
code, any of which could be used with Topographica. The specifi c
interface currently used for the performance-critical portions of
Topographica is Weave5, which allows snippets of C or C++ code
to be called easily from within Python code. A sample complete,
runnable Topographica/Python script with C code is:

 import weave,numpy
 len=100000
 sum=0.0
 a=numpy.array(range(len))
 code = """
 int i,j;
 for (i=0; i<len; i++)
 for (j=0; j<len; j++)
 sum+=a[i];
 return_val=sum;
 """
 print weave.inline(code,["a","len","sum"])

Here the C code in the string named code is computing the same
function as the Matlab code above; it will print 4.99995e+14 when
run. The fi rst time it is run the C compiler will be called automati-
cally to compile that code fragment, and then the saved object fi le
will be reused in subsequent calls and on subsequent runs, unless
the C code string is changed. This approach makes it simple to
include bits of existing C code to optimize specifi c functions, or
to make calls to C libraries.

The C interface adds very little overhead, in part because it
uses numpy arrays in place. The example above takes 10.34 s in
Topographica, versus 10.07 for a pure C equivalent. This 0.3-s dif-
ference is primarily due to the Topographica startup time, because
it does not increase with simulation size or length. Also note that
the full C version must be recompiled for any change, even trivial
ones, while the Topographica/Python version only recompiles when
the code string changes (which is typically rare if C is used only for
performance-critical sections; recompilation adds about 1 s to the
runtime in this example).

Using weave in this way makes it simple to add small bits
of C code, but other approaches such as ctypes (included in
Python 2.5) can be more suitable for interfacing to large external
C packages. Again, how diffi cult the interface will be depends
on whether the external code is arranged into entities that
can be called directly from Topographica; as discussed below,

 reorganizing the code in this way is usually straightforward but
can take some effort.

DISCUSSION
As the examples above show, very little coding is required to wrap
even complex simulations into the basic Sheet and EventProcessor
components used in Topographica. A large class of models across
different modelling and analysis levels (e.g., fi ring-rate, integrate-
and-fi re, and compartmental neuron models) can fi t into this struc-
ture, allowing all of them to be analyzed and compared consistently,
interconnected where appropriate, and explored visually even if
the underlying simulator has no graphical interface (as for NEST).
Although the general problem of simulator interoperatibility is
diffi cult to address, in this specifi c case it is relatively easy to get
practical benefi ts from combining simulators.

Although the approach outlined above is general purpose, it
does require coding a new Topographica component to match each
specifi c model implemented externally. A useful but more complex
alternative would be to provide a detailed mapping between object
types in an external simulator. For instance, one could provide
a Topographica Sheet object that instantiates a corresponding
NEST layer object, and similarly for a Topographica Projection
object and a NEST connection object. In this way NEST or other
simulators could be used to provide specifi c functionality missing
from Topographica, rather than to implement complete models.
However, developing such interfaces is much more involved than
the simple wrapping described here.

Even though the Topographica Sheet interface is general enough
to fi t a wide range of current models, there are some models that do
not fi t within its assumptions. In particular, a Sheet usually needs to
have an underlying grid shape to the population of neurons, though
individual neurons can be absent or at jittered spatial locations, as
long as no more than one neuron is present in any grid cell. (Strictly
speaking, it need only be possible to visualize the model in this
way; the actual organization is arbitrary.) Also, only Cartesian grids
are currently supported, though hexagonal grids could be added
in the future. Arbitrary 3D locations will be diffi cult to support,
except by imposing a 3D grid. Note that nonlinear spacings are
supported, using arbitrary coordinate mapping between Sheets,
e.g. for foveated retinotopic mappings, as long as there is still an
underlying grid of neurons.

Apart from operating loosely on a grid, Topographica assumes
that models will have regions that are separable from each other,
communicating only over well defi ned channels, and usually incre-
mentally processing some sort of external stimuli that change over
time. Although these assumptions are extremely general, and can
apply to any physical system, many models do not satisfy them
fully. For instance, models that represent inputs not as individual
patterns but as correlation functions (e.g. Miller, 1994) are diffi cult
to connect to Topographica, because most of the functionality of
Topographica requires testing the response to specifi c external stim-
uli (e.g. for measuring maps, tuning curves, and receptive fi elds).
Other types of models that operate in a “batch” mode rather than
one pattern at a time (e.g. Olshausen and Field, 1996) can usually be
adapted to work in incremental mode as required by Topographica,
but they may then run much more slowly.4https://redwood.berkeley.edu/bruno/sparsenet/

5www.scipy.org/Weave.

www.scipy.org/Weave
https://redwood.berkeley.edu/bruno/sparsenet/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 | 8

Bednar Topographica: interoperable map-level simulations

Given the ease with which many models can be wrapped, an
intermediate-term goal will be to provide example code for wrap-
ping as many current V1 models as possible into Topographica,
to establish for the fi rst time a platform for evaluating their
behavior and functionality consistently. At present, each model
is implemented independently, with different analysis routines
and types of visualization, and thus it is extremely diffi cult to
determine if apparent differences in behavior are signifi cant. As
long as runnable code is available for each model, wrapping it
into Topographica should be straightforward and should provide
immediate benefi ts.

In addition to interfacing with external model components, any
of the mechanisms outlined above can be used to call externally
defi ned general-purpose analysis or visualization functions. For
instance, the NeuroTools package6 defi nes an object-based Python
representation of spike trains, such as those used in the spiking
retina model above. A native spiking Topographica model can
then use these functions rather than reimplementing them within
Topographica.

This paper focuses on making external simulations available
within Topographica, to allow simulations at the topographic map
level or at lower levels to be brought into a common analysis and
testing framework. It is also straightforward to interface in the
opposite direction, running a Topographica simulation from
within an external system or simulators. The Topographica User
Guide7 provides detailed examples of running models from the
Python command line or Python scripts, and the same interface
can be used from within any simulator that has Python bind-
ings. Moreover, Topographica has a highly modular design with
few dependencies between components, and there are many
Topographica objects that are useful on their own and can be

used just as any other Python object from within an external
program.

At present, Topographica is primarily useful for doing analy-
ses based on fi ring rates, because of its extensive fi ring-rate based
libraries. Spiking simulations are also possible in Topographica,
but they are currently quite limited, and will require additional
work to establish general-purpose abstractions that can be used
to integrate data across models and simulators. In the long run,
we intend Topographica to be useful as a high-level platform for
analyzing spiking output as well as fi ring-rate output, and would
welcome collaborations with people interested in that topic or in
other aspects of Topographica or interoperability development.

In summary, working at the topographic map level makes it
practical to provide interconnections between models and simula-
tors working at the same or different levels of detail. As long as the
neurons are grouped into two-dimensional sheets of related units,
they will be able to interface easily with Topographica’s tools and
components. The result provides a shared platform for evaluating
models from different sources, allowing consistent analysis and
testing even for very different implementations. We believe this
shared, extensible tool will be highly useful for the community of
researchers working to understand the large-scale structure and
function of the nervous system.

ACKNOWLEDGMENTS
Supported in part by the National Institutes of Mental Health under
Human Brain Project grant 1R01-MH66991, by the National Science
Foundation under grant IIS-9811478, and by the EPSRC/MRC
Doctoral Training Centre in Neuroinformatics at the University
of Edinburgh. Thanks to Laurent Perrinet (INCM/CNRS) for con-
tributing his retina model as an example, for assisting with the
process of interfacing it to Topographica, and for making comments
on an earlier draft of this manuscript. Thanks also to all of the
Topographica developers, particularly Christopher Ball, without
whom this work would not have been possible.

6http://neuralensemble.org/trac/NeuroTools.
7www.topographica.org.

REFERENCES
Amari, S. (1980). Topographic organiza-

tion of nerve fi elds. Bull. Math. Biol.
42, 339–364.

Bednar, J. A. (2008). Understanding
neural maps with topographica. In
Interactive Educational Media for the
Neural and Cognitive Sciences. Brains,
Minds and Media, Vol. 3, bmm # 1402,
S. Lorenz and M. Egelhaaf (eds).
http://www.brains-minds-media.
org/archive/1402.

Blasdel, G. G. (1992). Orientation selec-
tivity, preference, and continuity in
monkey striate cortex. J. Neurosci. 12,
3139–3161.

Bosking, W. H., Crowley, J. C., and
Fitzpatrick, D. (2002). Spatial cod-
ing of position and orientation in
primary visual cortex. Nat. Neurosci.
5, 874–882.

Bower, J. M., and Beeman, D. (1998). The
Book of GENESIS: Exploring Realistic
Neural Models with the GEneral

NEural SImulation System, 2nd Edn.
Santa Clara, Telos.

Cannon, R. C., Gewaltig, M.-O., Gleeson, P.,
Bhalla, U. S., Cornelis, H., Hines, M. L.,
Howell, F. W., Muller, E., Stiles, J. R.,
Wils, S., and De Schutter, E. (2007).
Interoperability of neuroscience mod-
eling software: Current status and
future directions. Neuroinformatics
5, 127–138.

Davison, A., Yger, P., Kremkow, J.,
Perrinet, L., and Muller, E. (2007).
PyNN: towards a universal neu-
ral simulator API in Python. BMC
Neurosci. 8(Suppl. 2), P2 (Toronto,
Proceedings of the Sixteenth Annual
Computational Neuroscience Meeting
(CNS*2007)).

Diesmann, M., and Gewaltig, M. (2002).
NEST: an environment for neural
systems simulations. In Forschung
und wisschenschaftliches Rechnen,
Beiträge zum Heinz-Billing-Preis
2001, Vol. 58, T. Plesser and V.

Macho, eds (Göttingen, Ges. für Wiss.
Datenverarbeitung), pp. 43–70.

Djurfeldt, M., and Lansner, A.
(2007). Workshop report: 1st
INCF workshop on Large-scale
Modeling of the nervous system.
Available from Nature Precedings.
doi:10.1038/npre.2007.262.1.

Hines, M. L., and Carnevale, N. T. (1997).
The NEURON simulation environ-
ment. Neural Comput. 9, 1179–1209.

Kaas, J. H. (1997). Theories of visual cor-
tex organization in primates. Cereb.
Cortex 12, 91–125.

Kremkow, J., Perrinet, L., Kumar, A.,
Aertsen, A., and Masson, G. (2007).
Synchrony in thalamic inputs enhances
propagation of activity through cor-
tical layers. BMC Neurosci. 8(Suppl.
2), P206. (Toronto, Proceedings of
the Sixteenth Annual Computational
Neuroscience Meeting (CNS*2007)).

Merzenich, M. M., Knight, P. L., and
Roth, G. L. (1975). Representation

of cochlea within primary auditory
cortex in the cat. J. Neurophysiol. 38,
231–249.

Miller, K. D. (1994). A model for the
development of simple cell receptive
fi elds and the ordered arrangement of
orientation columns through activity-
dependent competition between ON-
and OFF-center inputs. J. Neurosci. 14,
409–441.

Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P.,
and Reid, R. C. (2005). Functional
imaging with cellular resolution
reveals precise micro-architec-
ture in visual cortex. Nature 433,
597–603.

Olshausen, B. A., and Field, D. J. (1996).
Emergence of simple-cell receptive
fi eld properties by learning a sparse
code for natural images. Nature 381,
607–609.

Ousterhout, J. K. (1998). Scripting: higher
level programming for the 21st cen-
tury. Computer 31, 23–30.

www.topographica.org
http://neuralensemble.org/trac/NeuroTools
http://www.brains-minds-media.org/archive/1402

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 | 9

Bednar Topographica: interoperable map-level simulations

Roque Da Silva Filho, A. C. (1992).
Investigation of a generalized ver-
sion of Amari’s continuous model
for neural networks. PhD Thesis.
Brighton, School of Cognitive and
Computing Sciences, University of
Sussex.

Van Essen, D. C., Lewis, J. W., Drury, H. A.,
Hadjikhani, N., Tootell, R. B. H.,
Bakircioglu, M., and Miller, M.
I. (2001). Mapping visual cortex
in monkeys and humans using

 surface-based atlases. Vision Res. 41,
1359–1378.

Weliky, M., Bosking, W. H., and
Fitzpatrick, D. (1996). A system-
atic map of direction preference in
primary visual cortex. Nature 379,
725–728.

Xu, X. , Anderson, T. J. , and
Casagrande, V. A. (2007). How do
functional maps in primary visual
cortex vary with eccentricity? J. Comp.
Neurol. 501, 741–755.

Confl ict of Interest Statement: The authors
declare that the research was conducted in
the absence of any commercial or fi nancial
relationships that could be construed as a
potential confl ict of interest.

Received: 15 September 2008; paper pend-
ing published: 20 November 2008; accepted:
26 February 2009; published online: 24
March 2009.
Citation: Bednar JA (2009) Topographica:
building and analyzing map-level simu-

lations from Python, C/C++, MATLAB,
NEST, or NEURON components.
Front. Neuroinform. (2009) 3:8. doi:
10.3389/neuro.11.008.2009
Copyright © 2009 Bednar. This is an
open-access article subject to an exclusive
license agreement between the authors
and the Frontiers Research Foundation,
which permits unrestricted use, distribu-
tion, and reproduction in any medium,
provided the original authors and source
are credited.

