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encouraged us to standardize on Python for the spike sorting and 
spike train analysis projects to follow. For one of us (M. Spacek), the 
switch to Python has made programming a much more enjoyable 
and productive experience, and has resulted in greatly improved 
programming skills.

The benefi ts of Python have been extolled at length elsewhere 
(Hetland, 2005; Langtangen, 2008; Lutz, 2006). Briefl y, Python is 
a powerful, dynamically typed, interpreted language that “fi ts your 
brain”, with syntax akin to “executable pseudocode”. Python’s clear, 
simple syntax is perhaps its biggest selling point. Some of its clarity 
stems from a philosophy to provide “one – and preferably only 
one – obvious way” to do a given task (Peters, 2004), making fea-
tures easy to remember. Its clarity is also due to a strong adherence 
to object-oriented programming principles [Chapter 7 of Hetland 
(2005) is an excellent introduction]. In Python, nearly everything is 
an object, even numbers and functions. This means that everything 
has attributes and methods (methods are functions that are bound 
to and act on objects), and can thus be treated in a similar way. An 
object is an instance of a class. A class can inherit attributes and 
methods from other classes hierarchically, allowing for substantial 
code reuse, and therefore less code to maintain. Python code is 
succinct compared to most other languages: a lot can be accom-
plished in only a few lines. Finally, Python is free and open source, 
and encourages open source software development. This is partly 
due to its interpreted nature: the source code and executable are 
typically one and the same.

Python has a stable and feature-rich numeric library called 
NumPy1 which provides an N-dimensional array object. NumPy 
arrays can be subjected to vectorized operations, most of which call 
static C functions, allowing them to run almost as fast as pure C 
code. Yet, these operations remain accessible from within succinct 
Python code. NumPy turns Python into an effective replacement 
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INTRODUCTION
As systems neuroscience moves increasingly towards highly paral-
lel physiological recording techniques, generation, management, 
and analysis of large complex data sets is becoming the norm. We 
are interested in the function of localized neuronal populations 
in visual cortex. The goal is to understand how neurons in visual 
cortex respond to visual stimuli, to the extent that the responses to 
arbitrary stimuli can be predicted. Accurate prediction will require 
an understanding of how these neurons interact with each other. 
Neurons in close proximity are more likely to show functionally 
interesting interactions, and insights into how such localized popu-
lations work may help guide understanding of other parts of cortex, 
or even the brain as a whole. To this end we need to record and 
analyse the simultaneous spiking behaviour of many neurons in 
response to a wide variety of visual stimuli.

We use 54-channel silicon polytrodes, in both rat and cat pri-
mary visual cortex, to extracellularly sample spiking activity con-
strained to roughly a cortical column (Figure 1A) (Blanche et al., 
2005). Time-locked visual stimuli are presented to the animal while 
simultaneously recording from dozens of neurons (Figure 1B). 
Waveforms are recorded continuously at a rate of 2.7 MB/s for up 
to 90 min (∼15 GB) at a time. A single animal experiment can last 
up to 3 days and generate hundreds of GB of data. Setting up our 
electrophysiology rig, with custom acquisition software written in 
Delphi (Blanche, 2005), was the fi rst step. Although we had existing 
solutions in place for visual stimulation, waveform visualization 
and spike sorting, and spike train analysis, all three had limitations 
which were addressed by rewriting our software in Python.

The fi rst of those tackled was visual stimulation. After an exten-
sive search for existing software, we discovered the “Vision Egg” 
(Straw, 2008), a Python library for generating stimuli. We chose 
the Vision Egg partly because of the language it was written in and 
written for: Python. We were thus introduced to Python via one 
of its many packages, and the experience was so positive that it 
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for MatLab (The MathWorks, Natick, MA, USA), and is used exten-
sively by dimstim, spyke, and neuropy.

While all three projects presented here were written in Python, 
their use and implementation are very different. Dimstim is script 
based and is run from the system’s command line. Spyke has a 
graphical user interface (GUI) and looks like a native application, 
while neuropy is typically accessed from the Python command 
line as a library. Here, we explore some of the features and benefi ts 
of Python and its many add-on packages for the electrophysiolo-
gist, by introducing our own three packages as detailed working 
examples.

DIMSTIM: VISUAL STIMULUS GENERATION
In our experiments, we needed a way to display and control a wide 
variety of stimuli with many different parameters, often shuffl ed 
with respect to each other in various ways. Since spike times are 
acquired at sub-millisecond temporal resolution, and since pre-
cise spike timing may play a role in neural coding (Mainen and 
Sejnowski, 1995; VanRullen and Thorpe, 2002), we also wanted high 
temporal precision in the stimulus. Our prior stimulus software was 
written in Fortran and ran under DOS with a 32-bit extender. It was 
written for the 8514/A graphics standard which has now lapsed. The 
last graphics cards to support it were limited in the size and speed 
of movie frames they could draw to screen. Moreover, these cards 
were limited to a screen refresh rate of 100 Hz at our desired resolu-
tion. We found signifi cant artefactual phase-locking of responses 
in visual cortex at this frequency (Blanche, 2005), which has been 
a concern reported elsewhere (Williams et al., 2004; Wollman and 
Palmer, 1995). For these reasons, we needed a better solution.

Dimstim displays full-screen stimuli at a refresh rate of 200 Hz, 
providing precise control of the display at 5 ms intervals with-
out frame drops. Stimuli include manually controlled, drifting, 
and fl ashed bars and gratings, sparse noise, and m-sequence noise 
(Golomb, 1967) and natural scene movies. Stimulus parameters 
can be shuffl ed with or without replacement, independently or in 
covariation with each other. Parameters include spatial location and 
phase, orientation, speed, duration, size, mask, contrast, brightness, 

and spatial and temporal frequencies. Each stimulus session is fully 
specifi ed by its own user-editable script. A copy of the script, and 
an index of the contents of the screen on each screen refresh, are 
sent to the acquisition computer, for simultaneous recording of 
stimulus and neuronal responses.

Dimstim relies heavily on the Vision Egg2 library (Straw, 2008) 
to generate stimuli. The Vision Egg uses the well-established 
OpenGL3 graphics language, which thanks to the demands of video 
games, is now supported by all modern video cards on all major 
platforms. We currently use an Nvidia GeForce 7600 graphics card 
running under Windows XP. Stimuli are displayed on a 19'' Iiyama 
HM903DTB and a 22'' HM204DTA CRT monitor, two of only 
a handful of consumer monitors that are capable of 800 × 600 
resolution at 200 Hz. Unfortunately, like most other CRTs, these 
particular models have now been discontinued, but used ones 
may still be available. Hopefully the timing of LCD monitors will 
improve such that they can replace CRTs for temporally precise 
stimulus control.

Multitasking operating systems (OSes) present a challenge for 
real-time control of the screen. Often, the OS will decide to delay 
an operation to maintain responsiveness in other areas. This can 
lead to frame drops, but can be mitigated by increasing the prior-
ity of the Python process. Setting the process and thread priorities 
to their maximum levels in the Vision Egg completely eliminated 
frame drops in Windows XP, but with the unfortunate loss of mouse 
and keyboard polling. In dimstim, this meant that the user had no 
way of interrupting the stimulus script, other than by resetting the 
computer. Moving to a computer with a dual core CPU alleviated 
this problem, as the maximum priority Python process was del-
egated to one core without interruption, while other OS tasks such 
as keyboard polling ran normally on the second core.

Dimstim communicates stimulus parameters on a frame-by-
frame basis to the acquisition computer via a PCI digital out-
put board (DT340, Data Translations, Marlboro, MA, USA), for 
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FIGURE 1 | (A) One of several 54-channel silicon polytrode designs used. Recording sites are closely spaced, such that a spike will typically appear on several sites at 
the same time (see Figure 3). (B) Experimental setup. Stimuli are presented to the animal while stimulus information and extracellular voltage waveforms are 
acquired and saved to disk.

2http://visionegg.org
3http://opengl.org
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 simultaneous recording of stimulus timing alongside neuronal 
responses. Parameters are described by sending the row index of 
a large lookup table (“sweep table”) on every screen refresh. The 
sweep table contains all the combinations of the dynamic param-
eters, i.e. those stimulus parameters that can vary from one screen 
refresh to the next.

The digital output board is controlled by its driver’s C library. 
Because Python is written in C (other implementations also exist), 
it has a C application programming interface (API), and exten-
sions to Python can be written in C. We wrote such an extension to 
interact with the board’s C library, but today this is no longer nec-
essary. A new built-in Python module called “ctypes” now allows 
interaction with a C library on any platform directly from within 
Python code. This is much simpler, as it removes the need to both 
write and compile C extension code using Python’s somewhat 
tedious C API. If dimstim were rewritten today, ctypes would be 
the method of choice. Dimstim includes a demo (olda_demo.py) 
of how to use ctypes to directly interact with Data Translations’ 
Open Layers data acquisition library. Libraries for cards from 
other vendors (such as National Instruments’ NI-DAQmx) can 
be similarly accessed.

Frame timing was tested with a photodiode placed on the moni-
tor. The photodiode signal, along with the raster signal from the 
video card and the digital outputs from the stimulus computer, 
were all recorded simultaneously. We discovered that the contents 
of the screen always lagged by one screen refresh, due to OpenGL’s 
buffer swapping behaviour (Straw, 2008). This was corrected for 
by adding one frame time (5 ms) to the timestamp of the digitized 
raster signal in the acquisition system.

Gamma correction was used to ensure linear control of screen 
luminance. Several levels of uncorrected luminance were measured 
with a light meter (Minolta LS-100) and fi t to a power law expres-
sion to determine the exponent corresponding to the gamma value 
of the screen (Blanche, 2005; Straw, 2008). Gamma correction can 
be set independently for each script, or globally across all scripts 
in dimstim’s confi g fi le.

Natural scene movies used by dimstim were fi lmed outdoors with 
an ordinary compact digital camera (Canon PowerShot SD200) with 
320 × 240 resolution at 60 frames per second (fps). Unfortunately, 
this camera could record no more than 1 min of video at a time. 
To generate longer movies, multiple clips were fi lmed in succes-
sion, while keeping the camera as motionless as possible between 
the end of one clip and the start of the next. Concatenation of and 
conversion from multiple colour .avi fi les to a single uncompressed 
greyscale movie fi le was done using David McNab’s y4m4 package. 
Processed movies were displayed in dimstim with the same visual 
angle subtended by the camera, at 67 fps (three 5 ms screen refreshes 
per movie frame).

USAGE
Dimstim’s confi g fi le stores default values for a variety of generic 
parameters that apply to most stimuli. These parameters include 
spatial location, size, orientation offset, and temporal and spatial 
frequencies. For simplicity, all spatial parameters are specifi ed in 
degrees of visual angle. The confi g fi le can be edited by hand, but 

the typical procedure when optimizing parameters for the current 
neural population is to run a manually controlled bar or grating 
stimulus. For user convenience, the stimulus is shown simultane-
ously on two displays driven by two video outputs from the graphics 
card: one for the animal, and one for the user. The parameters of 
the manual stimulus are controlled in real-time with the mouse 
and keyboard. Once the user is satisfi ed, the parameters are saved 
to the confi g fi le. These can later be retrieved by an experiment 
script for use as default values.

An example script for a drifting sinusoidal grating experiment 
is shown in Figure 2. The script works in a bottom-up fashion. 
First, objects for storage of static and dynamic parameters are 
instantiated (“s” and “d” respectively, lines 5–6). To these are bound 
various different parameters as attributes (denoted by a “ . ”). In 
this example, most values are declared directly by the script, but 
two static parameters, grating orientation offset and gamma cor-
rection, are retrieved from their defaults in the confi g fi le, using 
the dimstim confi g parser object named “dc” (lines 15 and 23). 
Dynamic parameters, if assigned a list of multiple values, will iter-
ate over those values over the course of the experiment. In this 
case, grating orientation, spatial frequency, and temporal frequency 
are all assigned multiple values (lines 28, 36, 38). The rest remain 
constant for the duration of the experiment. In order to describe 
their interdependence and shuffl ing, each multiple-value dynamic 
parameter must be declared as a “Variable” (lines 53–55). Variables 
with the same dimension value (“dim” keyword argument) covary 
with each other, and must therefore all have the same number of 
values and the same shuffl e fl ag. Variables with different dimension 
values vary independently in a combinatorial fashion, with the low-
est numbered dimension varying slowest, and the highest varying 
fastest. This is implemented by dynamically generating a string 
object containing Python code with the correct number of nested 
for loops (equalling the number of independent variables specifi ed 
in the script), and then executing the contents of the string with 
Python’s exec() function (see the dimstim.Core.SweepTable 
class). Next, the number of times to cycle through all combinations, 
and the frequency at which to insert a blank screen sweep (for 
determining baseline fi ring rates) are specifi ed in their own objects 
(lines 57–58). Finally, all these objects are passed together to the 
Grating class (which like all other dimstim stimuli, inherits from 
the Experiment class) to instantiate a Grating experiment object, 
and the experiment is run (lines 62–65). With 12 orientations, 
6 spatial frequencies, and 4 temporal frequencies, this experiment 
has 288 unique parameter combinations, presented in shuffl ed 
order. Each is presented four times for a total of 1152 stimulus 
sweeps, lasting 4 s each, for a total experiment time of about 77 min 
(not including blank sweeps).

Before running, various checks are done to alert for any obvious 
errors in the user edited script. Then, a copy of the entire script 
is sent to the acquisition computer. This makes it possible to later 
reconstruct the sweep table for analysis, and even replay the entire 
experiment exactly, without the need for access to the original script 
on the stimulus computer. To ensure accurate timing, stimuli run 
only on the animal display, while the user display shows the system 
command line. In between experiments when no stimuli are run-
ning, a blank grey desktop is shown on the animal display. Scripts 
can be paused or cancelled using the keyboard.4http://freenet.org.nz/y4m

http://freenet.org.nz/y4m
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FIGURE 2 | A dimstim script describing a drifting sinusoidal grating. Such 
scripts may be edited at will, and are the primary way the user interacts with 
dimstim. After some error checking, the script executes from the system’s 

command line, to which status messages are printed. Comments, denoted by # 
and """ in Python, are highlighted in red. Line numbers have been added for 
reference. See text for more details.
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SPYKE: WAVEFORM VISUALIZATION AND SPIKE SORTING
Once neural waveform and stimulus data were saved to disk by 
our acquisition system (written in Delphi), we needed a way to 
retrieve the data for visualization and spike sorting. Our existing 
program for this, also written in Delphi, had some bugs and miss-
ing features. However, the Delphi environment required a license, 
the program would only run in Windows, and the code was more 
procedural than object-oriented. In particular, some of the code had 
blocks (if statements, for/while statements) that were nested many 

 layers deep, making it diffi cult to follow. “Flat is better than nested” 
(Peters, 2004) is another Python philosophy. Several short, shallow 
blocks of code are easier to understand and manage than one long 
deep block. We decided to start from scratch in Python.

Spyke has a cross-platform GUI with native widgets for data 
visualization and navigation, and spike sorting (Figure 3). Spike 
waveforms are displayed in two ways: spatially according to the 
polytrode channel layout (spike window), and vertically in chart 
form (chart window). Local fi eld potential (LFP) waveforms are 

FIGURE 3 | Main spyke window (top), with data windows (bottom) 

showing high-pass waveforms in polytrode layout (left ) and chart layout 

(middle). A third data window shows the low-pass LFP waveforms (right ) 

concurrently recorded from a subset of channels (colour coded). All data are 
centred on the same timepoint. The shaded region in the middle of both the chart 
and LFP windows represents the time range spanned by the window to its left.
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also displayed vertically in chart form (LFP window). Polytrode 
channels are closely spaced (43–75 µm) over two or three columns 
(Figure 1A). A single spike can generate a signal on multiple chan-
nels, hence the need to visualize waveforms according to their poly-
trode channel layout. Channels are colour-coded to make them easy 
to distinguish and align across windows. Spyke looks and behaves 
like a native GUI application, with menus, buttons, and resizable 
windows. Navigation is mouse and keyboard based. A horizontal 
slider and combo box at the top of the main spyke window control 
fi le position in time. Left and right arrow keys, and page up and 
page down keys step through the data with single timepoint or 
1 ms resolution respectively. Clicking on any data window (spike, 
chart, or LFP) centres all three windows on that timepoint. Holding 
CTRL and scrolling the mouse wheel over a data window zooms it 
in or out in time. Holding CTRL and clicking on a channel enables 
or disables it. Hovering the mouse over a data window displays a 
tooltip with the timestamp, channel, and voltage currently under 
the mouse cursor.

Spyke uses the wxPython5 library for its GUI. This is a Python 
interface to the wxWidgets C++ GUI library which generates widg-
ets on Windows, Linux, and OSX. Now well over a decade old 
(Rappin and Dunn, 2006), wxPython is a stable library that has 
adapted to changing OSes. Widgets include everything from win-
dows, menus, and buttons, to more complex list and tree controls. 
WxPython has a big advantage over other GUI libraries in its use of 
widgets that are native to the OS the program is running on, such 
that they look and behave identically to normally created widgets 
in that OS. WxGlade6 was used to visually lay out the GUI. Itself a 
wxPython based GUI application, wxGlade takes the programmer’s 
visual layout and automatically generates the corresponding layout 
code in Python. This code can then be included in the programmer’s 
own code base, typically by defi ning a class that inherits from the 
automatically generated code. Although wxGlade is not necessary 
for writing a GUI with wxPython, we found it much faster and 
easier than writing all of the layout code by hand.

Unfortunately, some widgets are inherently different on differ-
ent OSes. Writing and testing a wxPython GUI on only one OS will 
therefore not guarantee perfect functionality on another. To do so 
would require checking for the current OS, and implementing certain 
things differently depending on the OS. Spyke does not currently do 
this, and has so far only been thoroughly tested in Windows. A cross-
platform GUI library faces many challenges. Although wxPython is 
one of the best (Rappin and Dunn, 2006), it has bugs7 – some of them 
longstanding – that had to be worked around in spyke.

Although the widgets are handled by wxPython, waveforms are 
plotted using matplotlib8. Matplotlib is a 2D plotting library for 
Python that generates publication quality fi gures. It has two inter-
faces: one that mimics the familiar plotting commands of MatLab, 
and another that is much more object- oriented. Spyke embeds mat-
plotlib fi gures within wxPython windows. Scaling of plots is handled 
automatically by matplotlib, such that when the wxPython window 
is resized by dragging its corner or edge, the plotted traces inside 

resize accordingly. Another benefi t of matplotlib is its antialiasing 
abilities, providing beautiful output with subpixel resolution. There 
is some performance penalty for using such a high level drawing 
library, but performance is fast enough on fairly ordinary hard-
ware (Pentium M 1.6 GHz notebook), even when scrolling through 
54 channels of data with thousands of data points on screen at a time. 
More importantly, matplotlib makes plotting very easy to do.

The data acquisition fi les are complex, with different types of 
data multiplexed throughout the fi le. On opening, the fi le must be 
parsed to determine the number and offset values of hundreds of 
thousands of records in the fi le. For multi GB fi les, this can take 
up to a few minutes. To deal with this, the parsing information 
is saved to disk for quicker future retrieval. This is done using 
Python’s pickle module, which can take a snapshot of almost any 
Python object in memory, serialize it, and save it to disk as a “pickle”. 
A pickle can then later be restored (unpickled) to memory as a live 
Python object, even on a different platform. In this case, a custom 
written File object containing all of the parse information is saved 
to disk as a .parse fi le of only a few MB in size. Restoring from the 
.parse fi le is about an order of magnitude faster than reparsing the 
entire acquisition fi le.

Segments of waveform data are loaded from the acquisition fi le, 
Nyquist interpolated, and sample-and-hold delay (SHD) corrected 
on the fl y as needed (Blanche and Swindale, 2006). Interpolation is 
performed to improve spike detection, and Nyquist interpolation 
is the optimum method of reconstructing a bandwidth-limited 
signal at arbitrary resolution. To do so, a set of sinc function kernels 
is generated (one kernel per interpolated data point, each kernel 
with a different phase offset) and convolved with the data. For SHD 
correction, a different set of kernels is generated for each channel. 
Correcting for each channel’s SHD requires appropriate modifi ca-
tion of the phase offset of each kernel for that channel. For example, 
interpolating from 25 to 50 kHz with SHD correction requires two 
appropriately phase corrected kernels per channel. Each kernel is 
separately convolved with the data (using numpy.convolve()), 
and the resulting data points are interleaved to return the fi nal 
interpolated waveform.

SPIKE SORTING
Spike sorting is done by template matching (Blanche, 2005). Event 
detection is the fi rst step in generating the required multichan-
nel spike templates. Two event detection methods are currently 
implemented. The “bipolar amplitude” method looks for simple 
threshold crossings of either polarity. The “dynamic multiphasic” 
method searches for two consecutive threshold crossings of oppo-
site polarity within a defi ned period of time. The second crossing’s 
threshold is dynamically set according to the amplitude of the fi rst 
phase of the spike. For both methods, primary thresholds are cal-
culated separately for each channel, based on the standard devia-
tion or median noise level of either the entire recording or of a 
narrow sliding window thereof. Spatiotemporal detection lockouts 
prevent double triggering off of the same spike, while minimizing 
the chance of missed spikes.

Some algorithms, such as these event detection methods, cannot 
be easily vectorized and require a custom loop. Due to its dynamic 
typing and interpreted nature, long loops are slow to execute in 
Python. For the majority of software development, this is not an 

5http://wxpython.org
6http://wxglade.sf.net
7See bugs #626 and #2307 at http://trac.wxwidgets.org
8http://matplotlib.sf.net
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issue. Developer time is usually much more valuable than CPU time 
(Hetland, 2005), but numerically intensive software is the exception. 
Writing fast Python extensions in C has always been possible, but 
the C interface code required by Python’s API is tedious to write, 
and writing in C eliminates the convenience of working in Python 
syntax. To get around this, the Cython9 package (a fork of the Pyrex 
package) specifi es a sublanguage almost identical to Python, with 
some extra keywords to declare loop variables as static C types. After 
issuing the standard python setup.py build command, such 
code is automatically translated into an intermediary C fi le includ-
ing all of the tedious interface code. This is subsequently compiled 
into object code and is accessible as a standard C extension module 
from within Python, just as a handwritten C extension would be. 
This yields the computational speed of C loops when needed, with 
the developmental speed, convenience and familiarity of Python 
syntax to implement them. Cython was used to write the custom 
loop that iterates over timepoints and channels for each of the 
event detection methods. For 25 kHz sampled waveform data on 
54 channels, this amounts to 1.35 million iterations per second of 
data. On an average single-core notebook computer (Pentium M 
1.6 GHz), this loop runs at about 5× real time.

The data is partitioned into blocks (typically 1 s long), and 
each is searched independently, allowing multiple core CPUs to 
be exploited. Search speed scales roughly proportionally with the 
number of cores available. Due to the “global interpreter lock” 
(GIL) in the C implementation of Python, multiple processes must 
typically be used instead of multiple threads to take advantage of 
 multiple cores. Unfortunately, a process can require signifi cantly 
more memory and more time to create than a thread. There are 
ways around the GIL, but the best solution for spyke is not yet 
clear.

Search options are controlled in the “detect” tab in spyke’s main 
window (Figure 3). Searches can be limited to specifi c time ranges 
in the fi le, in the number of events detected, and whether to search 
linearly or randomly. Random sampling is important to build up 
a temporally unbiased collection of detected events with which to 
build templates. Searching for the next or previous spike relative 
to the current timestamp can be done quickly using the keyboard. 
Searches are restricted to enabled channels, allowing for a targeted 
increase in the number of events belonging to a spatially localized 
template. This is useful for building up templates of neurons that 
rarely fi re.

When a search completes, the sort window (Figure 4A) opens 
and is populated with any newly detected events. The user then visu-
ally sorts the detected events (typically only a fraction of all spikes 
in the recording) into templates corresponding to isolated neurons. 
This is accomplished by plotting spikes over top of each other. Any 
number of event or template mean waveforms can be overplot-
ted with each other. Although the mouse may be used, keyboard 
commands are more effi cient for toggling the display of events and 
templates, and moving events and keyboard focus around between 
the sorted template tree (left column) and unsorted event list (right 
column). The event list has sortable columns for event ID, maxi-
mum channel, timestamp, and match error. All the events in the 
list can be matched against the currently selected template, and 

those match errors populate the error column. Sorting the event 
list by maximum channel or match error makes manual template 
generation much easier, because it clusters similar events close to 
each other in the unsorted event list.

Once templates have been generated, a full event detection is 
run across the whole recording, and the templates are matched 
against each detected event. Or, each template can be slid across 
the recording and matched against every timepoint in the record-
ing (Blanche et al., 2005). Either way, matching to target and non-
target spikes or noise generally yields a non-overlapping bimodal 
error distribution. For each template, a threshold is manually set 
at the trough between the two peaks in the distribution, and events 
whose match errors fall below this threshold are classifi ed as spikes 
of that template.

At any point in the sorting process, the entire “Sort” session 
object, which among other information includes detected events, 
generated templates, and sorted spikes, can be saved to disk as a 
.sort fi le, again using Python’s pickle module. Sort sessions can 
then be restored from disk and sorting can resume in spyke, or 
their sorted spike times can be used for spike train analysis (see 
neuropy section). Waveform data for detected events and sorted 
spikes is saved within the .sort fi le. This increases the fi le size, but 
allows for review of detected and sorted spikes without the need to 
access the original multi GB continuous data acquisition fi le.

Integrated into spyke is Patrick O’Brien’s PyShell (Figure 4B), 
an enhanced Python command line that is part of the wxPython 
package. This permits live command line inspection and modifi ca-
tion of all objects comprising spyke. This was, and continues to be, 
a very useful tool for testing existing features and for developing 
new ones. Neuropy (or almost any other Python package) can be 
imported and used directly from this command line. For example, 
spike sorting validation is not yet implemented in spyke’s GUI, but 
all of neuropy’s functionality including autocorrelograms (to check 
refractory periods) can be accessed by typing import neuropy 
in spyke’s PyShell.

NEUROPY: SPIKE TRAIN ANALYSIS
After spike sorting, we needed a way to analyse spike trains and 
their relation to stimuli. Our initial decision was to use MatLab for 
spike train analysis, and we soon developed a collection of MatLab 
scripts for the job, with one function per .m fi le. For example, one 
.m fi le would load each neuron’s data from disk and return all 
of them in a cell array of structures. This was highly procedural 
instead of object-oriented. Furthermore, the code became diffi cult 
to manage as each additional function required an additional .m 
fi le. We were also faced with out of memory errors, limited GUI 
capabilities, and a high licensing cost.

Although MatLab’s toolboxes are a major benefi t, SciPy10 (Jones 
et al., 2001), an extensive Python library of scientifi c routines, 
provides most of the equivalent functionality. Much of SciPy is 
a wrapper for decades-old, highly tested and optimized Fortran 
code. Another package, mlabwrap11, allows a licensed MatLab user 
to access all of MatLab’s functionality, including all of its toolboxes, 
directly from within Python. Although in the end we did not need 

9http://cython.org

10http://scipy.org
11http://mlabwrap.sf.net

http://cython.org
http://scipy.org
http://mlabwrap.sf.net
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to use mlabwrap, its existence erased any remaining hesitations 
about switching to Python for analysis.

A data-centric object hierarchy (Figure 5A) quickly emerged 
as a natural way to organize neuropy. Each object in the hierarchy 
has an attribute that references its parent object, as well as all of its 
child objects. Specifi cally, “Data” is an abstract object from which all 
“Animals” are accessible. Each Animal has polytrode “Tracks”, each 
Track has “Recordings”, and each Recording has both “Sorts” (spike 
sorting sessions) and “Experiments” (which describe  stimuli). 

Finally, each Sort contains a number of “Neurons”, one of whose 
attributes is a NumPy array of spike times.

Neuropy relies on a hierarchy of data folders on the disk with 
a fairly rigid naming scheme, such that animal, track, recording, 
experiment, and sort IDs can be extracted from fi le and folder 
names. This forces the user to keep sorted data organized. All 
objects have a unique ID under the scope of their parent, but not 
necessarily under the scope of their grandparent. All data can be 
loaded in at once by creating an instance of the Data class and then 

FIGURE 4 | (A) An example of spyke’s sort window. Templates and their 
member spikes are represented in the tree (left ), and unsorted detected 
events in the list (middle). Selecting a template or event in either the tree or 
the list plots its waveform (right ). The tree currently has keyboard focus, 
making its selections more distinctly coloured than those of the list. Unsorted 
events have colour coded channels, while each template (and its member 
spikes) has a single identifying colour. Here, template 0 (red), a putative 
neuron near the top of the polytrode, has 6 member spikes, and its mean 
waveform is being overplotted with an unsorted event (#1260, multicoloured), 

which fi ts quite well. Template 1 (orange) and all of its member spikes are 
plotted near the middle of the polytrode. Also plotted further down is another 
unsorted event (#1150, multicoloured), which obviously does not fi t either 
template. The error values listed are from a match against template 0. 
(B) The integrated PyShell window exposes all of spyke’s objects and 
functionality at the Python command line. Template 0’s dictionary (a mapping 
from names to values) of its 6 member events is referenced and returned on 
lines 1–2. The “Sort” object’s attributes and methods are displayed in a 
popup on line 3.
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calling its .load() method. However, most often only a subset of 
data is needed, such as only the data from a given animal, track, or 
recording. For example, an object representing recording 92 from 
the default track of the default animal can be instantiated by typ-
ing Recording(92) at the command line. This recording’s data 
can then be loaded from disk into the object by calling its .load() 
method. Default animal and track IDs can be modifi ed from the 
command line. A recording loads the neurons from its default sort, 
which can also be modifi ed.

Some analyses are written as simple methods of one of the data 
objects, but most have their own separate class which is instantiated 
by a data object’s method call. Many analyses  generate plots, some 
of them interactive (such as the population spike raster plot), again 
using matplotlib and wxPython. Currently  implemented analyses 
include interspike interval histograms, instantaneous fi ring rates 
and their distributions, cross- correlograms and autocorrelograms, 
and spike-triggered averages (STAs) (Dayan and Abbott, 2001). 
More specialized analyses include binary codes of population spike 
trains, their correlation coeffi cient distributions, maximum entropy 
Ising modelling of such codes (using scipy.maxent), and several 
other related analyses (Schneidman et al., 2006; Shlens et al., 2006; 
Spacek et al., 2007). Because of the data-centric organization, new 
analyses are easy to add.

Neuropy is used interactively as a library from the Python 
command prompt, usually in an enhanced shell such as PyShell 
(Figure 4B) or the more widely used IPython12. An example of 
neuropy use is shown in Figure 5B, which calculates and plots the 
STA of neurons 2 and 5 of the default animal and track. The STA 
estimates a neuron’s spatiotemporal receptive fi eld by averaging the 
stimulus (in this case, an m-sequence noise movie) at fi xed time 
intervals preceding each spike. Recording 92 was recorded during 
m-sequence noise movie playback, and is used in this example. 

Line 1 imports all of neuropy’s functionality into the local name-
space. Next, an object representing recording 92 is instantiated and 
bound to the name r92 for convenience, and its data is loaded from 
disk (lines 2–3). Its dictionary of available experiments is requested 
and printed out (lines 4–5); only one experiment is available, with 
ID 0. STAs are calculated with respect to this experiment by calling 
its .sta() method and passing the IDs of the desired neurons (line 6). 
The calculated STAs are returned in an “STAs” object, which upon 
further inspection contains two “STA” objects, one per requested 
neuron (lines 7–10). Finally, the STAs object’s .plot() method is 
called with default options, displaying the result for both neurons 
(Figure 5C).

Python’s object orientation has benefi ts even at the command line. 
It allows the user to quickly discover what methods and attributes 
are available for any given object, eliminating the need to recall them 
from memory (Figure 4B). Instead of immediately returning the 
raw result or plotting it, most analyses in neuropy return an analysis 
object, which usually has .calc() and .plot() methods. The .calc() 
method is run automatically on instantiation, and the results are 
stored as attributes of the analysis object. Settings used to do the 
calculation are also stored as attributes. These can be modifi ed, and 
.calc() can be called again to update the result attributes. Once satis-
fi ed with the calculation, the user can call the .plot() method. This 
can be done several times to generate different plots with different 
plot settings. Each time a new plot is generated, it does so from the 
existing results, saving on unnecessary recalculation time.

CONCLUSION
We have described Python packages for three tasks pertinent to 
systems neuroscience: visual stimulus generation, waveform visu-
alization and spike sorting, and spike train analysis. Python allowed 
us to meet these software challenges with a level of performance 
not normally associated with a dynamically typed interpreted lan-
guage. Performance challenges included time-critical display and 

FIGURE 5 | (A) Neuropy’s object hierarchy. (B) Example code using neuropy to 
plot the spike-triggered average (STA) of two neurons in response to an 
m-sequence noise movie (see text for details). (C) The resulting plot window. 

Each row corresponds to a neuron, and each column corresponds to the 
STA within a fi xed time range following the m-sequence white noise stimulus. 
ON responses are red, OFF responses are blue.

12http://ipython.scipy.org

http://ipython.scipy.org
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communication of visual stimuli, parsing and streaming of mul-
tiplexed data from GB sized fi les, on the fl y Nyquist interpolation 
and SHD correction, fast execution of non-vectorizable algorithms, 
and parallelization. Other challenges, whose solutions were simpler 
than in a statically compiled language, included a cross-platform 
native GUI, the storage and retrieval of relatively complex data 
structures to and from fi le (.parse and .sort fi les), and a command 
line environment for interactive data analysis.

Dimstim is the oldest of the three packages, and the most 
stable. Spyke is the most recent and remains under heavy devel-
opment, while new analyses are added to neuropy as needed. As 
with most other Python packages, all three can be used alone or 
from within another Python module. All three depend on each 
other to a limited extent. Neuropy relies on the stimulus descrip-
tion and timing signals generated by dimstim, and on the spike 
sorting results from spyke. Spyke can use parts of neuropy for 
spike sorting validation. These three packages depend on many 
other open source packages, which themselves rely on yet other 
packages (e.g. the Vision Egg currently depends on PyOpenGL and 
PyGame). Modularity and code reuse is thus maximized across 
the community.

Because it greatly encourages object-oriented programming, 
Python code is easier to organize and reuse than MatLab code. This 
is important for scientifi c code which tends to continually evolve as 
new avenues are explored. Often, scientifi c code is quickly written 

and bug-tested, used once or twice, and then forgotten about, with 
little chance of re-use outside of copying and pasting. Python has 
reduced this tendency for us. Its object orientation and excellent 
error handling have also helped to reduce bugs.

Finally, Python was chosen for these projects for its clear, suc-
cinct syntax. Dimstim, spyke, and neuropy have roughly 3000, 5000, 
and 4000 lines of code respectively (excluding comments and blank 
lines). Fewer lines make code maintenance easier, not just because 
there is less code to maintain, but also because each line is closer 
to all other lines, making it easier to navigate. Concise syntax also 
makes collaboration easier.

We encourage others in neuroscience to consider Python for 
their programming needs, and hope that our three examples (avail-
able at http://swindale.ecc.ubc.ca/code) may be of use 
to others, whether directly or otherwise. Rallying around a common 
open-source language may help foster efforts to increase sharing 
of data and code, efforts deemed necessary (Teeters et al., 2008) to 
push forward progress in systems neuroscience.
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