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The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It
is primarily designed for distributed simulation of large scale networks of spiking point neurons.
Although its computational core is written in C++, PCSIM'’s primary interface is implemented in
the Python programming language, which is a powerful programming environment and allows
the user to easily integrate the neural circuit simulator with data analysis and visualization
tools to manage the full neural modeling life cycle. The main focus of this paper is to describe
PCSIM'’s full integration into Python and the benefits thereof. In particular we will investigate
how the automatically generated bidirectional interface and PCSIM'’s object-oriented modular
framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM’s
functionality either employing pure Python or C++ and thus combining the advantages of both
worlds. Furthermore, we describe several supplementary PCSIM packages written in pure

Python and tailored towards setting up and analyzing neural simulations.
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INTRODUCTION

Given the complex nonlinear nature of the dynamics of biological
neural systems, many of their properties can be investigated only
through computer simulations. The need of researchers to increase
their productivity while implementing increasingly complex models
without each time having to reinvent the wheel has become a driv-
ing force to develop simulators for neural systems that incorporate
best known practices in simulation algorithms and technologies,
and make it accessible to the user through a high-level user-friendly
interface (Brette et al., 2007). It has also been brought to attention
that it is of importance to use large neural networks with biologi-
cally realistic connectivity (on the order of 10* synapses per neuron)
as simulation models of mammalian cortical networks (Morrison
etal., 2005). Simulation of such large models can practically be
done only by exploiting the computing power and the memory of
multiple computers by means of a distributed simulation.

There are different neural simulation environments presently
available and although many of them were initially envisioned for
a specific purpose and domain of applicability, during continuing
development their set of features expanded to improve general-
ity and support construction of a wide range of different neural
models; see Brette et al. (2007) for a recent overview. The two most
prominent tools are NEURON (Carnevale and Hines, 2006; Hines
and Carnevale, 1997) and GENESIS (Bower and Beeman, 1998)
which aim at simulation of detailed multi-compartmental neuron
models and small networks of detailed neurons. Another class of
quite general neural simulation environments which focus on the
simulation of large-scale cortical network models and the improve-
ment of their simulation efficiency through distributed computing
include NEST (Gewaltig and Diesmann, 2007; Plesser et al., 2007),
NCS (Brette et al., 2007) and SPLIT (Hammarlund and Ekeberg.
1998). There are also more dedicated neural simulation tools like

iNVT (iLab Neuromorphic Vision Toolkit)! which is an example
of a package specifically tailored for the domain of brain-inspired
neuromorphic vision. All of the above simulation environments
support parallel simulation of one model on multiple processing
nodes by using commodity clusters and many of them can also be
run on super-computers. The simulation tool PCSIM described
in this paper is designed for simulating neural circuits with a sup-
port for distributed simulation of large scale neural networks. Its
development started as an effort to redesign the previous CSIM
simulator? (Natschldger et al., 2003) and augment its capabilities,
with the major extension being the implementation of a distributed
simulation engine in C++ and a new convenient programming
interface. The aim was to provide a general extensible framework for
simulation of hybrid neural models that include both spiking and
analog neural network components together with other abstract
processing elements while making the setup and control of parallel
simulations as convenient as possible for the user. Hence, given its
current set of features, the PCSIM simulator is closest to the second
group (NEST, NCS, SPLIT) of neural simulation environments
mentioned above.

Performing a neural network simulation usually requires com-
bined usage of several additional software tools together with the
simulator, for stimulus preparation, analysis of output data and
visualization. Being able to steer all the necessary tools from one
programming environment reduces the complexity of setting up
simulation experiments since all development can be done in a
single programming language and the burden of developing utili-
ties for conversion of data formats between heterogeneous tools is
avoided. Given its object-oriented capabilities and its strong support

'http://ilab.usc.edu/toolkit/home.shtml

*http://www.lsm.tugraz.at/csim
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for integration with other programming languages, the Python pro-
gramming language is a very promising candidate for providing
such a unifying software environment for simultaneous use of vari-
ous scientific software libraries. As Python is becoming increasingly
popular in the scientific community as an interpreting language of
choice for scientific applications, the developers of many neural
simulator tools decided to provide a Python interface for their simu-
lator in addition to its legacy interface in a custom scripting language.
Moreover, a simulation tool called Brian which uses Python as an
implementation language was recently developed to bring to the
user the full flexibility of an interpreting language in specifying and
manipulating neural models (Goodman and Brette, 2008).

In spite of the evident practical advantages in using Python as the
single programming language for all tasks during a neural modeling
life cycle, there is the apparent discrepancy between the need for
computational performance of the simulation and construction
of the model on one hand, and rapid development of the model
on the other. Using C++ can solve the performance issue, but will
decrease the productivity of the modeler and requires higher level
of programming skills and experience. In contrast Python is easy
to learn, flexible to use and significantly increases the productivity
of the modeler, however it lags far behind C++ in performance’.
Hence, instead of adopting a single language, an alternative is to
enable an easy mix and match of both languages during the devel-
opment of a model, i.e. to introduce a hybrid modeling approach
(Abrahams and Grosse-Kunstleve, 2003).

In this paper we will describe how the modular object-oriented
framework of PCSIM in combination with an automated interface
generation supports such a hybrid modeling approach.

In particular, we briefly review PCSIM’s main features (see
Overview) before we describe the automated process to generate the
Python interface (see Python Interface Generation). In the Section
“Network Construction” we detail PCSIM’s network construction
application programming interface (API), which is a central part
of PCSIM’s object-oriented modular framework. In the Section
“Custom Network Elements” we demonstrate another advantage
of the hybrid modeling approach: we show how PCSIM’s concept
of a general network element can be used as an interface to another
simulation tool. While these examples concentrate on the Python
aspect of the hybrid modeling, we show in the Section “Extending
PCSIM Using C++” how the user can easily extend PCSIM’s func-
tionality using C++. Additional PCSIM packages implemented in
Python are reviewed in the Section “PCSIM Add-Ons Implemented
in Python” In the Section “Discussion” we discuss and summarize
the presented concepts and approaches.

We would like to note that it is outside the scope of this article
to describe the algorithmic aspects of PCSIM’s computational C++
core (this will be reported elsewhere) and all the details of the full
object-oriented modular framework.

OVERVIEW

ARCHITECTURE

The high-level architecture of PCSIM is depicted in Figure 1. The
PCSIM library written in C++ (1ibpcsim) constitutes the core

*The simulation tool Brian mentioned above, heavily uses the numerical Python
package numpy (Oliphant, 2007) written in C to achieve reasonable performance.
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FIGURE 1 | Architecture overview of PCSIM.

of the simulator. The API of the PCSIM library is exposed to the
Python programming language by means of the Python extension
module pypcsim (see Python Interface Generation for details). The
library is made up of three main components: the simulation engine
with its communication system, a pool of built-in network elements
(i.e.neuron and synapse types) and the network construction layer.
Before presenting the network construction layer in detail in the
Section “Network Construction” we will briefly describe in the next
paragraphs the main features of the underlying simulation engine
and its communication system.

The simulation engine integrates all the network elements (typi-
cally neurons and synapses) and advances the simulation to the
next time step, and uses its communication system to handle the
routing and delivery of discrete and analog messages (i.e. spikes
and e.g. firing rates or membrane voltages) between the connected
network elements. PCSIM’s simulation engine is capable of running
distributed simulations where the individual network elements
are located at different computing nodes. Setting up a distributed
simulation is handled easily from a users point of view: there are
no (or very little) code changes necessary when switching from a
non-distributed to a distributed simulation. The distributed simu-
lation mode is intended for employing a cluster of machines for
simulation of one large network where each machine integrates
the equations of a subset of neurons and synapses in the network.
A distributed PCSIM simulation runs as an MPI* based applica-
tion composed of multiple MPI processes located on different
machines®. The implementation of the spike routing, transfer and
delivery algorithm between the nodes in a distributed simulation is
based on the ideas presented in Morrison et al. (2005). In addition
PCSIM offers the possibility to run a simulation as a multi-threaded
application, both in a non-distributed and a distributed setup. The
multi-threaded mode is intended for performing simulations on
one multi-processor machine when one wants to split the com-
putational workload among multiple threads in one process, each
running on a different processor. However, we should note that
the multi-threaded simulation engine is still undergoing optimi-
zation, as we are working on improvement of the scaling of the

*http://www-unix.mcs.anl.gov/mpi/

To be precise, we use the C++ bindings offered by the MPICH2 library, where cur-
rently none of the advanced features of the MPI-2 standard are used.
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multi-threaded simulation to match the scaling achieved with an
equivalent distributed simulation.

SCALABILITY AND DOMAIN OF APPLICABILITY

One of the goals of the development of PCSIM was enabling simu-
lations of large neural networks on standard computer clusters
through distributed computing. By utilizing the parallel capabilities
of PCSIM the simulation time for a model can be reduced by using
more processors (on multiple machines) as computing resources.

As a test of the scalability, we performed multiple simulations
with the PCSIM implementation of the CUBA model described
in Brette et al. (2007), with different number of leaky integrate-
and-fire neurons (4000, 20000, 50000 and 100000) and distributed
over a different number of processors (each processor on a different
machine). We changed the resting potential in the neuron equa-
tions from —49 to —60 mV such that the network does not show
any spontaneous activity. In order to elicit a spiking activity in the
network, an input neuron population of 1000 neurons was con-
nected randomly to it with probability 0.1, i.e. each neuron in the
network receives inputs from on average 100 input neurons. The
input neurons fired homogeneous Poisson spike trains at a rate of
5 Hz. The simulation was performed for 1 s biological time with a
time step of 0.1 ms. We have set the connection probability within
the network to 0.1, in order to reach realistic number of 10000
synapses per neuron for the network size of 100000 neurons. The
transmission delay of spikes was set to 1 ms. We scaled the weights
of the network so that the mean firing rate of the neurons was
between 2.4 and 2.7 Hz for all network sizes (more precisely 2.68,
2.55, 2.52 and 2.45 Hz for the network with 4000, 20000, 50000
and 10000 neurons, respectively).

The used machines had Intel® Xeon™64 bit CPUs with 2.66 GHz
and 4 MB level-2 processor cache, and 8 GB of RAM. They were
connected in a 1 Gbit/s Ethernet LAN.

If we assume ideal linear speed-up, then the expected simulation
time of a model on N machines given the actual simulation time on
K machines is equal to the simulation time on K machines times
K divided by N. In the evaluation of the scaling, for the estimation
of the expected simulation time (see Figure 2) we used the meas-
ured simulation time of the model on the minimum number of
machines used for that particular network size. Namely, we used
the actual simulation time on K = 1 machine for the network sizes
of 4000 and 20000 neurons, and the simulation time on K = 4
and K= 16 machines for the network sizes of 50000 and 100000
neurons respectively.

Figure 2 shows that in the case of 4000 neurons the computa-
tional load on each node is quite low, hence the cost of the spike
message passing dominates the simulation time which results in
sub-linear scaling. For the networks with 20000 and 50000 neurons
the actual simulation time is shorter than the expected simulation
time indicating a supra-linear speed-up for up to 24 nodes. For
more than 24 nodes the actual simulation time approaches the
expected simulation time. The reason for the supra-linear speed-up
is more efficient usage of the processor cache when the network is
distributed over larger number of nodes (Morrison et al., 2005).
For the network with 100000 neurons the speed-up is not distin-
guishable from the expected linear speed-up (taking K = 16 nodes
as the base measurement).

= W o
[©) B NS R

simulation time [sec]

051 OO 4000 neurons -
0.25 | ©—0O 20000 neurons RS - 1
0—0 50000 neurons BN R
X=X 100000 neurons RN
1 2 4 8 16 32
# of nodes

FIGURE 2 | Simulation times of the CUBA network distributed over
different number of processing nodes, compared to the expected
simulation time (dashed line) (see text for details). Four different sizes of
networks were simulated: 4000 neurons with on average 1.6 x 10° synapses
(squares), 20000 neurons with on average 40 x 10° synapses (circles), 50000
neurons with on average 250 x 10° synapses (diamonds) and 100000 neurons
with on average 1 x 10° synapses (crosses). The plotted simulation times are
averages over 12 simulation runs. The variation of simulation time between
different simulation runs was small, therefore we did not show it.

The combination of features that PCSIM supports makes it
suitable for various types of neural models. Its domain of appli-
cability can be considered across two complementary aspects: the
size of networks that can be simulated, and the variety of differ-
ent models that can be constructed and simulated, determined
by the available neuron and synapse models, plasticity mecha-
nisms, construction algorithms and similar. Concerning the size
of models, because of its distributed capabilities PCSIM is mainly
targeted towards large neural systems with realistic cortical con-
nectivity composed of 10° neurons and above. As the results from
the scalability test show, a spiking network with 10° neurons and
10* synapses per neuron can be simulated in a reasonable time on
a commodity cluster with about 20 machines, and the speed-up
is linear when more machines are employed for the simulation.
Regarding the support for construction of various different models
in PCSIM, the generality of the communication system and the
extensibility with custom network elements enables simulation
of hybrid models (spiking and analog networks) incorporating
different levels of abstraction. By utilizing the construction frame-
work also structured models with diversity of neuron and synapse
types and varying parameter values can be defined and simulated,
and the built-in support for synaptic plasticity further expands
the domain of usability towards models that investigate synaptic
plasticity mechanisms.

PYTHON INTERFACE GENERATION

In order to enable a hybrid modeling approach we wanted to use
a Python interface generation tool that was capable of wrapping
PCSIM’s object-oriented and modular API such that the Python
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APT will be as close as possible to the C++ API. Our choice for this
purpose was the Boost.Python® library (Abrahams and Grosse-
Kunstleve, 2003). The strength of Boost.Python is that by using
advanced C++ compile-time introspection and template meta-
programming techniques it provides comprehensive mappings
between C++ and Python constructs and idioms. There is support,
amongst others, for exception handling, iterators, operator over-
loading, standard template library (STL) containers and Python
collections, smart pointers and virtual functions that can be over-
ridden in Python. The later feature makes the interface bidirec-
tional, meaning that in addition to the possibility of calling C++
code from Python, user extension classes implemented in Python
can be called from within the C++ framework. This is an enabler
for the targeted hybrid modeling approach; we will see examples
for this later on in this article.

However, using Boost.Python without any additional tools does
not lead to a solution where the interface can be generated in an
automatic fashion since for each new class added to the library’s
API one would have to write a substantial piece of Boost.Python
code. As automatic Python wrapping of the C++ interface is one of
the main prerequisites for leveraging a hybrid modeling approach,
a solution is needed to automatically synchronize the Python and
C++ API of a library like 1ibpcsim. Fortunately, there exists the
Py++ package’” which was developed to alleviate the repetitive proc-
ess of writing and maintaining Boost.Python code. Py++ by itself
is an object-oriented framework for creating custom Boost.Python
code generators for an application library written in C++. It builds
on GCC-XML?, a C++ parser based on the GCC compiler that
outputs an XML representation of the C++ code. Py++ uses this
structured information together with some user input, in form of
a Python program, and produces the necessary Boost.Python code,
constituting the Python interface for a specified set of C++ classes
and functions (see Figure 3).

Finally the Boost.Python C++ code is compiled and linked together
with the C++ library under consideration (1ibpcsimin our case) to
produce the Python extension module containing the Python API of
the library (pypcsim in our case). Thus, the work of the developer
(and the user as we will see later on) reduces to a definition of high-
level rules to select which classes and methods should be exposed.

‘http://www.boost.org/doc/libs/release/libs/python/doc/
’http://www.language-binding.net/

*http://www.gccxml.org

For the generation of the PCSIM Python interface pypcsim, we
split the rules Py++ needs into two subsets, inclusion and exclusion
rules (see Figure 3). The inclusion rules contain the rules that mark
a selected set of classes to be exposed to Python. The exclusion
rules contain the post-processing, where some of the methods of
the classes that were included in the inclusion rules are marked to
be excluded, and call policies are defined for the included methods
that require them®. Py++ allows to specify the rules in a high-level,
generic fashion, making them robust to changes in the interface of
the PCSIM C++ library. Hence, in most cases changes in the PCSIM
API did not require changes in the Python program that generates
the wrapper code, which simplified its maintenance. An example
of such a high-level rule would be “In all classes that are derived
from class A, do not expose the method that returns a pointer of
type B”. Such a general rule will then be still valid if for example we
introduce more classes derived from A, or add additional functions
that return a pointer of type B in some of the classes.

To summarize, the Python integration of PCSIM using Boost.
Python together with the Py++ code generator allowed us to come
up with a solution to automatically expose PCSIM’s object-oriented
and modular API bidirectionally in Python. In the following sec-
tions we will show how such an bidirectional integration of PCSIM
into Python can practically be used and which possibilities and
advantages arise.

NETWORK CONSTRUCTION

A large portion of the Python PCSIM interface is devoted to the
construction of neural circuits. At the lowest level PCSIM provides
methods to create individual network elements (i.e. neurons and
synapses) and to connect them together.

On top of these primitives a powerful and extensible frame-
work for circuit construction based on probabilistic rules is built.
The source of inspiration for the interface of the framework was
the Circuit Tool in the CSIM simulator'® and PyNN, an API for
simulator-independent procedural definition of spiking neural
networks (Davison et al., 2008). We will use a concrete example'’,
described in more depth in the next subsection, to present the

°Call policies define the change of ownership of objects that cross the boundaries
of the C++ library, i.e. the object passed from Python to the C++ library and from
the C++ library to Python.

"http://www.lsm.tugraz.at/circuits

""The full source code of this example is available in the Supplementary Material.
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FIGURE 3 | The processing steps in the generation of the Python interface for PCSIM.
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network construction framework and its typical use cases where
emphasis is put on those features that were enabled by the bidi-
rectional Python interface generated by the approach described in
the Section “Python Interface Generation”.

THE EXAMPLE MODEL

We selected the model to be simple enough for didactic reasons, but
complete enough with all the elements necessary to explain the main
novel concepts of the interface and its Python extensibility features.
The connectivity patterns are based on experimental data that we
use in our current research work. The model consists of a spatial
population of neurons located on a 3D grid with integer coordinates
within a volume of 20 X 20 X 6. 80% of the neurons in the model
are excitatory, and the rest are inhibitory. The excitatory neurons
are modeled as regular spiking and the inhibitory neurons as fast
spiking Izhikevich neurons (Izhikevich, 2004). The connections
between excitatory neurons in the network are created according
to the trivariate probabilistic model defined in Buzas et al. (2006).
This connectivity model describes the distribution of the excitatory
patchy long-range lateral connections found in the superficial lay-
ers of the primary visual cortex in cats that depends on the lateral
distance of the cells and their orientation preference. Orientation
preference is the affinity of V1 cells to fire more when a bar with
a specific orientation angle is present in their receptive fields. The
connectivity rule is defined by the following equations that express
the connectivity probability between two excitatory cells.

P(li)l]')q),‘rq)]‘):CG(li)lj)V(q)i?q)j) (1)
1157

G, )=¢ > (2)

V(9,,9,)= "0 (3)

L= (x,y)and lj = (xj, yj) are the 2D locations and ¢, and ¢j are the
orientation preferences of the pre- and post-synaptic neurons iand j.
The function Gintroduces the dependence of the connectivity prob-
ability on the lateral distance between the neurons, and Vmodels the
dependency on the differences in the orientation preferences of the
neurons. C, K and G are scaling coefficients. The values for the pre-
ferred orientation angles of the neurons in the example are generated
by evolving a self-organizing map (SOM) (Obermayer and Blasdel,
1993). Additionally the conduction delay of a connection between

excitatory neurons is probabilistically dependent on the distance
between the 3D locations of its pre- and post-synaptic neurons.

|li_1j|

N(Hacablshu) (4)

D(,,1,)= D,

Here N(u, 6, b, b, ) is a bounded normal distribution representing
the transmission velocity of the axon. The 1. = (x, y, z) and li = (xj,
Yy zj) denote the 3D locations of the pre- and post-synaptic neurons
iand j. A random value from N(W, G, b, b) is sampled as follows:
first a random number from a normal distribution with mean pand
standard deviation G is drawn and if that value is not within the range
[b, b, ], then another value is drawn from an uniform distribution with
that range. D, represents a proper scaling factor in the formula.

THE FRAMEWORK: OBJECT-ORIENTED, MODULAR AND EXTENSIBLE
Figure 4 shows the basic concepts of PCSIM’s construction frame-
work together with their interactions during the construction
process. This framework allows model specification in terms of
populations of neurons connected by probabilistically defined con-
nectivity patterns called projections.

A population of network elements utilizes several object factories
to generate the network elements. A factory encapsulates the logic for
the neuron and synapse generation decoupled from the other parts
of the construction process. Every time a new neuron is to be created
ina population the factory is used to generate the neuron object. The
object factories can use either random distribution objects or value
generators to generate values for the parametersand attributes of the
network element instances. When we talk about a parameter we mean
a parameter of the differential equations used to model a neuron or
synapse. In contrast an attribute describes any other (more abstract)
property of a network element. In our example the orientation prefer-
ence ¢ will be such an attribute of an excitatory neuron.

A projection manages connections between two populations.
During the construction phase of a projection a connection decision
predicate is used to determine whether a connection should be cre-
ated for a pair of neurons. A connector factory is then used to create
instances of the connector elements like synapses (this is analo-
gous to the object factory for populations). The connector factory
also uses random distributions or connector value generators for the
parameter values of the connector elements. In order to implement
a specific construction algorithm, the user typically just needs to
implement custom value generatorand connection decision predicate
classes, as we will demonstrate in the following subsections.

Projection

|
v v

h 4

Population

Connection Decision Predicate

Connector Factory

Factory

y

‘ Connector Value Generator ‘ ’ Random Distribution ‘ ‘

Value Generator

FIGURE 4 | A diagram of the most important concepts within the network construction interface. The arrows indicate a “uses” relationship between the concepts.
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FACTORIES: CREATING NETWORK ELEMENTS FROM MODELS

We will start constructing the network model by defining the classes
(or families) of neuron models: inhibitory and excitatory neurons.
This is accomplished by defining an element factory for each family.
As explained in the definition of “The Example Model” the excita-
tory neurons have an orientation preference ¢ which depends on
the location of the neuron in the population. For this reason we
will associate the attribute phi with each excitatory neuron:

exc_factory = Factory
(model = IzhiNeuron ( type = "RS" ),
Vinit = UniformDistribution (-50e-3, —60e-3 ),
attribs = dict( phi = OrientationPreferValGen())

The statement above creates a factory for the excitatory family of
neurons based on a regular spiking (RS) Izhikevich neuron model
(Izhikevich, 2004) where IzhiNeuron is a built-in network element
class. The keyword argument Vinit = UniformDistribution(...)
associates a uniform random number generator with the initial mem-
brane voltage Vinit. This has the effect that whenever the factory is
used to generate an actual instance of an excitatory neuron, the param-
eter Vinit will be randomly chosen from the interval [-50,—-60] mV.
Finally the keyword argument attribs = dict( phi = ... )
has two effects: a) the attribute phi is attached to exc_factory and
b) the custom value generator OrientationPreferValGen is used
to generate a particular value for phi each time exc_factory is
asked to generate an instance of an excitatory model neuron. The
value of the phi attribute will be used afterwards for the creation of
synaptic connections.

In the example we implement the custom value generator
OrientationPreferValGen in pure Python. This is enabled by
the particular feature of Boost.Python which allows C++ virtual
functions to be overridden from within Python.

class OrientationPreferValGen(
PyAttributePopObjectValueGenerator) :

def __init__(self):

PyAttributePopObjectValueGenerator.__init__(self)
self.map = som.OrientationMapSOM([20,20])

def generate(self, rng):
return self.map.pref( self.loc().x(), self.loc().y() )

Value generators (in this case to be derived from
PyAttributePopObjectValueGenerator) have asimple inter-
face composed of the constructor __init__ and the method
generate which have to be implemented by the user. In our par-
ticular example we create the orientation map, that maps 2D coor-
dinates to an orientation preference angle in the constructor, and
will use it in the method generate. The map is based on the SOM
algorithm encapsulated in the Python class OrientationMapSOM
(details not relevant here). The generate method is called to deter-
mine the value of the orientation angle attribute phi whenever
a neuron instance from the factory has to be created. The value
generator inherits several convenient methods from its base class
that one can use for accessing properties of the neuron for which
generate is called, like self.loc to get the 3D location of the
neuron within a population (see next section). We then pass the x
and y coordinates to the orientation map (method pref) in order
to calculate the value of the orientation preference angle.

For the inhibitory neuron model we create a similar factory:

inh_factory = Factory
( model = IzhiNeuron( type = "FS" ),
Vinit = UniformDistribution(-50e—3, —60e-3),
attribs = dict( ) )

The difference to the excitatory neuron model is that a fast spiking
(FS) Izhikevich neuron model is used and the attribute dictionary
attribs = dict( ) is empty. This is because there is no orienta-
tion preference of the inhibitory cells in the considered model.

NEURON POPULATIONS
A population in PCSIM represents an organized set of neurons
that can be manipulated as one structural unit in the model. In the
AugmentedSpatialPopulation that we will use in this example,
the neurons have associated 3D coordinates, a family identifier,
and an extensible set of custom attributes that the user can attach
to each of the neurons. We already encountered this in the previ-
ous section. The family identifier allows the definition of multiple
families/classes of neurons, i.e. subsets of neurons with similar
properties, within a single population. Our population will have
two families of neurons, the family of excitatory and the family
of inhibitory neurons. For each of the two families of neurons we
have specified in the previous section a factory that will be used to
generate the neuron instances within the population.
pop = AugmentedSpatialPopulation

( net, [ exc_factory(), inh_factory() 1,

RatioBasedFamilies( [ 4, 1] ),
CuboidIntegerGrid3D( 20, 20, 6 ) )

exc_pop, inh_pop = pop.splitFamilies()

Note that the first argument (net) specifies the overall net-
work to which this population of neurons will belong. The class
CuboidIntegerGrid3D, which is a built-in specialization of the
more general concept of an arbitrary set of points in 3D, defines
the possible locations for the neurons (integer coordinates within
a volume of 20 X 20 X 6). The population is to be composed of two
families of neurons (excitatory and inhibitory), created by the two
given factories (exc_factory and inh_factory). To accomplish
this we use aRatioBasedFamilies object which randomly chooses
for each 3D location from which family of neurons the particular
instance will be created. Specifying the ratio 4:1 for excitatory to inhib-
itory neurons yields the desired 80% excitatory neurons. The class
RatioBasedFamilies isabuilt-in specialization of the general con-
cept of a spatial family identifier generator which encapsulates the logic
for deciding which factory to use depending on the 3D location.

For the purpose of more convenient setup of connections later
on, the created population is split into two sub-populations, one
for each family.

PROJECTIONS: MANAGING SYNAPTIC CONNECTIONS

The synaptic connections in the network construction interface
are created by means of projections. A projection is a construct
that represents a set of synaptic connections originating from one
population of neurons and terminating at another population'.

2The source and destination populations can be the same if the goal is to create
recurrent connections in one population.
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PCSIM has built-in construction algorithms for creating various
types of connection projections, like constant probability random
connectivity or random connectivity with probability dependent
on the distance (or lateral distance) between the neurons.

However, to create a projection with a specific connectivity pat-
tern, one usually defines a custom connection decision predicate. A
decision predicate decides for an individual pair of neurons whether
to form a connection based on the parameters and attributes of
those neurons. In our example we implemented the connection
decision predicate OrientationSpecificConnPredicate in
pure Python, encapsulating the probabilistic rule for connection
making from Eq. 1, which states that the connection probability
depends on the distance between, and the orientation preferences
of the pre- and post-synaptic neurons.

class OrientationSpecificConnPredicate
(PyAugmentedConnectionDecisionPredicate):

def __init__(self, C):

PyAugmentedConnectionDecisionPredicate.__init__(self)
self.orient_conn_prob = OrientationSpecConnProbability(C)
self.unidist = UniformDistribution(0.0, 1.0)

def decide(self, src, dst, rnd ):
prob = self.orient_conn_prob(self.src_attr(src, ’phi’),
self.dest_attr(dst, ’phi’),
self.dist_2d( src, dst ) )
return self.unidist(rnd) < prob

The PyAugmentedConnectionDecisionPredicate base class
is used when one has to define a custom connection decision predi-
cate that uses the neuron attributes and connects neurons from popu-
lations of type AugmentedSpatialPopulation. To complete the
implementation of the predicate, it is required to override the decide
method and fill the constructor with the necessary initializations. The
method decide is called within the connection construction process
for each candidate pair of neurons that could be connected and is
expected to output true (make a connection) or false (no connec-
tion). In our example, we create an instance (orient_conn_prob)
of the OrientationSpecConnProbability class to calculate
the probability according to the Eq. 1 (the full implementation of
the class is available in the Supplementary Material). This instance
is called in the decide method with the orientation preferences
of the candidate source and destination neurons and their lateral
distance as arguments. The orientation preferences are obtained via
the src_attr and dest_attr methods (inherited from the base
class), and the lateral distance via the dist_2d method. By com-
paring a uniformly distributed random number to the calculated
probability a Bernoulli distribution with the desired probability for
the outcome true is generated.

Before we can create the projection we have to define a con-
nector factory (class ConnFactory) that will be used to generate
the synapse objects within the projection.
ee_syn_factory = ConnFactory

( model = StaticSpikingSynapse(W = le—4),
delay = DelayCond(v_mean = 2e2, v_SH = 0.2,
v_min = 0.1e-3, v_max = 5e-3) )

The connector factory differs from the element factory objects
used in conjunction with neuron populations, in that the parame-
ters of the created objects (typically synapses) can depend on the
attributes of the source and destination network elements they are

connecting. In our example, the connector factory for the connec-
tions between excitatory neurons is based on a current-based synapse
model with exponentially decaying post-synaptic response (class
StaticSpikingSynapse in PCSIM). Additionally, the DelayCond
value generator is associated to the delay parameter of the synapse,
which produces distance dependent delay values according to Eq. 4.
The DelayCond is a built-in value generator in PCSIM.
Now we can create the projection that will generate all recurrent
connections between the excitatory neurons.
ee_proj = ConnectionsProjection
( exc_pop, exc_pop, ee_syn_factory(),
PredicateBasedConnections
( OrientationSpecificConnPredicate( 1.0 ) ) )

We specify in the constructor of the projection the con-
nectorfactory for generation of the synapses and the
PredicateBasedConnections class instance that iterates over
all candidate pre- and post-synaptic neurons and delegates the
decision whether to make a connection to the connection deci-
sion predicate OrientationSpecificConnPredicate given as
an argument.

A connection decision predicate is typically used when in the
probabilistic connectivity definition the probability that two neurons
are connected depends on the attributes and parameters of the two
neurons and is independent from the other created connections. In
the general case, with such a connectivity, a separate decision whether
to make a connection has to be made at each candidate neuron pair,
yielding a complexity of the wiring algorithm that is quadratic with
respect to the number of neurons. In a distributed scenario, a speed-
up of the construction is possible by splitting the wiring workload
among the multiple machines the model is simulated on. If the num-
ber of machines is increased with the number of neurons, keeping
the number of neurons per node fixed, and if we assume that the
number of input synapses per neuron does not increase, then the
wiring time will scale linearly with the number of neurons.

For other connectivity schemes where further optimizations
are possible, a faster wiring algorithm can be implemented directly
in the class that iterates over the neuron pairs. For example, for
the case of constant probability random connections, a special
RandomConnections class that implements faster wiring can
be used instead of PredicateBasedConnections. When using
the RandomConnections, the wiring time is proportional to the
number of created connections if the network is constructed on a
single machine, and remains constant in the distributed case with
the assumption that the number of machines is increased propor-
tionally with the number of neurons®.

CUSTOM NETWORK ELEMENTS

The PCSIM communication system is general in a sense that it
supports spiking and analog messages as communication between
network elements. The network elements are not restricted to one
type of message and can have multiple input and output ports, each
of them capable of either receiving or sending spiking or analog
messages (see Figures 5A,B).

It is out of scope of this article to detail the algorithms behind the efficient imple-
mentation of the network construction framework in the distributed simulation
scenario; this will be reported elsewhere.
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FIGURE 5 | (A) Network elements of different type (with different arrangement
of input and output ports) interconnected together in a PCSIM network.
Different colors of ports, gray or white, mark their different types, spiking or

analog. (B) Neurons and synapses are specific subtypes of the more general
concept of an network element. (C) Schematic diagram of the embedding of a
network simulated with the Brian simulator into a PCSIM network element.

The generality of the framework allows the user to implement
custom processing elements that map multiple inputs to multiple
outputs and plug them in a network model inter-connected together
with spiking or analog neural networks. Such custom network ele-
ments can either be implemented in C++ (see Extending PCSIM
Using C++) or in pure Python. This feature of PCSIM has various
potential uses. For example the user can implement new neuron
types for a preliminary experiment in Python first, instead of directly
implementing them in C4++. Another possible usage is to imple-
ment more abstract or complex elements like a whole population
of spiking neurons in Python by using vectors from the numerical
Python package numpy'* (Oliphant, 2007) for step-by-step integra-
tion of the equations. This approach has been shown to have good
performance, and is applicable for homogeneous neuron popula-
tions, where all neuron instances have the same neuron model (Brian
simulator, Goodman and Brette, 2008).

We detail such an example in this section, where the Brian simu-
lator is used to implement a population of spiking neurons as a
single network element, and then plug it into a PCSIM simulation
together with other built-in network elements.

The spiking neural network model we will simulate with Brian
is the modified version of the CUBA benchmark model described
in the Section “Overview”, with a network size of 4000 neurons. We
have used the same connectivity probability of 0.02 and the same
weights as in Brette et al. (2007), instead of the modified 0.1 con-
nectivity probability and scaled weights in the Section “Overview”.
The PCSIM network element that we will create to encapsulate
the Brain network has 1000 spiking input ports and 4000 spiking
output ports (see Figure 5C). Each of the output ports is associated
to one neuron.

To implement this model as a PCSIM network element, one
has to implement a Python class BrianCircuit derived from
PySimObject. In the constructor of this class the Brian spiking
network is created and initialized.

class BrianCircuit(PySimObject):

def __init__( self ):
PySimObject.__init__( self )

“http://numpy.scipy.org

self .registerSpikingOutputPorts (arange (4000))
self.registerSpikingInputPorts (arange(1000))
input = PCSIMInputNeuronGroup(1000, self)
self.P = P = brian.NeuronGroup(4000, model = egs,

threshold = —50%mV, reset = —60*mV)
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = brian.Connection(Pe, P, ’ge’ )
Ci = brian.Connection(Pi, P, ’gi’ )
0.02, weight = 1.62%mV )
Ci.connect_random( Pi, P, p = 0.02, weight = —9*mV )
Cinp = brian.Connection( input, P, ’ge’ )
Cinp.connect_random( input, P, p = 0.1,

weight = 3.5*mV)

self.brian = brian.Network(input, P, Ce, Ci, Cinp )

Ce.connect_random( Pe, P, p =

self.brian.prepare()
self.brian.clock.set_duration(2.0*second)

The mapping of the PCSIM input ports to a Brian neuron
group is managed by the simple auxiliary neuron group named
PCSIMInputNeuronGroup (see the Supplementary Material
for the implementation). The reset method resets the state of
the network to time step t= 0, which is achieved by calling the
reinit method of the Brian network, and initializing the mem-
brane potential vector P.V to random values from an uniform
distribution.

def reset(self, dt):
self.brian.reinit ()
self.P.V = —60*mV + 10*mV*rand(len(self.P))
return O

The step-by-step iteration of the network is done in the over-
ridden advance method which performs one time-step update of
the Brian network with the update method and the tick method
of the associated Brian clock object. At the end of each time step
the generated spikes of the population are gathered and delivered
to the output ports of the PCSIM network element.

def advance(self, ai):
self.brian.update()
self.brian.clock.tick()
self.setOutputSpikes( ai, self.P.get_spikes() )
self.clearSpikeBuf ()
return 0
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Note that no Python loops are present, the setOutputSpikes
method that transfers the spikes is implemented in C++ in the base
class PySimObject, so there is no performance loss caused by the
transfer of spikes from Brian to PCSIM and vice versa.

The new BrianCircuit network element class can then be
instantiated and added to a PCSIM simulation. The following code
segment creates an instance of the Brian spiking network, adds it
as a network element, sets up the input and runs the simulation
for 2.0 s [1000 neurons that emit Poisson spike trains at rate 5 Hz
(PoissonInputNeuron) are connected to the 1000 input ports of
the Brian network element]®.

net = SingleThreadNetwork()
inpNrnPop = SimObjectPopulation
( net, PoissonInputNeuron( rate = 5,
duration = 1000 ), 1000 )

pycirc = BrianCircuit()
pycirc_id = net.add(pycirc)

for i in range(inpNrnPop.size()):
net.connect (inpNrnPop[il, 0, pycirc_id, i)

net.reset ()
net.simulate( 2.0 )

EXTENDING PCSIM USING C++

The object-oriented framework of PCSIM can be extended by the
user at many different levels. Typical extensions of PCSIM include
either implementations of new neuron and synapse types, or imple-
mentations of classes encapsulating custom construction rules in
the network construction interface, as we have illustrated in the
previous sections. By utilizing the features of the Boost.Python
library and Py++, the extensions can be implemented either in
pure Python as already shown or in C++.

For creating C++ extensions, PCSIM provides a tool that com-
piles the custom C++ classes, automatically generates the Python
wrapper interface for these and packs everything into a separate
Python extension module. In order to simplify the procedure of
creating a custom extension, the user starts the implementation
from an extension template contained in the PCSIM distribution.
Let us assume that we want to implement two classes: a new neuron
type MyNeuron and a new synapse type MySynapse. Once the C++
implementation is finished, there are three additional steps that
have to be done to produce the PCSIM extension module.

First, the C++ source files of the extension have to be enlisted
in the file module_recipe.cmake. This file is read by PCSIM’s
C++ build tool CMake'®.

SET( MODULE_SOURCES
src/MySynapse. cpp
src/MyNeuron. cpp

As the second step, we have to specify the names of the classes
we want to include in the Python interface in the file python_
interface_specification.py which holds the extension

®The net.connect(src_id, src_port, dest_id, dest_port) method
connects the port number src_port of the element with id src_id, to the port
number dest_port of the element with id dest_id.

!http://www.cmake.org

module interface specification. For our example the inserted
lines should look like:

def specify( M, options ):
M.class_( ’MySynapse’ ).include()
M.class_( ’MyNeuron’ ).include()
return M

Note that the argument M in the code above denotes the Py++
representation of the C++ code of the custom PCSIM extension
to be built, with its rather intuitive query interface.

The name of the extension module (in our examplemy_pcsim_
module) is specified in bothmodule_recipe.cmake and python_
interface_specification.py files. Finally, the compilation is
done using the special purpose command-line compilation tool
for PCSIM extensions:

> python pcsim_extension.py build

The compiled extension module then can be imported and used
within Python as any other module.

import pypcsim
import my_pcsim_module

The main pypcsim module should always be imported before
any PCSIM extension modules, because the classes in the extension
are derived from classes in pypcsim and these classes should be
already in the Python namespace. The user can develop multiple
PCSIM extension modules that can be used simultaneously in one
simulation.

The creation of a PCSIM extension as a separate Python exten-
sion module relies on the support of Boost.Python and Py++
for component-based development, so that C++ types from one
Python extension module can be passed to functions from another
extension module while still preserving the information about the
cross-module C++ inheritance relationships. This enables object
instances from the classes in the extension module to be used within
the PCSIM object-oriented framework in the main pypcsim mod-
ule. The component-based development has also the advantage that
during the development of new custom classes only the extension
module has to be recompiled, not the whole pypcsim library.

During the compilation of the PCSIM extension module the
same processing steps happen as for the main pypcsim module (see
Figure 3). We use the same scripts both for generation of the Python
interface of the main PCSIM package and for the Python integration
of PCSIM extension modules. Since the post-processing exclusion
rules are expressed with the Py++ query interface in a generic way,
they are applicable also to the wrapping of the extension classes. This
is due to the fact that extension classes are derived from base classes in
the PCSIM object-oriented framework and as such share their com-
mon properties on which the rules are based. Hence, the interaction
of the user with the interface generation and the module compilation
reduces to specifying a list of the C4++ source files, and a list of classes
to be exposed in Python. The rest of the process is automatized and
the details are hidden behind the command-line interface of the
special compilation tool for PCSIM extensions.

PCSIM ADD-ONS IMPLEMENTED IN PYTHON
On top of the main PCSIM Python API (encapsulated in
pypcsim) several additional packages have been developed. They are
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implemented in pure Python and heavily rely on many third party
scientific Python packages. The purpose of these packages is either
to augment the capabilities of PCSIM, or add additional separate
functionalities that are suitable to be used together with PCSIM.

PyNN.PCSIM

The objective of the PCSIM development to adopt ongoing initiatives
to define standards for model specification of neural networks that
would foster interoperability between different simulators is reflected
in the support of the PyNN project'” (Davison et al., 2008). The PyNN
project is an effort to create a standardized, unified Python-based
API for procedural specification of neural network models aiming
at easier exchange of models between simulators. The user interface
of PCSIM has been augmented with an additional software layer to
support the PyNN API making it possible to use models specified
in PyNN within PCSIM. Due to the fact that PyNN was one of the
sources for inspiration of the PCSIM interface, the concepts between
the two interfaces match closely, so the translation of the PyNN state-
ments in corresponding PCSIM statements was straightforward and
did not require substantial programming logic that could have hin-
dered the performance of the interface. The pyNN.pcsim package
is an integral part of the PyNN distribution.

PYPCSIMPLUS

After we started to use PCSIM for our simulation purposes, it was
becoming apparent that adding another layer above the interface of
the pypcsim module can greatly simplify the routine tasks that are
usually performed while setting up and running simulations. The
pypcsimplus package was created with the intention to fill this gap.
Note that the pypcsimplus package is dependent on PCSIM. For
a more comprehensive, simulator independent tool-set for neural
simulations, we refer the reader to the NeuroTools package'®. In the
following paragraphs we will describe two main components of the
pypcsimplus package and give a demonstration of its use'.

Recordings

In PCSIM the value of a parameter or output port is recorded dur-
ing a simulation by connecting it to a proper recording network
element. The purpose of the Recordings class is to provide simpler
means to set up recorders and saving the recorded data during a
PCSIM simulation. For example it allows to create a population of
recorders that record the activity of a population of elements with
each recorder connected to one of the elements (e.g. the spiking
output of a population of neurons). For example

r = Recordings(net)

r.spikes = nrn_popul.record( SpikeTimeRecorder() )
r.Vm = net.record( my_nrn, ‘‘Vm’’, AnalogRecorder() )
r.weights = synapses.record( AnalogRecorder

( samplingTime ), ‘‘W’’ )

http://neuralensemble.org/trac/PyNN
http://neuralensemble.org/trac/NeuroTools

“There are other miscellaneous utilities present within the pypcsimplus package,
as for example tools for easier management of IPython parallel computing cluster
instances, routines for inspection of the structure of an already created networks in
PCSIM and routines for processing and analysis of spike train data.

schedules the recording of all spikes in the population nrn_popul,
the membrane potential Vm of a single neuron (my_nrn), and the
weights of a group of plastic synapses. To save that data to an HDF5
file?® one would use the command

r.saveInOneH5File (f)

At any time later on, the saved data can be loaded from the file
in a new Recordings object.

r = constructRecordingsFromH5File (f)
plot(r.Vm)

The members and attributes of the newly created Recordings
object r are numpy arrays or Python lists holding the recorded
data. For example r.Vm and r.W will be numpy arrays with the
recorded values of the membrane potential of the neuron and with
the evolution of the recorded synaptic weights during the simula-
tion, respectively. Note that if the user switches to a distributed
simulation the same code, without any changes, can be used.

To summarize, the Recordings class simplifies the specifica-
tion, storage and retrieval of recorded data by

. providing automatic detection of the type of the recorded data
based on the recorder classes, and conversion of the recorded
data to appropriate HDF5 data structures.

« implementing automatic gathering and sorting of recorded
data from all processing nodes in a distributed simulation, and
saving it in HDF5 in the same format as if the simulation was
executed on a single node.

These functionalities are hidden behind a convenient user inter-
face and are manipulated in the same manner in both single-node
and distributed simulation modes. For the implementation of the
Recordings class, the mpi4py?' (Dalcin et al.,2008) and pytables?
packages were used.

Experiment-model framework

Simulation, modeling and development environments in various
fields (e.g. electronic circuit design, software engineering, signal
processing, mechanical engineering) usually include a library of
already developed reusable components that are readily available
to the modeler. In the area of computational neuroscience, there is
asimilar effort to provide resources for easier reusability of models,
e.g. online databases of already published models (Hines et al.,
2004), or constructs within the simulator that allow encapsulation
of a simpler model as a well-defined component that can be used
as a building block at a higher-level of abstraction. As a first step
towards a component-based modeling with PCSIM, we have set
up a light-weight framework that could leverage and encourage
encapsulation of some generic parts of a model as reusable com-
ponents, which can be exchanged among modelers.

The basis of the framework is composed of three classes: Model,
Experiment and Parameters. The Model is a base class which the
user inherits from when he wants to develop a model component.
Several model components can be combined together to create a

“http://www.hdfgroup.org/HDF5/
'http://mpidpy.scipy.org
“http://www.pytables.org/moin
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FIGURE 6 | Plots from the output analysis example with the
pypcsimplus package. (A) Spike response of the spiking network
implemented in the Section “Custom Network Elements’ with input neurons
emitting spikes generated from a homogeneous Poisson process with a rate of
5 Hz, for the first 0.4 s of the simulation. (B) Cross-correlogram of the spike

_
o
o

counts/bin

(&)
o

D 300

200

counts/bin

-0.2 -0.1 0 0.1 0.2

time lag [sec]

response of the network model from (A). (C) Spike response of the spiking
network implemented in the Section “Custom Network Elements’ when the
input neurons emit spikes generated from an inhomogeneous Poisson process
with a rate changing according to a sinusoidal function (see text for details). (D)
Cross-correlogram of the spike response of the network model from (C).

new model component. The Experiment class provides means to
perform a controlled simulation with an already developed cus-
tom Model class. It encapsulates different facilities regarding saving
output data to files, configuration of models, saving the current
version of the scripts, naming of different runs of experiments
etc. The configuration of the models is done with a Parameters
class holding the model parameters in a hierarchical structure. For
creating instances of the Experiment and Model classes remotely
within the IPython parallel computing framework® (Pérez and
Granger, 2007) there are Remot eExperiment and RemoteModel
proxy classes, which can be used to manipulate remote experiment
and model instances in the same way as if they were local.

Pypcsimplus in action
We will demonstrate in the following paragraphs how pypcsimplus,
together with other general scientific and computational neuro-
science Python packages, can be utilized to perform an analysis of
the activity of the Brian spiking network example from the Section
“Custom Network Elements”. In particular we will investigate what
effect a change in the injected input in the network will have on
the cross-correlogram of its spike response.

At the beginning we will set up the recording of the spiking out-
put of all 4000 neurons in the network. After creatingaRecordings

Zhttp://ipython.scipy.org

object, we create a population of recorders to record the spikes from
the 4000 output ports of the BrianCircuit network element.

r = Recordings()
r.spikes = record_ports(net, pycirc_id, range(4000),
SpikeTimeRecorder ())

net.simulate(2.0)

r.saveInOneH5File(’results.h5’)

We have accomplished this by using the record_ports func-
tion from the pypcsimplus package, used to specify recording of
aset of output ports. After the simulation is performed, the record-
ings are saved in a HDFS5 file for subsequent retrieval.

In another script we setup the analysis of the output data and the
plotting. After the creation of the Recordings object by loading
the recorded data from the saved HDF5 file, we plot the spiking
activity of the network for the first 0.4 s of the simulation with the
plot_raster function in pypcsimplus (see Figure 6A).

r = constructRecordingsFromH5File(’results.h5’)

figure(1)

plot_raster(r.spikes, time_range = (0,0.4), fmt = ’,’)

plot_raster uses the plotting routines from thematplot1lib*
package (Hunter, 2007) to realize the plotting.

#http://matplotlib.sourceforge.net
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Additionally we will calculate and plot the cross-correlogram
of the spiking activity, defined as the histogram of time differences
between the spike times from two different spike trains, calculated
and summed over a set of randomly chosen pairs of neurons from
the network. To achieve this, we utilize the pypcsimplus function
avg_cross_correlate_spikes.

corr = avg_cross_correlate_spikes(r.spikes, num_pairs = 2000,
binsize = 1le-3,
corr_range = (—200e—3,200e-3))
figure(2)
bar (arange (—200e—3,201e—-3, 1e-3), corr, width = le-3,

color = ’k’)

In our case the cross-correlogram is calculated from the spike
times of 2000 randomly chosen pairs of neurons from the network,
for time lags within the range [-200 ms, 200 ms] and a bin size of
1 ms. We then plot the cross-correlogram values with the bar func-
tion from matplotlib (the plot is shown in Figure 6B)%.

In the example in the Section “Custom Network Elements”, the
input neurons were setup to generate a homogeneous Poisson spike
trains with 5 Hz rate. Now we will modify the input generation so
that the input neurons will emit inhomogeneous Poisson spike
trains, with a firing rate r(f) = 5(1 + sin(2w 10¢)). First we create a
population of input neurons of type SpikingInputNeuron that
emit an explicitly given sequence of spike times.
inpNrnPop = SimObjectPopulation

(net, SpikingInputNeuron(), 1000)

Then we iterate through all the input neurons and set the
spike sequence of each input neuron according to the previously
defined inhomogeneous Poisson process. For the generation of
the inhomogeneous Poisson spike time sequences we invoke the
inh_poisson_generator method of an instance of the StGen
(stimulus generator) class available in the NeuroTools Python
package for computational neuroscience. The method accepts
three parameters, a sequence specifying the time moments where
the rate changes (parameter t), the sequence of the new firing rate
values at these time moments (parameter rate) and the duration
of the spiking process (parameter t_stop)*.

time_steps = arange(0,2000,1); stgen = StGen()
for i in range(inpNrnPop.size()):
spikelist = stgen.inh_poisson_generator
(rate = 5%(1 + sin(time_steps/1000.0%20%pi)),
t = time_steps, t_stop = 2000.0)
inpNrnPop.object (i) .setSpikes(spikelist.spike_times/1000)

The spike raster and the cross-correlogram obtained after rerun-
ning the simulation with the newly defined input are shown in
Figures 6C,D, respectively.

Through this demo we have elucidated to the reader how a
typical PCSIM simulation run is performed in Python, and the
benefits that come from the utilization of Python as a unifying

»For clarity reasons, we only give the main matplotlib plotting command in the
example code blocks, and omit the additional formatting commands used for
Figure 6.

*Time in neurotoools is specified in milliseconds, hence the division by 1000 when
we need to convert the spike time sequence in seconds before inserting it in a PC-
SIM neuron.

scripting environment within which PCSIM is used together with
its add-on pypcsimplus and other scientific and computational
neuroscience Python packages. Additionally to their side-by-side
usage with PCSIM, the Python scientific packages are harnessed also
in the bundling of common recipes and reoccurring usage patterns
in the PCSIM extra add-on packages, as in the case of pypcsimplus.
The collection of Python scientific packages presently available
cover a broad enough range of functionalities to enable, in almost
all cases, handling all of the steps of a modeling effort in Python (e.g.
stimulus preparation, response analysis and plotting as shown in the
demo). The data communication between the different packages
and PCSIM typically reduces to passing Python sequences (lists or
numpy arrays) from one package to another.

PYLSM

The pylsm package is aimed to support the analysis of the compu-
tational properties of cortical microcircuits within the liquid state
machine (LSM) approach (Maass et al., 2002). In this approach
multiple simulation trials are performed where input spike trains,
drawn from a defined input distribution, are injected in the cortical
circuit, and a readout which reads the spiking activity of the circuit
is trained by a supervised learning algorithm to approximate some
function of these inputs.

The framework contains all the necessary machinery for per-
forming the simulations and the training of the readout”. In a
typical task the user defines the neural circuit to be used as a liquid,
chooses the desired input distribution, the input-output mapping
function, and the learning algorithm for the readout from the ones
available in the package, and then performs the LSM training and
testing procedures. For example, the user can define a distribution
of inputs which consist of different time segments, and each of
these time segments contains a jittered version of some predefined
spike train template. In the available learning algorithms for the
readout a least-square algorithm with non-negative constraints is
also included. It can be used to train a linear readout with the
biologically more realistic constraint that all the weights originat-
ing from excitatory (inhibitory) neurons are positive (negative)
(Haeusler and Maass, 2007).

DISCUSSION

The application programming interface of PCSIM is an object-
oriented framework composed of many classes interacting together
to achieve the desired operation. Within this framework we intro-
duced several novel concepts like element and connector factories,
value generators and connection decision predicates. The user can
customize and extend this framework by deriving from the interface
classes of the API to implement his own specific network elements
or network construction algorithms.

THE WRAPPING APPROACH

There exist several possible approaches for implementing a Python
interface of a simulation software library implemented in C/C++.
An extension to the NCS software called Brainlab (Drewes, 2005)
uses generation of a file from Python with declarative specification

It has similar features as the package described in Natschliger et al. (2003), which
was implemented in Matlab and was part of the CSIM package.
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of the model which is then loaded in the simulator. Another com-
mon method is to use interpreter-to-interpreter interaction with
the conversion of data structures between Python and C++ handled
by means of the Python/C API, an approach adopted by NEURON
(Hines et al., 2009) and NEST (Eppler et al., 2008). This method is
applicable only if the simulator already has an interpreting interface.
For the creation of PyMoose (Ray and Bhalla, 2008), the Python
interface of MOOSE?, the developers applied the interface genera-
tor tool SWIG® (Beazley, 2003). Certainly, one can also implement
a Python interface by using solely the Python/C APIL.

Since PCSIM’s Python interface was to be newly developed, only
the later two options were applicable. We opted for the interface
generator tool approach combined with automatic wrapper code
generation, since from the available options it seemed to us the fast-
est way, in terms of the amount of development effort required, to
achieve the desired Python wrapping of the PCSIM object-oriented
framework. One of our goals for the integration of PCSIM with
Python was to simplify and support a hybrid modeling approach
by enabling the user to implement extensions of the PCSIM object-
oriented framework in Python and/or C++, while not having to
bother with details regarding the interoperability between these
two programming languages.

The excellent support of Boost.Python for advanced C++ con-
cepts and appropriate mapping of corresponding idioms between
the two languages allowed us to expose the complete PCSIM API,
currently =300 classes, to Python in a non-intrusive way. This means
that the fact that the PCSIM APl is to be exposed to Python does not
impose any changes at the C++level nor does it put any constraints
on its design. Furthermore the compilation of the 1ibpcsimlibrary
itself does not depend on any Python library or wrapping code.

BIDIRECTIONAL INTERFACE AND HYBRID MODEL DEFINITION
One of the features of Boost.Python enabling the hybrid approach is
the ability to derive Python classes from the wrapped interface classes,
and override the virtual functions. Hence, such custom Python class
methods can be called from within C++and thus allow an integration
of Python code into the PCSIM C+4+ code. A similar bidirectional
interface has been implemented between Python and NEURON
(Hines et al., 2009), where Python can issue commands towards
NEURON, but also Python code can be called and executed from
within NEURON in an active Hoc session®. In PCSIM the two-way
interaction between Python and C++ enables user customizations
to be coded in pure Python, and then plugged into the PCSIM C++
framework. This brings additional flexibility and freedom to the
user, meaning that he can first do fast implementations in Python,
e.g. extensions to the network construction interface (see Network
Construction), in the prototyping phase, and afterwards the imple-
mentation can be ported to C4++ to gain maximum performance.
The ability to define PCSIM network elements in Python opens
a possibility for a seamless Python-C++ integration also during the
simulation, not only in the network construction stage. The example
described in the Section “Custom Network Elements” shows that net-
work elements can be implemented in Python, by using vectorized

#http://moose.sourceforge.net/
Zhttp://www.swig.org
**Hoc is the native NEURON interpreting language.

techniques employing the highly efficient numerical Python package
numpy (which is implemented in C). This adds flexibility, since the
equations describing the element can be changed quickly without
any necessary compilation while not sacrificing performance, since
by using numpy vectors, the integration algorithm is broken down
in elementary vector operations thus avoiding any loops within
Python that could be detrimental for the performance.

This approach seems also to be advantageous when one wants
to implement network elements that have some abstract processing
logic, e.g. signal processing filters, machine learning algorithms or
similar. In this case one can utilize a large set of available C++librar-
ies that have Python bindings, for an efficient implementation, and
handle in Python the transfer of data from the input ports of the
network element to the input methods of the library, and from the
output of the library to the output ports of the network element.

The possibility to implement PCSIM network elements in pure
Python offers a convenient way to achieve run-time interoperabil-
ity between PCSIM and other neural network simulators (Cannon
etal., 2007), provided that the simulator has a Python interface,
allows control of the simulation process at individual time steps, and
has the possibility to write input and read output data during the
simulation at each time step. As shown in the example in the Section
“Custom Network Elements”, we have successfully implemented
interoperability with the Brian simulator, which possesses the afore-
mentioned capabilities. One interesting further application of this
interoperability could be a distributed simulation of a large neural
network where the sub-networks on each node are implemented
with the Brian simulator, and the parallel communication is handled
by PCSIM’s communication system. Another possible approach of
using Python as a glue language to achieve simulator interoperability
is to setup a Python script as a top-level coordinator of a step-by-step
simultaneous execution of two simulators, where the necessary data
transfer between the simulators is realized through intermediate
Python data structures (Ray and Bhalla, 2008).

HIGH-LEVEL WRAPPING SPECIFICATION AND EXTENSIBILITY

Since the interface of PCSIM has a fine granular structure, com-
posed of many decoupled classes (=300) this implies that there are
many classes to be wrapped and exposed to Python. It would simply
be impossible to manually manage all the necessary Boost.Python
wrapper code. Furthermore, the possibility of adding extensions to
the interface puts additional constraints to the wrapping approach
to be robust enough to work for the extension classes too, without
any significant intervention from the user. Nevertheless, by exploit-
ing the powerful interface generator tool Py++ the wrapping of
such a large number of classes is rendered feasible®'. We were able
to specify high-level generic rules within Py++ for the definition of
the wrapping of all the classes in the PCSIM API and their sensible
extensions. To be precise, the Python program that specifies the
rules for the Python interface generation for =300 classes is about
400 lines of Python code. As these rules apply for the extensions too,
the user can easily extend the PCSIM simulator with its own cus-
tom C++ classes and compile them in a separate Python extension

*'The only drawback we encounter is the rather long compile time when recompi-
ling the whole Python interface. This is due to the fact that Boost.Python heavily
uses C++ templates.
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package, which can be used together with the main pypcsim pack-
age (the tool support for this is included in PCSIM). This was made
possible by the Boost.Python and Py++ support for cross-module
inheritance relationships and component-based development (see
“Extending PCSIM Using C++7).

To summarize, by the easy extensibility of its interface both
in Python and C++, PCSIM enables the modelers to think hybrid
when developing their models (Abrahams and Grosse-Kunstleve,
2003).

PYTHON AS A SCRIPTING ENVIRONMENT

Providing a Python interface to a neural simulator increases its
versatility and consequently the productivity of the modelers in
many ways. The object oriented design of the language, its expres-
sive and clean syntax, allows the modeler to focus on the high-level
logic of the model instead of struggling with the intricacies and the
nuts and bolts of the programming language. Furthermore, there
is a growing number of general scientific and specific computa-
tional neuroscience software tools available as Python packages, for
numerical calculations, scientific functions, plotting, saving data to
files, parallel computing etc. We have used several scientific Python
packages to enhance PCSIM with useful utilities on top of its basic
interface. As we have illustrated through a simple example in the
Section “PCSIM Add-Ons Implemented in Python”, in combina-
tion with such Python packages PCSIM can be used as the main
component of a Python-based neural simulation environment
where all steps within a neural model development life-cycle, from
the specification of the model and performing the simulations, to
storage of simulation output data, data analysis and visualization
can be performed. Overall, the integration of PCSIM with Python

added additional valuable facilities to the user, turning PCSIM into
a full-fledged neural simulation environment.

PCSIM RESOURCES

Many resources for PCSIM can be found at its web page®?. The web
page contains a user manual, examples, installation instructions,
complete class reference documentation and the complete material
for the tutorial that was given at the FIAS Theoretical Neuroscience
and Complex Systems summer school held in Frankfurt, Germany
in August, 2008. The users can discuss topics and pose questions
concerning usage and installation of PCSIM on the pcsim-users
mailing list on Sourceforge®? where the PCSIM development
project is hosted. In the future, the user manual will continuously
undergo extensions and revisions to better organize the content
and to include additional topics and more elaborate information
about the PCSIM concepts and constructs. Additional examples
covering various PCSIM features will also be made available on
the web site.
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