
Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 29 May 2009
doi: 10.3389/neuro.11.012.2009

Near-infrared neuroimaging with NinPy

Gary E. Strangman1,2*, Quan Zhang1,2 and Thomas Zeffi ro2

1 Department of Psychiatry, Harvard Medical School, Charlestown, MA, USA
2 Neural Systems Group, Massachusetts General Hospital, Charlestown, MA, USA

There has been substantial recent growth in the use of non-invasive optical brain imaging in
studies of human brain function in health and disease. Near-infrared neuroimaging (NIN) is one
of the most promising of these techniques and, although NIN hardware continues to evolve at
a rapid pace, software tools supporting optical data acquisition, image processing, statistical
modeling, and visualization remain less refi ned. Python, a modular and computationally
effi cient development language, can support functional neuroimaging studies of diverse design
and implementation. In particular, Python’s easily readable syntax and modular architecture
allow swift prototyping followed by effi cient transition to stable production systems. As an
introduction to our ongoing efforts to develop Python software tools for structural and functional
neuroimaging, we discuss: (i) the role of non-invasive diffuse optical imaging in measuring brain
function, (ii) the key computational requirements to support NIN experiments, (iii) our collection
of software tools to support NIN, called NinPy, and (iv) future extensions of these tools that
will allow integration of optical with other structural and functional neuroimaging data sources.
Source code for the software discussed here will be made available at www.nmr.mgh.harvard.
edu/Neural_SystemsGroup/software.html.

Keywords: near-infrared spectroscopy, python, NIRS, diffuse optical tomography, brain imaging

one domain for which no Python tools exist, and for which only
two non- commercial software solutions are available (Huppert,
2006; Ye et al., 2009). We have therefore been developing a suite
of Python modules to support the computational aspects of NIN
data acquisition, analysis, and display. While our particular col-
lection of tools is specialized for handling NIN data, the general
design principles have broader application in experimental and
theoretical neuroscience. We plan to release sub-modules under a
BSD license, posting them at www.nmr.mgh.harvard.edu/Neural_
SystemsGroup/software.html as they reach beta level stability.

We begin with an explanation of the physical and biological
basis for NIN, followed by a brief comparative review of its chief
uses. To provide context for our software development efforts,
“Computational Requirements and Software” begins by describ-
ing the logistical and computational requirements associated with
NIN experiments. The remainder of that section then describes the
individual acquisition, analysis and visualization modules compris-
ing the NinPy package, followed by a discussion of future software
development directions in “Future Extensions”.

PRINCIPLES OF NEAR-INFRARED NEUROIMAGING
The physical principles underlying NIN are relatively simple, and
similar to those encountered in pulse oximetry. The human scalp
and skull are suffi ciently transparent to the near-infrared (NIR)
light wavelengths between 650 and 950 nm to enable non- invasive
optical monitoring of physiological modulations associated with
brain function (Jobsis, 1977). The NIR wavelengths are non-
ionizing and therefore do not harm biological tissue at the low
average power densities of 1–4 mW/cm2 customarily utilized in
brain imaging. For comparison, the ambient NIR light level on a

INTRODUCTION
The effi cient conduct of neuroimaging experiments requires a
diverse and complex assortment of computational resources. It
follows naturally that constructing complete systems for data
acquisition, analysis and display would be facilitated by the use of
highly versatile, modular development environments. Functional
neuroimaging data collection requires accurate timing of both
stimulus displays and user responses, with near real-time graph-
ics and device polling capabilities. The structural and functional
neuroimaging datasets acquired over the course of a typical 1- to
2-h experimental session can exceed 10 gigabytes in size. These high
data collection rates, along with the need to monitor the data fl ow
for quality assurance purposes, require excellent system through-
put and real-time data display capabilities to support experimental
monitoring. Once acquired, neuroimaging datasets must undergo
substantial preprocessing, data reduction and statistical processing
to accurately model the many, often hierarchical, sources of vari-
ance in the raw data. These sources can include instrument noise,
temporal autocorrelation, head motion, cardiovascular physiologi-
cal effects, within-subject task effects, within-group effects, and
between-group treatment effects. Finally, the statistical results must
be displayed in an intuitive and easily comprehensible form using
publication quality graphics.

While the construction of tools for each of these steps poses
a substantial challenge, many current Python modules provide
an excellent foundation on which to build data acquisition and
processing pipelines. These advantages are already evident in
magnetic resonance imaging (MRI) and electroencephalography
(EEG) data processing applications, as demonstrated by other
papers this issue. However, near-infrared neuroimaging (NIN) is

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Andrew D. Straw, California Institute of
Technology, USA
Matthew Brett, University of
Cambridge, UK

*Correspondence:

Gary E. Strangman, Neural Systems
Group, Massachusetts General
Hospital, 149 13th St – Psychiatry – Ste
2651, Charlestown, MA 02129, USA.
e-mail: strang@nmr.mgh.harvard.edu

www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html.
www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 2

sunny summer day in mid-latitudes is approximately 20 mW/cm2.
By shining small spots of NIR light on the scalp and placing a
detector a few centimeters away, the light intensity recorded by
the detectors is modulated by the concentrations of all the absorb-
ing chromophore molecules in the underlying tissues between the
source and the detector. While sensitive to a range of chromophores
and physiological phenomena (Villringer and Chance, 1997), NIN
is particularly sensitive to the tissue oxygenation changes observed
during changes in local neuronal activity (Huppert et al., 2006;
Strangman et al., 2002b). A single source and detector pair can
provide information about local changes in tissue optical prop-
erties. Spatiotemporal images of these physiological variables are
generated by collecting multiple overlapping optical measurements
and then applying tomographic image reconstruction techniques
(Arridge, 1999; Franceschini et al., 2006; Pogue et al., 1999a). In
addition to these spatial sampling capabilities, NIN is capable of
temporal sampling in excess of 500 samples/s, a rate that compares
quite favorably even with the most recent, ultra-fast MRI functional
imaging methods (Lin et al., 2008a,b).

ADVANTAGES AND LIMITATIONS OF NEAR-INFRARED NEUROIMAGING
Near-infrared neuroimaging has several advantages when com-
pared with other functional neuroimaging techniques, including:
(i) comparatively low cost, (ii) sensitivity to multiple aspects of
brain physiology, (iii) high temporal resolution, and (iv) suitability
for portable or mobile applications. Together, these characteristics
enable the use of non-invasive optical measurements in settings
not normally compatible with brain imaging, including functional
brain imaging in freely moving subjects. As with any technique,
NIN also has limitations. Chief among these are a limited pen-
etration depth of approximately 3–4 cm from the scalp surface,
when using refl ection geometry (Strangman et al., 2002a, 2003).
In addition, non-invasive NIN allows only modest spatial resolu-
tion, estimated to be on the order of 0.5–1 cm in an adult human.
Within these limits, however, NIN provides sensitive and reliable
estimates of task-related neural activity originating in cortical
structures comparable to results obtained using functional MRI
(Huppert et al., 2006; Jasdzewski et al., 2003; Strangman et al.,
2002b, 2006).

WHAT ASPECTS OF BRAIN FUNCTION CAN NEAR-INFRARED
NEUROIMAGING MEASURE?
Although the basic NIN measurement involves recording the atten-
uation of light from a particular source as seen from the viewpoint
of a particular detector, one can use raw light attenuation measure-
ments at different wavelengths in the NIR range to obtain localized
spectroscopic estimates of a wide range of physiological variables
(Table 1). Some of these variables, like oxy- or deoxy-hemoglobin
(O

2
Hb and HHb) concentrations, are relatively straightforward

conversions from measured attenuation values (see Section
“Spectroscopic Conversion”). Others involve estimation of the
physiological variables of interest from combinations of estimated
chemical concentrations, as in the case of oxygen saturation or the
cerebral rate of oxygen metabolism (CMRO

2
). Finally, the temporal

modulations of these variables can be used to compute indirect
estimates of physiological phenomena like heart rate, respiration
rate or modulation in baroreceptor activity (Mayer waves).

Near-infrared neuroimaging measurements of hemodynamic
variables can be used to derive estimates of regional brain activ-
ity. This relationship between neural and hemodynamic activity is
based on combined electrophysiological and fMRI results demon-
strating that local changes in neural activity, refl ecting both den-
dritic and axonal activity, are associated with focal variations in
blood fl ow and volume (Logothetis, 2008). Because hemodynamic
and neural activity changes often covary linearly, it is possible to
use localized spatiotemporal recording of brain hemodynamics to
make inferences about antecedent, and presumably causally related,
neural activity patterns. For studying brain mechanisms underly-
ing complex behavior, NIN hemodynamic imaging has particu-
lar advantages over other imaging modalities in the non-invasive
detection of neural activity modulations. For example, as compared
to EEG, NIN signals are more spatially localized (Strangman et al.,
2003) and much less susceptible to the type of bioelectric interfer-
ence generated by task-related scalp and face muscle activity. NIN
signals also do not require tasks that produce the sorts of synchro-
nous neural discharges that are needed to generate detectable event-
related electrical potentials. In addition, when directly compared
to invasive electrical measurements, hemodynamic responses are
just as strongly related to induced patterns of neural activity as are
the synchronous fi eld potentials from which evoked potentials arise
(Logothetis et al., 2001; Logothetis and Wandell, 2004).

In summary, the non-invasive character, and high sensitivity
of NIN to a broad range of physiological phenomena refl ecting
many different aspects of brain function, makes it a promising
method for use in a large number of clinical and experimental
neuroscience contexts.

COMPUTATIONAL REQUIREMENTS AND SOFTWARE
Of its many potential applications, we have been particularly inter-
ested in using NIN to study the neural mechanisms underlying com-
plex behavior. In particular, to facilitate the use of NIN in studies of
the neural mechanisms of action and perception, we have developed
a suite of programs, collectively called NinPy, that provide a wide
range of integrated computational tools for use in optical functional
neuroimaging experiments. A summary of the principal capabili-
ties and components in NinPy appears in Table 2, along with the
main Python modules and packages upon which each component is
based. Each of these will be elaborated in the sections that follow.

There currently are two main software packages for han-
dling NIN data: HomER (Huppert, 2006) and NIRS-SPM

Table 1 | Physiological variables that can be estimated using NIN.

Chemical Physiological Temporal

measurements variables variables

Oxy-hemoglobin concentration Blood volume Heart rate

Deoxy-hemoglobin concentration Blood fl ow Respiration rate

Total hemoglobin concentration Oxygen saturation Mayer waves

Water concentration CMRO2 Low-frequency

 oscillations

Cytochrome oxidase Neural activity

concentration

pH

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 3

Table 2 | NinPy components and their core supporting Python modules.

Capability NinPy Primary Python

 component modules

ACQUISITION

Stimulus display NinSTIM PsychoPy, Pyglet

User input NinSTIM PsychoPy, cgkit, Pyglet

Synchronization NinSTIM pyparallel/pyserial

NIRS data collection NinDAQ Chaco, Traits

ANALYSIS

Quality assurance NinPROC NumPy

Filtering NinPROC NumPy, SciPy

Image reconstruction NinPROC NumPy, SciPy

Parameter estimation NinSTATS SciPy, RPy

Statistical modeling NinSTATS RPy

DISPLAY

Visualization NinDISP Matplotlib

(Ye et al., 2009). Both of these packages provide excellent data
processing capabilities for many of the analysis and display
aspects of NIN data processing. HomER provides a wealth of
temporal processing capabilities and image reconstruction tech-
niques, whereas NIRS-SPM provides broad statistical modeling
and display capabilities by integrating with, and building upon, a
well-established neuroimaging software package, SPM. However,
neither package includes capabilities for acquisition, including
experiment design, stimulus display, and data collection. NinPy
seeks to provide an integrated platform combining all of these
features, with a focus on features that complement those available
in HomER and NIRS-SPM.

CONDUCTING NEAR-INFRARED NEUROIMAGING EXPERIMENTS
Conducting a typical NIN experiment requires two distinct software
tools: one for experimental control and the other for data acquisi-
tion. Although these tools operate independently, their effi cient
use together requires a high degree of functional integration at the
design level. As described next, NinSTIM is a stimulus generation
and display system for experimental control, and NinDAQ is a data
acquisition and monitoring system for device control.

Stimulus generation and user input (NinSTIM)
Accurate and reliable control of stimulus presentation is a critical
aspect of any functional neuroimaging experiment. NinSTIM is a
high-level stimulus and experimental design toolkit, designed for
non-programmers, that generates stimulus sequences for display
by the Pyglet interface1 to the PsychoPy package2 (Peirce, 2008).
NinSTIM directs PsychoPy to sequentially present an ordered col-
lection of “trials”, where a trial is a very general entity consisting
of one or more temporal phases, each composed of one or more
visual or auditory stimuli. For example, a trial could be: (i) a simple
instruction screen presented while the program waits indefi nitely
for a key press, (ii) a visual fi xation of predetermined duration,
(iii) a stimulus followed by a mask, or (iv) any other ordered series
of stimuli. An example complex trial with fi ve separate phases might
be: (i) a side-by-side pair of photos, followed by (ii) a brief whole-
screen mask image, followed by (iii) a variable duration blank
screen delay period, followed by (iv) a go cue, and fi nally (v) an
inter-trial rest period. Each unique trial type is defi ned in a ASCII
trial defi nition (.DEF) fi le, with required Python-style indentation,
for editing and interactive debugging (Figure 1, left).

1www.pyglet.org
2www.psychopy.org

trial definition .DEF file

backgroundColor (-1,-1,-1)
 Ready

-1 keyboard
allowableKeys space

 Ready …
 pos (0,0.2)
 height 0.15
 Instructions_Left_3
 3 cumulative
 Instr_left_3.jpg
Fixation

 15 cumulative
 cross.jpg
 Left.04
 1.5 exact
 L4.jpg
[etc.]

trial order .ORD file

Ready
Instructions_Left_3
Fixation
Left0.04
Left0.03
Left0.05
Left0.01
Left0.02
Instructions_Right_1
Right1.04
Right1.01
Right 1.03
Right 1.02
Right 1.02
Fixation
Thanks

FIGURE 1 | Abridged examples of the trial defi nition (.DEF) fi le format

and the trial order (.ORD) fi le format. Each trial named in the .ORD fi le
must be defi ned in the .DEF fi le. For the fi rst trial (“Ready”), “timing = −1
keyboard” means wait indefi nitely for a keypress (the spacebar is the only
allowable key) while displaying the text “Ready …” at position (0,0.2) and

height 0.15. The “Fixation” trial involves displaying the image fi le
cross.jpg in the center of the screen for 15 s, with extra frames inserted or
removed there if cumulative timing errors have accumulated. The “Left.04”
stimulus displays the image fi le L4.jpg in the center of the screen for
exactly 1.5 s.

www.pyglet.org
www.psychopy.org

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 4

The breadth of experimental designs commonly employed in
functional neuroimaging experiments requires sophisticated and
fl exible procedures for trial scheduling. Possibilities for the tempo-
ral ordering of trials include: (i) block designs, in which groups of
evenly spaced trials alternate with periods of fi xation, (ii) stochas-
tic, or “event-related”, designs, in which the individual trial times
are varied to allow effi cient estimation of hemodynamic responses
using deconvolution procedures (Dale, 1999), and (iii) mixed
designs, combining aspects of both block and stochastic designs
to achieve separation of state and task-related experimental effects.
In the case of stochastic and mixed designs, the trial durations
and orders that lead to maximum effi ciency in the detection of
task-related brain activity can be computed using programs such
as optseq3, and then entered in a trial order (.ORD) fi le. As with
the trial defi nition fi le, the trial order input fi le is a simple, ASCII
fi le (Figure 1, right). From these two input fi les (.DEF and .ORD),
NinSTIM builds and then runs a PsychoPy-compatible program.

PsychoPy and Pyglet, the engines driving stimulus presentation,
also provide facilities for logging stimulus, keyboard and mouse
events. Through the Pyglet event loop, one can continuously moni-
tor these events and respond appropriately. For example, one can
display different stimuli depending on user input, or compensate
for certain timing vagaries inherent in soft real-time operating sys-
tems. In soft real-time operating systems like Microsoft Windows,
interrupts and system processes can sometimes seriously disrupt
the accuracy and precision of stimulus timing. This is a widely
recognized problem that is addressed using differing mechanisms
in the stimulus presentation packages most commonly used in
experimental neuroimaging, including EPrime4, Presentation5,
Psychtoolbox6, and Cogent7. To optimize timing in NINstim we:
(i) increase the stimulus display process priority to “High” via
Python’s win32process.SetPriorityClass(), (ii) disable Python gar-
bage collection, (iii) enable drawing synchronized to the vsync
pulse from the monitor, and (iv) pre-draw stimuli whenever pos-
sible to maximally engage the blocking mode of calls to OpenGL
fl ip (Straw, 2008). Stimulus onset timestamps are collected using
Python’s time.clock() call which is executed the line after the call to
fl ip the OpenGL graphics buffer. The timing requested by the user
in the trial defi nition and order fi les – which we call the nominal
timing – is also simultaneously monitored. Using the “cumula-
tive” timing type, users can identify the less critical stimulus or
delay times, for which NinSTIM can add or subtract one or two
frames, to preserve the experiment’s cumulative nominal timing.
In a 12-h test using this approach, involving 15,600 trials and
31,000 stimuli, our time.clock() timestamps occurred a maximum
of 26 ms early to 88 ms late compared to nominal, with a mean
and SD timing error of 1.6 ± 6 ms. Individual stimulus durations
ranged between ±8 ms off nominal – or half a screen refresh on our
60-Hz monitor. Note that these latencies do not represent the total
system delay, defi ned as the interval between the time a user event
is captured and a new image is displayed. Moreover, these latencies

were measured by the internal computer clock, rather than an
external source. Hence, the above numbers may underestimate
the exact latency to stimulus presentation (Straw, 2008). However,
the maintenance of nominal timing within a few tens of milli-
seconds over several hours is more than adequate for functional
neuroimaging experiments based on hemodynamic responses,
which includes the vast majority of NIN experiments.

Using the standard Python threading and ctypes modules it is
also possible to collect continuous data streams from other user
input devices during stimulus display. Access to almost any device
driver is possible through ctypes. By setting up a separate timer
thread, densely sampled data streams from auxiliary input devices
can include time stamps from the same master clock that marks all
stimulus, keyboard and mouse events. This arrangement dramati-
cally reduces the timing uncertainty between stimulus presentation
and recording devices and can provide a record of any mismatch
between intended and actual experimental event times. This sort
of continuous, simultaneous recording of auxiliary devices can be
diffi cult or impossible to implement using many of the popular
experimental control programs. In addition, the pyserial and pypar-
allel Python modules (Liechti, 2008) provide a separate means for
acquiring event signals from, or exporting trigger signals to, the
computer’s serial or parallel ports for synchronization with our
NIN acquisition devices.

Because NinSTIM is based on Python, chaining multiple experi-
ments is easily achieved with successive Python calls, or a separate
Python script that runs each experiment in succession.

Data acquisition and real-time data display system (NinDAQ)
Optical imaging devices are constructed from multiple hardware
subsystems that require dedicated device control software. Using
Enthought’s Chaco/Traits modules (Enthought, 2007, 2008), along
with NumPy (Oliphant, 2006) and SciPy (Jones et al., 2001) we have
also developed NinDAQ, a device control program customized for
two of our NIN instruments (Figure 2). This program provides com-
plete, real-time control over the NIN device state variables, includ-
ing laser state, amplifi er gain, analog acquisition subsystem voltage
range, and sampling rate. NinDAQ also controls the data acquisition
process including start signals, stop signals, and data display modes.
Important additional features include: real-time temporal display of
relatively large amounts of data, pushbutton toggling to “zoom in
and out” on the data stream as it is being collected, and automatic
scaling of the signal range to the minimum and maximum values
of each data line. Real-time control of the acquisition process is
provided, including provisions for user-generated interrupts of data
collection, variable temporal windows for strip-chart data views,
and interactive laser control. The Chaco plotting package provides
real-time plotting capabilities, while Enthought’s Traits supports
rapid GUI development cycles. The standard Python ctypes module
enables seamless access from Python to the commercial drivers for
our analog-to-digital data acquisition boards.

SIGNAL PROCESSING (NINPROC)
Once complete, most neuroimaging experiments produce two fi le
types: text fi les that log the stimulus and response events, and cus-
tom binary data fi les containing the neuroimaging data. Depending
on the type of experiment and the specifi c neuroimaging device,

3http://surfer.nmr.mgh.harvard.edu/optseq/
4www.pstnet.com/products/e-prime
5www.neurobs.com
6http://psychtoolbox.org/PTB-2/
7www.vislab.ucl.ac.uk/cogent.php

http://surfer.nmr.mgh.harvard.edu/optseq/
www.pstnet.com/products/e-prime
www.neurobs.com
http://psychtoolbox.org/PTB-2/
www.vislab.ucl.ac.uk/cogent.php

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 5

raw data from a single participant in single experimental session
can be many gigabytes in size. In experiments incorporating cardiac,
respiratory, kinematic or other physiological data monitoring, a
third fi le type containing records of such continuous data streams
may also be produced. Each such data fi le has unique processing
requirements that can be handled via Python, or using the NumPy
and SciPy libraries.

Quality assurance and fi ltering
Quality assurance procedures for stimulus and event log fi les
involve validating event timing by examining deviations from
nominal event times and durations, detection of skipped stimuli
or skipped frames, detection of device failures, and identifi cation of
other experimental anomalies, including task performance devia-
tions. Data quality checks can be easily implemented in Python by
opening the log fi les generated by NinSTIM and NinDAQ, reading
in each line with the recorded actual and nominal times, and com-
puting various time differentials. NinPROC uses simple descriptive
statistics to identify deviations from the expected experimental
event timing, with relevant functions contained in NumPy (amin,
amax, mean, std, or median) or scipy.stats (skew, kurtosis, or histo-
gram). There is also an option to graphically display histograms to
visually identify anomalous timing patterns during particular runs,
using matplotlibhist() and plot() functions. For physiological or
NIN data time series, numpy.loadtxt() or numpy.fromfi le() can be
used to effi ciently read in the data, which can be similarly scanned
for timing irregularities, intermittent signal dropout or other devia-
tions from the experimental protocol. In addition, multiple time
series can be quickly and automatically plotted with nindisp.plot()
for visual inspection.

To identify and remove the sorts of signal artifacts specifi c to NIN
data, we have included algorithms in NinPROC for semi- automated

signal pruning. For a variety of reasons, not all source–detector
pairs will provide useful information in all experiments. Data from
some source–detector pairs not of primary interest may have been
recorded during the experiment, some source–detector pairs may
have been too far apart to provide reliable signals, or a detector
may have lost contact with the head, thereby generating large sig-
nal artifacts. Within the preprocessing component NinPROC, the
ninproc.prune() function is available to remove particular sources,
detectors, or channels based on the known source–detector separa-
tions. In addition, low overall signal intensity can result in unreli-
able information, and high overall signal intensity can indicate light
leakage from source to detector. Hence, facilities for displaying and
pruning based on absolute signal intensity and signal-to-noise ratio
(SNR) are also provided as options (Figure 3). In addition, the nin-
proc.lowpass(), ninproc.highpass(), and ninproc.notch() functions
provide simple, zero-phase fi ltering to reduce 1/f physiological,
instrument, or electrical interference noise components.

As with all neuroimaging data, NIN time series can contain
physiological motion artifacts. When head motion occurs, the
resulting signal modulations can be substantial and therefore
must be identifi ed and either excluded or otherwise mitigated.
Exclusion of a motion contaminated time series segment is a
less than ideal solution, so effective mitigation is an important
tool. One approach, which is particularly well-suited to real-time
applications, is adaptive fi ltering. In previous work, we have
demonstrated the effi cacy of adaptive fi ltering to identify and
reduce global physiological interference in NIN signals, including
signal modulations resulting from cardiac or respiratory oscil-
lations (Zhang et al., 2007a,b). We have recently added a least
mean squares-based adaptive fi lter for motion artifact reduc-
tion to NinPy called ninproc.lms() (Figure 4). Adaptive fi lter-
ing has shown considerable promise in real-time reduction of

Amplifier gain se�ngs

Scrolling data display panels

Laser on/off

Start/stop/display/output se�ngs

Acquisi�on board se�ngs

FIGURE 2 | Screenshot from the NinDAQ device control and data acquisition program. Inset: The NIN recording devices and head probe being controlled by
this software.

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 6

 physiological motion artifacts without the bandwidth loss asso-
ciated with using a low-pass fi lter with a low cutoff frequency.
Other published approaches to dealing with NIN motion artifacts
include the use of principle component analysis or independent
component analysis to identify and separate signal from motion
waveforms (Morren et al., 2004; Zhang et al., 2005), solutions that
could be incorporated using the Python-based Modular toolkit

for Data Processing (Berkes et al., 2008) via mdp.pca() or mdp.
fastica().

Spectroscopic conversion
Table 1 lists multiple types of optical contrast detectible with NIN
(Villringer and Chance, 1997). Many of these contrasts are computed
via spectroscopic conversion using the modifi ed Beer–Lambert law

FIGURE 3 | Graphical depiction of channel by channel SNR, computed as

mean signal intensity divided by the SD of signal intensity over time

(S = source position, D = detector position). Source–detector pairs with
SNR > 50 are connected with green lines, while those with lower SNRs are

connected with progressively darker lines. Sources or detectors with few or only
bad connections (e.g., S16, D25) could be candidates for pruning. Regions of red
colors indicate reduced sensitivity relative to other regions, as seen in the
vicinity of sources S4 and S6.

A

B

C

DD

E

FIGURE 4 | NIN data motion artifact reduction using NinPROC and adaptive

fi ltering. Time courses are: (A) raw NIN data; (B) simultaneously acquired raw
piezoelectric motion sensor data; (C) adaptively fi ltered NIN data, using (A) as the

target and (B) as the reference signal; (D) signal in (C) plus a second-order
Butterworth high-pass fi lter using scipy.lfi lter() (cutoff = 0.05 Hz); (E) signal in (D)
plus a sixth-order Butterworth low-pass fi lter using scipy.lfi lter() (cutoff = 2 Hz).

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 7

(Delpy et al., 1988). These conversions are linear algebra transfor-
mations performed on each time point of raw attenuation data and
the resulting time series refl ect time-varying changes in chromo-
phore concentrations. To compute chromophore concentrations,
raw measurements recorded from two or more NIR wavelengths
are fi rst log transformed to changes in optical density, and then
to changes in O

2
Hb, HHb, and total hemoglobin (O

2
Hb + HHb)

concentrations:

Δ λ = − = μ λ λ

= ε λ Δ + ε λ

OD() log10() DPF()

O Hb
2Hb 2 HHb

I I Lo aΔ

Δ

()

() ()

⋅

[]O HHHb DPF()[]⎡⎣ ⎤⎦ ⋅L λ

where I is the raw measured intensity at a single point in time,
I

o
 is the measured light intensity at a reference time point, ΔOD

represents the change in optical density between I and I
o
, the ε()s

are extinction coeffi cients for O
2
Hb and HHb at a given wave-

length (λ), L is the source–detector separation, and DPF(λ) is the
wavelength-dependent differential pathlength factor that converts
L to the true (scattered) optical pathlength. Recording data from
two wavelengths (λ

1
 and λ

2
) provides two such equations with

two unknowns: the change in O
2
Hb and HHb concentrations. The

 ninproc.extinction_coef() function uses interpolated lookup tables
to obtain extinction coeffi cients of the various optical chromo-
phores. With these coeffi cients, conversion to concentrations over

all time points can generally be accomplished compactly in Python
using NumPy arrays, broadcasting, and its linear algebra capabili-
ties, as shown in Code Fragment 1, where L is a 1D array of source–
detector separations for each channel, rawdata is a 2D array of
raw (or pruned and fi ltered) NIN data, rawref is a 1D array of raw
NIN data from a reference period – e.g., N.mean(rawdata[:100],0),
A is a linear transform between optical density and concentration
represented as a 2D matrix of extinction coeffi cients, hhb and o2hb
are 1D arrays of HHb and O

2
Hb concentrations (in units of moles/

mm) over time. While A is normally invertible, sometimes it is not.
For such cases, one can use numpy.linalg.pinv() in place of numpy.
linalg.inv(). The results of these steps are shown in Figure 5.

IMAGING (NINDISP)
Near-infrared measurements of brain function can be made with
a single source–detector pair, providing information localized to
approximately 0.5–1 cm2 of brain tissue (Strangman et al., 2003).
A spatially-distributed collection of such measurements can be com-
bined into an image for each relevant optical contrast. In functional
neuroimaging, task-related images of O

2
Hb, HHb and O

2
Hb + HHb

changes are of primary interest, as these parameters have been
shown to refl ect underlying changes in neural activity (Jasdzewski
et al., 2003; Strangman et al., 2002b). Imaging procedures can
consist of topology preserving sensor space representations, back

ODdata = -numpy.log10(rawdata/rawref) # compute optical density
A = ninproc.extinction_coef(wavelengths,'Hemoglobin') # table lookup
hhb, o2hb = numpy.dot(numpy.linalg.inv(A),ODdata)/(L*DPF) # compute concentrations

CODE FRAGMENT 1 | Three lines to convert raw NIN data to oxygenation concentrations.

A

B

C

FIGURE 5 | Spectroscopic conversion steps of NIN data time series from one source–detector pair. (A) Raw recorded NIN light intensity data from two
wavelengths, in arbitrary units. (B) Data from (A) after log transformation to optical density units. (C) Data from (B) after conversion to hemoglobin concentration
units (red = oxy-Hb, blue = deoxy-Hb, yellow = period of task activity).

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 8

propagation – also called topographic imaging – or tomographic
reconstructions (Arridge, 1999), as discussed below.

Sensor space representations
Perhaps the simplest approach to imaging, commonly utilized in
EEG and MEG data displays, involves plotting multiple sensor time
series or time averages, with each sensor positioned in the display
according to the scalp location of the measurement. An example of
this approach from NinDISP, using the powerful matplotlib plot-
ting package (Hunter, 2007), appears in Figure 7B. The surface
array visualization technique preserves the temporal information
at each sampling point, and is particularly effective if the sensors
are widely separated.

Topographic imaging
In topographic imaging, measurements obtained from different
locations in space are linearly interpolated to a regular grid to gen-
erate 2D images of either the underlying optical signal changes
or derived parameters. The matplotlib.mlab.griddata() function
can be used to compute such tomographic images. For example,
if data is an N × 3 array of [x,y,val] triples irregularly spaced
over a 10 cm by 6 cm region, a 2D topographic projection of the
val parameter with 1 mm pixels could be computed as follows
(see Figure 7C):

xi is the interpolated, regular grid x-dim
xi = numpy.linspace(0.,10.,100)
yi is the interpolated regular grid y-dim
yi = numpy.linspace(0.,6.,60)
zi = matplotlib.mlab.griddata(data[:,0],
data[:,1], data[:,2],xi,yi)

This is a simple and compact data visualization technique,
but it also embodies many important assumptions. In particular,
interpolation assumes that the time varying optical properties of
brain tissue between measurement locations can be accurately

estimated by averaging the signals derived from the neighbor-
ing actual measurements. This may or not be true depending on
the spatial scales of the signal and the source–detector geometry.
In the above example, it also assumes accurate prior knowledge
of the (x,y) coordinates of the val parameter, which may be dif-
fi cult to obtain or estimate. For simple geometries, however, this
computationally effi cient method is suitable for real-time display
and can be quite useful for visualizing the spatiotemporal structure
of signal modulations.

Tomographic imaging
Tomographic imaging, in contrast to topographic imaging, is more
appropriate when multiple, spatially overlapping NIN measure-
ments are collected. In this case, tomographic image reconstruc-
tion generates a solution that best satisfi es all measurements
simultaneously. The reconstruction is computed in two stages.
First, one must estimate the diffusion paths of photons and cal-
culate the sensitivity profi le throughout the brain. In image recon-
struction, this step is termed the “forward problem.” For simple,
semi-infi nite, homogeneous media, the distribution of photons
injected into tissue can be approximated by the diffusion equation
(Farrell et al., 1992), and solved analytically. However, for more
complicated geometries, analytical solutions are not possible and
hence numerical solutions are often employed, including fi nite
difference, fi nite element and Monte Carlo approaches (Jacques
and Wang, 1995). Here we discuss the Monte Carlo approach.
For the particularly complex tissue geometry of the head, one
can start with a standard high resolution, T1-weighted MRI scan
(Figure 6A). This structural scan can then be segmented into gray
matter, white matter, cerebrospinal fl uid, skull, and scalp tissue
types using Python to call any of the MRI tissue segmentation
tools contained in analysis packages such as SPM88 or FSL9. Next,

A B C

FIGURE 6 | Simulated photon propagation through the head. (A) Typical
anatomical MRI scan, with NIN sensor fi ducial markers visible above the
scalp. (B) Segmentation of the MRI scan in (A) into separate tissue types
where Python was used to chain together the MRI segmentation modules.
(C) Example photon densities for a single source–detector pair separated

by 4 cm, overlaid on the segmented head. The colored areas delimit
the region to which many NIN instruments would be sensitive, with a loss of
1 order of magnitude sensitivity per contour line. Images were generated
using matplotlib.imshow(), NumPy masked arrays, and matplotlib.
contour().

8www.fi l.ion.ucl.ac.uk/spm
9www.fmrib.ox.ac.uk/fsl

www.fil.ion.ucl.ac.uk/spm
www.fmrib.ox.ac.uk/fsl

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 9

each tissue type in the segmented volume is assumed to be homo-
geneous and assigned optical properties based on literature values
(Choi et al., 2004; Kohri et al., 2002; Leung et al., 2005; Okada and
Delpy, 2003; Strangman et al., 2003).

To perform the Monte Carlo simulation process, approxi-
mately 100 million photons are injected, one at a time, into the
segmented model (Figure 6B) at the location of a source or detec-
tor. The propagation of each photon through the tissue is deter-
mined probabilistically given the physics of light and the optical
properties assigned to each tissue type. This process is repeated for
each source and detector location and the result is a participant-
specifi c solution to the forward problem. Multiplying together the
photon densities for a given source–detector pair, point by point
throughout the brain volume, provides an estimated sensitivity
profi le for that source–detector measurement pair (Figure 6C). As
with the MRI segmentation routines, Monte Carlo techniques can
be implemented with Python calls to existing toolboxes in Matlab
(Boas, 2004) via mlabwrap (Schmolck, 2007), or by calls to binaries
such as tMCimg (Boas, 2008) using Python’s os.popen() function.
For NinPROC, and the steps in Figure 6, we utilized the lattermost
approach, which allows us to gradually transition complex code
bases to Python, as time and resources permit.

Given a stable solution to the forward problem (Figure 6C),
the second imaging step is to generate an image of the optical con-
trast parameter. This step is called “inverse modeling”, and it can
be accomplished using linear or non-linear methods. The linear
approach is typically formulated as y = Ax, where y is a length-M
vector containing the value of the parameter of interest for each
NIN source–detector pair, x is a length-N vector of all voxels in the
image reconstruction, and A is the sensitivity matrix (Jacobian),
which is an M × N matrix based on the Monte Carlo simulation
that maps the sensitivity of each point in x to each measurement
in y (Figure 6C). To solve for x, the equation of interest becomes:
x = A−1y, where A−1 computed using numpy.linalg.inv(A) or, more
often, the pseudoinverse of A via numpy.linalg.pinv(A). Because
this problem is usually ill-posed and underdetermined (N >> M),
regularization is typically applied, often via singular value tapering
as is used in Tikhonov regularization (Pogue et al., 1999b). NIN
image reconstruction then essentially reduces to two python func-
tion calls: matrix multiplication via numpy.dot() and regularization
with numpy.linalg.svd().

STATISTICAL MODELING AND VISUALIZATION
The fi nal stage of an NIR functional imaging experiment, after
completing the data collection and the signal and image process-
ing steps, involves parameter estimation, statistical modeling, and
visualization of the results.

Statistical modeling (NinSTAT)
Statistical modeling involves modeling experimental variance to
derive parameter estimates pertaining to the experimental effects of
interest. SciPy includes a number of basic statistical functions that
are suitable for modeling experimental effects in individual subjects.
However, data from many neuroimaging experiments, particularly
those involving comparisons of different participant groups, have
a complex and hierarchical variance structure that cannot be effec-
tively modeled with SciPy routines. In particular, within-subject

designs, incorporating repeated measurements collected from each
participant under a range of experimental conditions are quite
common. These designs are popular because they have relatively
high sensitivity, and they avoid the time and expense of recruit-
ing and fully characterizing large groups of research participants.
Within-subject variability in functional neuroimaging data, while
substantial, tends to be smaller than between-subject variability.
Prominent sources of between-subject variation include: (i) brain
size and shape differences, (ii) neurovascular coupling differences,
(iii) task performance differences in accuracy or response time, and
(iv) variation in the specifi c strategy used to perform the task. To
accurately model both within- and between-subject effects, there-
fore, requires mixed-effects modeling techniques (combining fi xed
and random effects), which are not available in HomER or SciPy. In
addition, given the great diversity in experimental designs employed
in functional neuroimaging experiments, specifi cally coding each
statistical model in Python would be associated with substantial
effort. These reasons motivate integration with an external statistics
package.

R is a widely-used, open-source, statistics package that contains
a very comprehensive and sophisticated collection of statistical
analysis methods (R Development Core Team, 2005), including
tools that are able to model NIN data with complex hierarchical
structure. One common example is with mixed effects models that
contain variables measured at different levels in a hierarchy, as in
the case of summary statistic models in which separate regression
analyses are computed for each participant, with the resulting fi rst-
level regression coeffi cients being treated as random variables at
the second level (Pinheiro and Bates, 2000). Rather than rewrit-
ing the requisite statistical procedures in Python, the RPy module
(Moriera and Warnes, 2004) provides a lightweight yet powerful
interface between Python and R for statistical analysis, with results
automatically returned to Python for storage, subsequent process-
ing or display.

A particular advantage of using R is that an extremely broad
range of models can be applied to the data, since all input vari-
ables are treated equally. In particular, the neuroimaging data can
be used either as an outcome variable, a predictor, or a covariate.
This assignment fl exibility is in contrast to that found in the most
commonly used neuroimaging software packages, including SPM,
FSL, AFNI, FSFast. These packages require the neuroimaging vari-
able to be the outcome variable, which signifi cantly restricts the
types of scientifi c questions that can be addressed. For example, one
question that is receiving growing interest concerns identifi cation
of brain regions that might provide predictive information about
treatment response. This determination requires the neuroimaging
data to act as a predictor and the therapeutic response measure
to serve as a dependent or outcome variable. Implementing these
models using existing neuroimaging packages requires extracting
the data from each potential brain region of interest, exporting the
data series, and then performing the statistical analysis using an
external program (Strangman et al., 2008). By directly interfacing
with R, one can fi t predictive models as easily as those utilizing the
image data as the dependent variable. Code Fragment 2 provides
an example of a NinSTATS implementation of predictive modeling.
Importantly, R includes a large, and continually growing, collection
of heavily tested and more sophisticated models, including robust

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 10

covariance and generalized linear models, as well as a wealth of
post-hoc testing capabilities.

Visualization (NinDISP)
Once a neuroimaging statistical analysis is complete, visualization
enhances both interpretation and communication of the results.
Sensor space visualization, an approach discussed earlier, is shown
in Figures 7A,B. However, it is common in neuroimaging experi-
ments to have even larger collections of spatially coherent univariate
statistical results. For example, the code in Code Fragment 2 might
produce 1,000 or more distinct model fi ts. In this case, sensor space
visualization may be either impossible, because of too many meas-
urements, or misleading, because overlapping measurements may
be sensitive to different depths. Imaging provides certain advantages
in these situations, as shown in the topographic image in Figure 7C,
generated from task-related regression parameters from the O

2
Hb

traces in Figure 7B. Applying a statistical threshold to topographic
images helps identify regions that are signifi cantly modulated by
the task, as shown in Figure 7D.

In addition to statistical parametric maps (Figure 7D), and time
series plots (Figure 7B) it is often useful to generate and examine
scatter or bar plots from regions-of-interest, or to produce sum-
mary plots of activity levels in various brain regions, including
histograms and box plots. The matplotlib module provides all these
options as well as many additional plot types. Critically, matplotlib
includes complete customization capabilities for the creation of
publication-quality fi gures (Hunter, 2007). Math or Greek symbols

can be easily added to the plot or axis labels, options that are par-
ticularly important for representing physical or derived units in
NIN data (cf. Figure 5).

FILE FORMAT INTERFACES TO EXISTING OPTICAL IMAGING TOOLS
Due to the large volume of spatial and temporal data generated by
neuroimaging experiments, neuroimaging data have always required
custom fi le formats, and in the 1990s image fi le formats proliferated.
Fortunately, the NIfTI standard (Cox et al., 2004) has made major
inroads as a standard fi le format for MRI data. An example of its use
in NinPy is seen in Code Fragment 2. Other formats still dominate in
EEG, MEG, PET, as well as NIN, and a number of legacy formats still
persist with some frequency in MRI applications. Our goal has been
to integrate NinPy programs with three key data formats: NIfTI,
the Matlab-based format used by HomER (Huppert, 2006), and
the broad standard HDF5. These formats enable broad interoper-
ability of the NinPy suite with existing tools for neuroimaging data
analysis. NIfTI fi les are created, read and written through the use of
the PyNIfTI package (Hanke, 2008), whereas the HomER fi le format
can be read and written as a Matlab.mat fi le or HDF5 fi le (also read-
able by Matlab) containing multiple arrays with specifi c variable
names. Reading and writing Matlab fi les is supported through scipy.
io.loadmat() and scipy.io.savemat(), and thus HomER fi les can be
saved from appropriate variables in Python as follows:

scipy.io.savemat(‘outname.mat’,{‘d’:nindata,’t’:
timebase,’ml’:meas_list,’aux10’:auxiliary}).

import rpy2.robjects as ro

nin = nifti.NiftiImage(‘allsubj_contrast1.nii’) # parameter file with subject by X by Y by Z dimensions

tags = numpy.loadtxt(‘allsubj_tags.txt’) # columns: subjnum, age, pretest score, outcome score
header = [‘subj’,’age’,’pretest’,’outcome’,’nin’]
shape2D = (nin.data.shape[0],numpy.multiply.reduce(nin.data.shape[1:]))

nindata = numpy.reshape(nin.data, shape2D) # flatten X, Y and Z dimensions (subj by voxel)

Prepare to save 3 results (coef/sterr/T-score) for 4 terms (intercept,age,gender,nin) at each voxel
results = numpy.zeros((4,3,nindata.shape[1:]),numpy.Float)
for i in xrange(len(nindata.shape[1])): # loop over all voxels
 # COLLECT NIN DATA FOR THIS VOXEL AND CREATE AN R DATA FRAME
 thisdata = make_RVector_list(tags) # NINstats helper function for building data frames
 thisdata = thisdata +[ro.RVector(array.array('f',nindata[:,i]))]
 header = header +['nin']
 # CREATE THE DATA FRAME, WITH NAMES (using a dict alone segfaults rpy1.0rc1)
 tl = rlc.TaggedList(thisdata,tuple(header))
 df = ro.RDataFrame(tl)

 # FIT A MULTIPLE LINEAR REGRESSOIN MODEL WITH NIN AS A PREDICTOR
 formula = ro.r.formula(‘outcome ~ age + pretest + nin’) # use NIN data as predictor of outcome
 fittedmodel = ro.r.lm(formula,df) # fit a linear multiple regression model

 # EXTRACT AND STORE RESULTS FORM THE MODEL FIT FOR THIS VOXEL
 summ = ro.r.summary(fittedmodel)
 ttable = summ[3] # retrieve estimated coefficients and t-table results
 for j in range(len(ttable)):
 results[j,0,i] = ttable[j][0] # coefficient
 results[j,1,i] = ttable[j][1] # sterr
 results[j,2,i] = ttable[j][2] # T-value

CODE FRAGMENT 2 | NinSTATS code fragment to perform statistical analysis with functional NIN data as a predictor of outcome.

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 11

FUTURE EXTENSIONS
MULTIMODAL INTEGRATION
While we have only briefl y discussed MRI integration with regard
to Monte Carlo simulation, there are additional advantages asso-
ciated with integrating NIN with MRI and other neuroimaging
modalities. For example, the segmented MRI images (Figure 6B)
could be used to constrain the NIN image reconstruction process
by restricting reconstructed brain activity modulations to gray
matter, thereby not allowing the estimated signal changes to occur
in scalp, skull, cerebrospinal, or white matter tissue compart-
ments. As another example, automatic identifi cation of optical
sources and detectors within the MRI space (the white fi ducial
markers above the head in Figure 6A) could be used as inputs
to the Monte Carlo simulations or to provide more accurate
co-registration of NIN statistical parametric maps with under-
lying brain anatomy.

While integration with EEG, MEG, and other neuroimaging
technologies is occurring at the experimental level, integration at
the data analysis and interpretation levels is a relatively underde-
veloped area. One interesting possibility for integration involves
the optical “fast signal”. NIN studies from several labs have shown
changes in non-invasive optical signals on timescales much faster
than typical hemodynamic changes, less than 100 ms as compared
to 2–3 s or more (Franceschini and Boas, 2004; Gratton et al., 1997;
Morren et al., 2004). Since the nature of this fast NIN signal is an
area of active investigation, close integration of NIN measurements
with more direct EEG and MEG measurements of neuronal activity
could lead to a fuller understanding of the nature of this optical
fast signal. Integration with new, high-speed, MRI acquisition tech-
niques (Lin et al., 2008a,b) may also help shed light on the nature of
this optical fast signal and whether or not there might be analogous
fast hemodynamic signal modulations detectable using MRI.

BA

30 s1
a.

u.

DC

FIGURE 7 | NIN data visualization. (A) Schematic of the NIN sensor
region. (B) Sensor space display, with time series plots positioned at the
source (Sx) and detector (Dx) locations. Individual time series plots show time
on the x-axes and oxy-hemoglobin (red) and deoxy-hemoglobin (blue)
concentrations on the y-axes. Yellow highlights the interval in which the
subjects were engaged in a sequence learning task. A scale bar in the center
indicates that the task period was 32 s in duration. Concentration is

shown in arbitrary units (relative concentration), due to an unknown
scattering factor. (C) Example NIN image of task-related oxy-hemoglobin
regression parameter Z-scores from (B) corresponding to the rectangular
area shown in (A). (D) The same data as (C), masked at a statistical threshold
of p < 0.05 corrected for multiple comparisons. Color bar for Z-scores in both
(C) and (D) appears in (D). Plots B–D were made with NinDISP using
matplotlib.

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 12

ADVANCED VOLUME VISUALIZATION
Combining structural and functional neuroimaging results requires
advanced volume visualization tools. Thus far, we have sought to
capitalize on the popularity of the NIfTI fi le format, as it allows
convenient utilization of a range of existing MRI 3D visualization
packages. However, with the development of Python neuroimag-
ing tools such as NiPy (NiPy Development Team, 2006), as well as
the impressive capabilities afforded by Python bindings to both
the Visualization Toolkit (via vtk’s own Python bindings, or via
Enthought’s tvtk) and OpenGL (via PyOpenGL), adding native
Python 3D visualization for neuroimaging is expected in the near
future. Incorporating 3D display capabilities in NinPy would facili-
tate the sorts of fl exible and customized visualization often absent in
existing packages. Visualization in three dimensions is often critical
to developing better insights into the structure of high-dimensional
datasets. The ease with which customization can be made with
Python scripting, coupled to a high-level visualization package, is
expected to be widely adopted in a broad array of neuroimaging
data visualization applications.

CONCLUSION
The relatively short time needed to construct the NinPy suite of
tools was made possible given the substantial prior efforts refl ected
in the packages listed in Table 3. Thanks to these developments,
we can foresee completion of an end-to-end, Python solution for

developing, conducting, analyzing and displaying the results of NIN
experiments. Key enabling technologies that have appeared over
the past few years include the stabilization of numeric arrays and
processing (NumPy), the advancement and continuing stabilization
of a broad base of scientifi c algorithms (SciPy), the development
of a robust interface to the R statistical modeling package (RPy),
and substantial advances in the mechanisms for stimulus, array
and volume visualization (e.g., PsychoPy, Matplotlib and Chaco).
We have found that the use of Python as the core programming
language for our NIN programs provides signifi cantly better con-
trol over most aspects of an NIN experiment than is possible with
existing packages. Importantly, our development efforts have not
required any time-consuming coding or debugging in C, nor do
users need to learn multiple programming or scripting languages
to complete a functional neuroimaging experiment. We have found
that, particularly for complex problems including optical image
reconstruction, hierarchical statistical analysis, or volume visualiza-
tion, Python can serve as a convenient, powerful, and maintainable
scripting “glue”. This architecture allows us to rapidly deploy an
operational end-to-end Python solution, allowing later conversion
of non-Python algorithms as resources and motivation permit.
Reducing our dependence on multiple separate software tools or
programming languages for stimulus presentation, data acquisi-
tion, data analysis, image reconstruction, statistical modeling, and
graphical display greatly simplifi es the experimental working envi-
ronment, and has substantially increased scientifi c productivity. In
addition, the single-language solution facilitates the development
and distribution of easy-to-use, self-contained packages for con-
ducting NIN experiments in mobile or remote settings where a
dedicated experimenter may not be available. As more open-source
tools are ported to Python, further improvements in productivity
are envisioned.

We are releasing the source code for all of the NinPy modules
for unrestricted use as each sub-module reaches beta level software
quality. Completed modules will be available under BSD licensing10,
or by contacting the authors.

ACKNOWLEDGMENTS
We would like to acknowledge support from the National Space
Biomedical Research Institute through NASA Cooperative
Agreement NCC 9-58.

Table 3 | Versions utilized and website information for major modules

and tools used in the NinPy tool suite.

Module Version Website

cgkit 2.0.0a7 http://cgkit.sourceforge.net

chaco/traits 2.5.2001 http://www.enthought.com/products/epd.php

matplotlib 0.98.3 http://matplotlib.sourceforge.net/

mlabwrap 1.0 http://mlabwrap.sourceforge.net/

numpy 1.0.4 http://www.numpy.org/

psychopy 0.97.0 http://www.psychopy.org

pynifti 0.20090303.1 http://niftilib.sourceforge.net/pynifti/

pyparallel 0.2 http://pyserial.wiki.sourceforge.net/pySerial

pyserial 2.2 http://pyserial.wiki.sourceforge.net/pySerial

R 2.8.0 http://www.r-project.org/

rpy 2.0.1 http://rpy.sourceforge.net/

scipy 0.6.0 http://www.scipy.org/
10www.nmr.mgh.harvard.edu/Neural_Systems_Group/software.html

REFERENCES
Arridge, S. R. (1999). Optical tomography

in medical imaging. Inverse Probl. 15,
R41–R93.

Berkes, P., Wilbert, N., and Zito, T. (2008).
Modular toolkit for data processing
(version 2.3). Available at: http://mdp-
toolkit.sourceforge.net (Retrieved
September 2, 2008).

Boas, D. A. (2004). Photon migra-
tion imaging toolbox. Available at:
http://www.nmr.mgh.harvard.edu/
PMI/resources/tmcimg/index.htm
(Retrieved August 25, 2008).

Boas, D. A. (2008). Monte Carlo pho-
ton transport. Available at: http://
www.nmr.mgh.harvard.edu/PMI/
resources / t mcimg/ index .ht m
(Retrieved August 25, 2008).

Choi, J., Wolf, M., Toronov, V.,
Wolf, U., Polzonetti, C., Hueber, D.,
S a f o n o v a , L . P. , Gu p t a , R . ,
Michalos, A., Mantulin, W., and
Gratton, E. (2004). Noninvasive
determination of the optical prop-
erties of adult brain: near-infrared
spectroscopy approach. J. Biomed.
Opt. 9, 221–229.

Cox, R. W., Ashburner, J., Breman, H.,
Fissell, K., Haselgrove, C., Holmes, C. J.,
Lancaster, J. L., Rex, D. E., Smith, S. M.,
Woodward, J. B., and Strother, S. C.
(2004). A (sort of) new image data
format standard: NIfTI-1. 10th
Annual Meeting of the Organization
for Human Brain Mapping, Budapest,
Hungary.

Dale, A. M. (1999). Optimal experimental
design for event-related fMRI. Hum.
Brain Mapp. 8, 109–114.

Delpy, D. T., Cope, M., van der Zee, P.,
Arridge, S., Wray, S., and Wyatt, J.

(1988). Estimation of optical path-
length through tissue from direct time
of fl ight measurement. Phys. Med. Biol.
33, 1433–1442.

Enthought (2007). Chaco. Available at:
http://code.enthought.com/chaco/
(Retrieved August 25, 2008).

Enthought (2008). Traits. Available at:
http://code.enthought.com/projects/
traits/ (Retrieved August 25, 2008).

Farrell, T. J., Patterson, M. S., and
Wilson, B. (1992). A diffusion
theory model of spatially resolved,
steady-state diffuse refl ectance for the

http://cgkit.sourceforge.net
http://www.enthought.com/products/epd.php
http://matplotlib.sourceforge.net/
http://mlabwrap.sourceforge.net/
http://www.numpy.org/
http://www.psychopy.org
http://niftilib.sourceforge.net/pynifti/
http://pyserial.wiki.sourceforge.net/pySerial
http://pyserial.wiki.sourceforge.net/pySerial
http://www.r-project.org/
http://rpy.sourceforge.net/
http://www.scipy.org/
www.nmr.mgh.harvard.edu/Neural_Systems_Group/software.html

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 13

noninvasive determination of tissue
optical properties in vivo. Med. Phys.
19, 879–888.

Franceschini, M. A., and Boas, D. A.
(2004). Noninvasive measurement of
neuronal activity with near- infrared
optical imaging. Neuroimage 21,
372–386.

Franceschini, M. A., Joseph, D. K.,
Huppert, T. J., Diamond, S. G., and
Boas, D. A. (2006). Diffuse optical
imaging of the whole head. J. Biomed.
Opt. 11, 054007.

Gratton, G., Fabiani, M., Corballis, P. M.,
Hood, D. C., Goodman-Wood, M. R.,
Hirsch, J., Kim, K., Friedman, D., and
Gratton, E. (1997). Fast and localized
event-related optical signals (EROS) in
the human occipital cortex: compari-
sons with the visual evoked potential
and fMRI. Neuroimage 6, 168–180.

Hanke, M. (2008). PyNifti – Python-style
access to NIfTI and ANALYZE fi les.
Available at: http://niftilib.source-
forge.net/pynifti/ (Retrieved August
25, 2008).

Hunter, J. D. (2007). Matplotlib: a 2D
graphics environment. Comput. Sci.
Eng. 9, 90–95.

Huppert, T. J. (2006). HomER. Available
at: http://www.nmr.mgh.harvard.edu/
DOT/resources/homer/home.htm
(Retrieved September 2, 2008).

Huppert, T. J., Hoge, R. D., Diamond, S. G.,
Franceschini, M. A., and Boas, D. A.
(2006). A temporal comparison of
BOLD, ASL, and NIRS hemodynamic
responses to motor stimuli in adult
humans. Neuroimage 29, 368–382.

Jacques, S. L., and Wang, L. (1995). Monte
Carlo modeling of light transport in
tissues. In Optical-Response of Laser-
Irradiated Tissue, A. J. Welch and
J. C. van Gemert, eds (New York, NY,
Plenum), pp. 73–100.

Jasdzewski, G., Strangman, G., Wagner, J.,
Kwong, K. K., Poldrack, R. A., and
Boas, D. A. (2003). Differences in the
hemodynamic response to event-
related motor and visual paradigms
as measured by near-infrared spec-
troscopy. Neuroimage 20, 479–488.

Jobsis, F. F. (1977). Non-invasive, infra-red
monitoring of cerebral O

2
 suffi ciency,

blood volume, HbO
2
-Hb shifts and

blood fl ow. Acta Neurol. Scand. Suppl.
64, 452–453.

Jones, E., Oliphant, T., Peterson, P., et al.
(2001). SciPy: open source scientifi c
tools for python. Available at: http://

www.scipy.org (Retrieved August 25,
2008).

Kohri, S., Hoshi, Y., Tamura, M., Kato, C.,
Kuge, Y., and Tamaki, N. (2002).
Quantitative evaluation of the rela-
tive contribution ratio of cerebral
tissue to near-infrared signals in the
adult human head: a preliminary
study. Physiol. Meas. 23, 301–312.

Leung, T. S., Elwell, C. E., and Delpy, D. T.
(2005). Estimation of cerebral oxy- and
deoxy-haemoglobin concentration
changes in a layered adult head model
using near-infrared spectroscopy and
multivariate statistical analysis. Phys.
Med. Biol. 50, 5783–5798.

Liechti, C. (2008). pySerial/ pyParallel.
Available at: http://pyserial.wiki.
sourceforge.net/pySerial (Retrieved
August 25, 2008).

Lin, F., Witzel, T., Mandeville, J.,
Polimeni, J., Zeffiro, T., Greve, D.,
Wiggins, G., Wald, L., and Belliveau, J.
(2008a). Event-related single-shot
volumetric functional magnetic
resonance inverse imaging of visual
processing. Neuroimage 42, 230–247.

Lin, F. H., Witzel, T., Zeffi ro, T. A., and
Belliveau, J. W. (2008b). Linear con-
straint minimum variance beam-
former functional magnetic resonance
inverse imaging. Neuroimage 43,
297–311.

Logothetis, N. K. (2008). What we can do
and what we cannot do with fMRI.
Nature 453, 869–878.

Logothetis, N. K., Pauls, J., Augath, M.,
Trinath, T., and Oeltermann, A. (2001).
Neurophysiological investigation of
the basis of the fMRI signal. Nature
412, 150–157.

Logothetis, N. K., and Wandell, B. A.
(2004). Interpreting the BOLD signal.
Annu. Rev. Physiol. 66, 735–769.

Moriera, W., and Warnes, G. R. (2004).
Rpy, a robust Python interface to the R
Programming Language. Available at:
http://rpy.sourceforge.net/ (Retrieved
September 2, 2008).

Morren, G., Wolf, U., Lemmerling, P.,
Wolf, M., Choi, J. H., Gratton, E.,
De Lathauwer, L., and Van Huffel, S.
(2004). Detection of fast neuronal
signals in the motor cortex from
functional near infrared spectroscopy
measurements using independent
component analysis. Med. Biol. Eng.
Comput. 42, 92–99.

NiPy Development Team (2006). NiPy:
neuroimaging tools for python.

Available at: http://neuroimaging.
scipy.org (Retrieved September 2,
2008).

Okada, E., and Delpy, D. T. (2003). Near-
infrared light propagation in an adult
head model. I. Modeling of low-level
scattering in the cerebrospinal fl uid
layer. Appl. Opt. 42, 2906–2914.

Oliphant, T. E. (2006). Guide to
NumPy. Spanish Fork, UT, Trelgol
Publishing.

Peirce, J. W. (2008). Generating stimuli for
neuroscience using PsychoPy. Front.
Neuroinformatics 2, 10.

Pinheiro, J. C., and Bates, D. M. (2000).
Mixed-effects models in S and S-Plus.
New York, NY, Springer.

Pogue, B. W., McBride, T. O., Osterberg, U. L.,
and Paulsen, K. D. (1999a). Comparison
of imaging geometries for diffuse opti-
cal tomography of tissue. Opt. Express
4, 270–286.

Pogue, B. W., McBride, T. O., Prewitt, J.,
Osterberg, U. L., and Paulsen, K. D.
(1999b). Spatially variant regulariza-
tion improves diffuse optical tomogra-
phy. App. Opt. 38, 2950–2961.

R Development Core Team (2005). R: a
language and environment for statis-
tical computing. Available at: http://
www.R-project.org (Retrieved August
25, 2008).

Schmolck, A. (2007). Mlabwrap v1.0.
Available at: http://mlabwrap.source-
forge.net/ (Retrieved August 25,
2008).

Strangman, G., Boas, D. A., and Sutton, J. P.
(2002a). Noninvasive brain imag-
ing using near infrared light. Biol.
Psychiatry 52, 679–693.

St rang man, G. , Culver, J. P. ,
Thompson, J. H., and Boas, D. A.
(2002b). A quantitative comparison of
simultaneous BOLD fMRI and NIRS
recordings during functional brain
activation. Neuroimage 17, 719–731.

Strangman, G., Franceschini, M. A., and
Boas, D. A. (2003). Factors affecting
the accuracy of near-infrared spectros-
copy concentration calculations for
focal changes in oxygenation param-
eters. Neuroimage 18, 865–879.

Strangman, G., Goldstein, R., Rauch, S. L.,
and Stein, J. (2006). Near-infrared
spectroscopy and imaging for investi-
gating stroke rehabilitation: test-retest
reliability and review of the literature.
Arch. Phys. Med. Rehabil. 87, 12–19.

Strangman, G. E., O’Neil-Pirozzi, T. M.,
Goldstein, R., Kelkar, K., Katz, D. I.,

Burke, D., Rauch, S. L., Savage, C. R.,
and Glenn, M. B. (2008). Prediction
of memory rehabilitation outcomes
in traumatic brain injury by using
functional magnetic resonance
imaging. Arch. Phys. Med. Rehabil.
89, 974–981.

Straw, A. D. (2008). Vision egg: an
open-source library for realtime
visual stimulus generation. Front.
Neuroinformatics 2, 4.

Villringer, A., and Chance, B. (1997).
Non-invasive optical spectroscopy
and imaging of human brain function.
Trends Neurosci. 20, 435–442.

Ye, J. C., Tak, S., Jang, K. E., Jung, J., and
Jang, J. (2009). NIRS-SPM: statisti-
cal parametric mapping for near-
 infrared spectroscopy. Neuroimage
44, 428–447.

Zhang, Q., Brown, E. N., and
Strangman, G. E. (2007a). Adaptive
fi ltering for global interference cancel-
lation and real-time recovery of evoked
brain activity: a Monte Carlo simula-
tion study. J. Biomed. Opt. 12, 044014.

Zhang, Q., Brown, E. N., and
Strangman, G. E. (2007b). Adaptive
fi ltering to reduce global interference
in evoked brain activity detection: a
human subject case study. J. Biomed.
Opt. 12, 064009.

Z h a n g , Y. , B r o o k s , D. H . ,
Franceschini, M. A., and Boas, D. A.
(2005). Eigenvector-based spatial fi l-
tering for reduction of physiological
interference in diffuse optical imaging.
J. Biomed. Opt. 10, 11014.

Conflict of Interest Statement: Quan
Zhang and Gary E. Strangman have a
patent pending on technologies related
to mobile neuroimaging.

Received: 11 September 2008; paper pend-
ing published: 11 February 2009; accepted:
30 April 2009; published online: 29 May
2009.
Citation: Strangman GE, Zhang Q and
Zeffi ro T (2009) Near-infrared neuroimag-
ing with NinPy. Front. Neuroinform. (2009)
3:12. doi: 10.3389/neuro.11.012.2009
Copyright © 2009 Strangman, Zhang and
Zeffi ro. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

