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There has been substantial recent growth in the use of non-invasive optical brain imaging in 
studies of human brain function in health and disease. Near-infrared neuroimaging (NIN) is one 
of the most promising of these techniques and, although NIN hardware continues to evolve at 
a rapid pace, software tools supporting optical data acquisition, image processing, statistical 
modeling, and visualization remain less refi ned. Python, a modular and computationally 
effi cient development language, can support functional neuroimaging studies of diverse design 
and implementation. In particular, Python’s easily readable syntax and modular architecture 
allow swift prototyping followed by effi cient transition to stable production systems. As an 
introduction to our ongoing efforts to develop Python software tools for structural and functional 
neuroimaging, we discuss: (i) the role of non-invasive diffuse optical imaging in measuring brain 
function, (ii) the key computational requirements to support NIN experiments, (iii) our collection 
of software tools to support NIN, called NinPy, and (iv) future extensions of these tools that 
will allow integration of optical with other structural and functional neuroimaging data sources. 
Source code for the software discussed here will be made available at www.nmr.mgh.harvard.
edu/Neural_SystemsGroup/software.html.
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one domain for which no Python tools exist, and for which only 
two non- commercial software solutions are available (Huppert, 
2006; Ye et al., 2009). We have therefore been developing a suite 
of Python modules to support the computational aspects of NIN 
data acquisition, analysis, and display. While our particular col-
lection of tools is specialized for handling NIN data, the general 
design principles have broader application in experimental and 
theoretical neuroscience. We plan to release sub-modules under a 
BSD license, posting them at www.nmr.mgh.harvard.edu/Neural_
SystemsGroup/software.html as they reach beta level stability.

We begin with an explanation of the physical and biological 
basis for NIN, followed by a brief comparative review of its chief 
uses. To provide context for our software development efforts, 
“Computational Requirements and Software” begins by describ-
ing the logistical and computational requirements associated with 
NIN experiments. The remainder of that section then describes the 
individual acquisition, analysis and visualization modules compris-
ing the NinPy package, followed by a discussion of future software 
development directions in “Future Extensions”.

PRINCIPLES OF NEAR-INFRARED NEUROIMAGING
The physical principles underlying NIN are relatively simple, and 
similar to those encountered in pulse oximetry. The human scalp 
and skull are suffi ciently transparent to the near-infrared (NIR) 
light wavelengths between 650 and 950 nm to enable non- invasive 
optical monitoring of physiological modulations associated with 
brain function (Jobsis, 1977). The NIR wavelengths are non-
ionizing and therefore do not harm biological tissue at the low 
average power densities of 1–4 mW/cm2 customarily utilized in 
brain imaging. For comparison, the ambient NIR light level on a 

INTRODUCTION
The effi cient conduct of neuroimaging experiments requires a 
diverse and complex assortment of computational resources. It 
follows naturally that constructing complete systems for data 
acquisition, analysis and display would be facilitated by the use of 
highly versatile, modular development environments. Functional 
neuroimaging data collection requires accurate timing of both 
stimulus displays and user responses, with near real-time graph-
ics and device polling capabilities. The structural and functional 
neuroimaging datasets acquired over the course of a typical 1- to 
2-h experimental session can exceed 10 gigabytes in size. These high 
data collection rates, along with the need to monitor the data fl ow 
for quality assurance purposes, require excellent system through-
put and real-time data display capabilities to support experimental 
monitoring. Once acquired, neuroimaging datasets must undergo 
substantial preprocessing, data reduction and statistical processing 
to accurately model the many, often hierarchical, sources of vari-
ance in the raw data. These sources can include instrument noise, 
temporal autocorrelation, head motion, cardiovascular physiologi-
cal effects, within-subject task effects, within-group effects, and 
between-group treatment effects. Finally, the statistical results must 
be displayed in an intuitive and easily comprehensible form using 
publication quality graphics.

While the construction of tools for each of these steps poses 
a substantial challenge, many current Python modules provide 
an excellent foundation on which to build data acquisition and 
processing pipelines. These advantages are already evident in 
magnetic resonance imaging (MRI) and electroencephalography 
(EEG) data processing applications, as demonstrated by other 
papers this issue. However, near-infrared neuroimaging (NIN) is 
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sunny summer day in mid-latitudes is approximately 20 mW/cm2. 
By shining small spots of NIR light on the scalp and placing a 
detector a few centimeters away, the light intensity recorded by 
the detectors is modulated by the concentrations of all the absorb-
ing chromophore molecules in the underlying tissues between the 
source and the detector. While sensitive to a range of chromophores 
and physiological phenomena (Villringer and Chance, 1997), NIN 
is particularly sensitive to the tissue oxygenation changes observed 
during changes in local neuronal activity (Huppert et al., 2006; 
Strangman et al., 2002b). A single source and detector pair can 
provide information about local changes in tissue optical prop-
erties. Spatiotemporal images of these physiological variables are 
generated by collecting multiple overlapping optical measurements 
and then applying tomographic image reconstruction techniques 
(Arridge, 1999; Franceschini et al., 2006; Pogue et al., 1999a). In 
addition to these spatial sampling capabilities, NIN is capable of 
temporal sampling in excess of 500 samples/s, a rate that compares 
quite favorably even with the most recent, ultra-fast MRI functional 
imaging methods (Lin et al., 2008a,b).

ADVANTAGES AND LIMITATIONS OF NEAR-INFRARED NEUROIMAGING
Near-infrared neuroimaging has several advantages when com-
pared with other functional neuroimaging techniques, including: 
(i) comparatively low cost, (ii) sensitivity to multiple aspects of 
brain physiology, (iii) high temporal resolution, and (iv) suitability 
for portable or mobile applications. Together, these characteristics 
enable the use of non-invasive optical measurements in settings 
not normally compatible with brain imaging, including functional 
brain imaging in freely moving subjects. As with any technique, 
NIN also has limitations. Chief among these are a limited pen-
etration depth of approximately 3–4 cm from the scalp surface, 
when using refl ection geometry (Strangman et al., 2002a, 2003). 
In addition, non-invasive NIN allows only modest spatial resolu-
tion, estimated to be on the order of 0.5–1 cm in an adult human. 
Within these limits, however, NIN provides sensitive and reliable 
estimates of task-related neural activity originating in cortical 
structures comparable to results obtained using functional MRI 
(Huppert et al., 2006; Jasdzewski et al., 2003; Strangman et al., 
2002b, 2006).

WHAT ASPECTS OF BRAIN FUNCTION CAN NEAR-INFRARED 
NEUROIMAGING MEASURE?
Although the basic NIN measurement involves recording the atten-
uation of light from a particular source as seen from the viewpoint 
of a particular detector, one can use raw light attenuation measure-
ments at different wavelengths in the NIR range to obtain localized 
spectroscopic estimates of a wide range of physiological variables 
(Table 1). Some of these variables, like oxy- or deoxy-hemoglobin 
(O

2
Hb and HHb) concentrations, are relatively straightforward 

conversions from measured attenuation values (see Section 
“Spectroscopic Conversion”). Others involve estimation of the 
physiological variables of interest from combinations of estimated 
chemical concentrations, as in the case of oxygen saturation or the 
cerebral rate of oxygen metabolism (CMRO

2
). Finally, the temporal 

modulations of these variables can be used to compute indirect 
estimates of physiological phenomena like heart rate, respiration 
rate or modulation in baroreceptor activity (Mayer waves).

Near-infrared neuroimaging measurements of hemodynamic 
variables can be used to derive estimates of regional brain activ-
ity. This relationship between neural and hemodynamic activity is 
based on combined electrophysiological and fMRI results demon-
strating that local changes in neural activity, refl ecting both den-
dritic and axonal activity, are associated with focal variations in 
blood fl ow and volume (Logothetis, 2008). Because hemodynamic 
and neural activity changes often covary linearly, it is possible to 
use localized spatiotemporal recording of brain hemodynamics to 
make inferences about antecedent, and presumably causally related, 
neural activity patterns. For studying brain mechanisms underly-
ing complex behavior, NIN hemodynamic imaging has particu-
lar advantages over other imaging modalities in the non-invasive 
detection of neural activity modulations. For example, as compared 
to EEG, NIN signals are more spatially localized (Strangman et al., 
2003) and much less susceptible to the type of bioelectric interfer-
ence generated by task-related scalp and face muscle activity. NIN 
signals also do not require tasks that produce the sorts of synchro-
nous neural discharges that are needed to generate detectable event-
related electrical potentials. In addition, when directly compared 
to invasive electrical measurements, hemodynamic responses are 
just as strongly related to induced patterns of neural activity as are 
the synchronous fi eld potentials from which evoked potentials arise 
(Logothetis et al., 2001; Logothetis and Wandell, 2004).

In summary, the non-invasive character, and high sensitivity 
of NIN to a broad range of physiological phenomena refl ecting 
many different aspects of brain function, makes it a promising 
method for use in a large number of clinical and experimental 
neuroscience contexts.

COMPUTATIONAL REQUIREMENTS AND SOFTWARE
Of its many potential applications, we have been particularly inter-
ested in using NIN to study the neural mechanisms underlying com-
plex behavior. In particular, to facilitate the use of NIN in studies of 
the neural mechanisms of action and perception, we have developed 
a suite of programs, collectively called NinPy, that provide a wide 
range of integrated computational tools for use in optical functional 
neuroimaging experiments. A summary of the principal capabili-
ties and components in NinPy appears in Table 2, along with the 
main Python modules and packages upon which each component is 
based. Each of these will be elaborated in the sections that follow.

There currently are two main software packages for han-
dling NIN data: HomER (Huppert, 2006) and NIRS-SPM 

Table 1 | Physiological variables that can be estimated using NIN.

Chemical Physiological Temporal

measurements variables variables

Oxy-hemoglobin concentration Blood volume Heart rate

Deoxy-hemoglobin concentration Blood fl ow Respiration rate

Total hemoglobin concentration Oxygen saturation Mayer waves

Water concentration CMRO2 Low-frequency 

  oscillations

Cytochrome oxidase  Neural activity 

concentration   

pH
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Table 2 | NinPy components and their core supporting Python modules.

Capability NinPy Primary Python

 component modules

ACQUISITION

Stimulus display NinSTIM PsychoPy, Pyglet

User input NinSTIM PsychoPy, cgkit, Pyglet

Synchronization NinSTIM pyparallel/pyserial

NIRS data collection NinDAQ Chaco, Traits

ANALYSIS

Quality assurance NinPROC NumPy

Filtering NinPROC NumPy, SciPy

Image reconstruction NinPROC NumPy, SciPy

Parameter estimation NinSTATS SciPy, RPy

Statistical modeling NinSTATS RPy

DISPLAY

Visualization NinDISP Matplotlib

(Ye et al., 2009). Both of these packages provide excellent data 
processing capabilities for many of the analysis and display 
aspects of NIN data processing. HomER provides a wealth of 
temporal processing capabilities and image reconstruction tech-
niques, whereas NIRS-SPM provides broad statistical modeling 
and display capabilities by integrating with, and building upon, a 
well-established neuroimaging software package, SPM. However, 
neither package includes capabilities for acquisition, including 
experiment design, stimulus display, and data collection. NinPy 
seeks to provide an integrated platform combining all of these 
features, with a focus on features that complement those available 
in HomER and NIRS-SPM.

CONDUCTING NEAR-INFRARED NEUROIMAGING EXPERIMENTS
Conducting a typical NIN experiment requires two distinct software 
tools: one for experimental control and the other for data acquisi-
tion. Although these tools operate independently, their effi cient 
use together requires a high degree of functional integration at the 
design level. As described next, NinSTIM is a stimulus generation 
and display system for experimental control, and NinDAQ is a data 
acquisition and monitoring system for device control.

Stimulus generation and user input (NinSTIM)
Accurate and reliable control of stimulus presentation is a critical 
aspect of any functional neuroimaging experiment. NinSTIM is a 
high-level stimulus and experimental design toolkit, designed for 
non-programmers, that generates stimulus sequences for display 
by the Pyglet interface1 to the PsychoPy package2 (Peirce, 2008). 
NinSTIM directs PsychoPy to sequentially present an ordered col-
lection of “trials”, where a trial is a very general entity consisting 
of one or more temporal phases, each composed of one or more 
visual or auditory stimuli. For example, a trial could be: (i) a simple 
instruction screen presented while the program waits indefi nitely 
for a key press, (ii) a visual fi xation of predetermined duration, 
(iii) a stimulus followed by a mask, or (iv) any other ordered series 
of stimuli. An example complex trial with fi ve separate phases might 
be: (i) a side-by-side pair of photos, followed by (ii) a brief whole-
screen mask image, followed by (iii) a variable duration blank 
screen delay period, followed by (iv) a go cue, and fi nally (v) an 
inter-trial rest period. Each unique trial type is defi ned in a ASCII 
trial defi nition (.DEF) fi le, with required Python-style indentation, 
for editing and interactive debugging (Figure 1, left).

1www.pyglet.org
2www.psychopy.org

# trial definition .DEF file

backgroundColor (-1,-1,-1)
  Ready

-1 keyboard
allowableKeys space

          Ready …
            pos (0,0.2)
            height 0.15
  Instructions_Left_3
      3 cumulative
          Instr_left_3.jpg
Fixation

      15 cumulative
          cross.jpg
  Left.04
      1.5 exact
          L4.jpg
[etc.]

# trial order .ORD file

Ready
Instructions_Left_3
Fixation
Left0.04
Left0.03
Left0.05
Left0.01
Left0.02
Instructions_Right_1
Right1.04
Right1.01
Right 1.03
Right 1.02
Right 1.02
Fixation
Thanks

FIGURE 1 | Abridged examples of the trial defi nition (.DEF) fi le format 

and the trial order (.ORD) fi le format. Each trial named in the .ORD fi le 
must be defi ned in the .DEF fi le. For the fi rst trial (“Ready”), “timing = −1 
keyboard” means wait indefi nitely for a keypress (the spacebar is the only 
allowable key) while displaying the text “Ready …” at position (0,0.2) and 

height 0.15. The “Fixation” trial involves displaying the image fi le 
cross.jpg in the center of the screen for 15 s, with extra frames inserted or 
removed there if cumulative timing errors have accumulated. The “Left.04” 
stimulus displays the image fi le L4.jpg in the center of the screen for 
exactly 1.5 s.

www.pyglet.org
www.psychopy.org
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The breadth of experimental designs commonly employed in 
functional neuroimaging experiments requires sophisticated and 
fl exible procedures for trial scheduling. Possibilities for the tempo-
ral ordering of trials include: (i) block designs, in which groups of 
evenly spaced trials alternate with periods of fi xation, (ii) stochas-
tic, or “event-related”, designs, in which the individual trial times 
are varied to allow effi cient estimation of hemodynamic responses 
using deconvolution procedures (Dale, 1999), and (iii) mixed 
designs, combining aspects of both block and stochastic designs 
to achieve separation of state and task-related experimental effects. 
In the case of stochastic and mixed designs, the trial durations 
and orders that lead to maximum effi ciency in the detection of 
task-related brain activity can be computed using programs such 
as optseq3, and then entered in a trial order (.ORD) fi le. As with 
the trial defi nition fi le, the trial order input fi le is a simple, ASCII 
fi le (Figure 1, right). From these two input fi les (.DEF and .ORD), 
NinSTIM builds and then runs a PsychoPy-compatible program.

PsychoPy and Pyglet, the engines driving stimulus presentation, 
also provide facilities for logging stimulus, keyboard and mouse 
events. Through the Pyglet event loop, one can continuously moni-
tor these events and respond appropriately. For example, one can 
display different stimuli depending on user input, or compensate 
for certain timing vagaries inherent in soft real-time operating sys-
tems. In soft real-time operating systems like Microsoft Windows, 
interrupts and system processes can sometimes seriously disrupt 
the accuracy and precision of stimulus timing. This is a widely 
recognized problem that is addressed using differing mechanisms 
in the stimulus presentation packages most commonly used in 
experimental neuroimaging, including EPrime4, Presentation5, 
Psychtoolbox6, and Cogent7. To optimize timing in NINstim we: 
(i) increase the stimulus display process priority to “High” via 
Python’s win32process.SetPriorityClass(), (ii) disable Python gar-
bage collection, (iii) enable drawing synchronized to the vsync 
pulse from the monitor, and (iv) pre-draw stimuli whenever pos-
sible to maximally engage the blocking mode of calls to OpenGL 
fl ip (Straw, 2008). Stimulus onset timestamps are collected using 
Python’s time.clock() call which is executed the line after the call to 
fl ip the OpenGL graphics buffer. The timing requested by the user 
in the trial defi nition and order fi les – which we call the nominal 
timing – is also simultaneously monitored. Using the “cumula-
tive” timing type, users can identify the less critical stimulus or 
delay times, for which NinSTIM can add or subtract one or two 
frames, to preserve the experiment’s cumulative nominal timing. 
In a 12-h test using this approach, involving 15,600 trials and 
31,000 stimuli, our time.clock() timestamps occurred a maximum 
of 26 ms early to 88 ms late compared to nominal, with a mean 
and SD timing error of 1.6 ± 6 ms. Individual stimulus durations 
ranged between ±8 ms off nominal – or half a screen refresh on our 
60-Hz monitor. Note that these latencies do not represent the total 
system delay, defi ned as the interval between the time a user event 
is captured and a new image is displayed. Moreover, these  latencies 

were measured by the internal computer clock, rather than an 
external source. Hence, the above numbers may underestimate 
the exact latency to stimulus presentation (Straw, 2008). However, 
the maintenance of nominal timing within a few tens of milli-
seconds over several hours is more than adequate for functional 
neuroimaging experiments based on hemodynamic responses, 
which includes the vast majority of NIN experiments.

Using the standard Python threading and ctypes modules it is 
also possible to collect continuous data streams from other user 
input devices during stimulus display. Access to almost any device 
driver is possible through ctypes. By setting up a separate timer 
thread, densely sampled data streams from auxiliary input devices 
can include time stamps from the same master clock that marks all 
stimulus, keyboard and mouse events. This arrangement dramati-
cally reduces the timing uncertainty between stimulus presentation 
and recording devices and can provide a record of any mismatch 
between intended and actual experimental event times. This sort 
of continuous, simultaneous recording of auxiliary devices can be 
diffi cult or impossible to implement using many of the popular 
experimental control programs. In addition, the pyserial and pypar-
allel Python modules (Liechti, 2008) provide a separate means for 
acquiring event signals from, or exporting trigger signals to, the 
computer’s serial or parallel ports for synchronization with our 
NIN acquisition devices.

Because NinSTIM is based on Python, chaining multiple experi-
ments is easily achieved with successive Python calls, or a separate 
Python script that runs each experiment in succession.

Data acquisition and real-time data display system (NinDAQ)
Optical imaging devices are constructed from multiple hardware 
subsystems that require dedicated device control software. Using 
Enthought’s Chaco/Traits modules (Enthought, 2007, 2008), along 
with NumPy (Oliphant, 2006) and SciPy (Jones et al., 2001) we have 
also developed NinDAQ, a device control program customized for 
two of our NIN instruments (Figure 2). This program provides com-
plete, real-time control over the NIN device state variables, includ-
ing laser state, amplifi er gain, analog acquisition subsystem voltage 
range, and sampling rate. NinDAQ also controls the data acquisition 
process including start signals, stop signals, and data display modes. 
Important additional features include: real-time temporal display of 
relatively large amounts of data, pushbutton toggling to “zoom in 
and out” on the data stream as it is being collected, and automatic 
scaling of the signal range to the minimum and maximum values 
of each data line. Real-time control of the acquisition process is 
provided, including provisions for user-generated interrupts of data 
collection, variable temporal windows for strip-chart data views, 
and interactive laser control. The Chaco plotting package provides 
real-time plotting capabilities, while Enthought’s Traits supports 
rapid GUI development cycles. The standard Python ctypes module 
enables seamless access from Python to the commercial drivers for 
our analog-to-digital data acquisition boards.

SIGNAL PROCESSING (NINPROC)
Once complete, most neuroimaging experiments produce two fi le 
types: text fi les that log the stimulus and response events, and cus-
tom binary data fi les containing the neuroimaging data. Depending 
on the type of experiment and the specifi c neuroimaging device, 

3http://surfer.nmr.mgh.harvard.edu/optseq/
4www.pstnet.com/products/e-prime
5www.neurobs.com
6http://psychtoolbox.org/PTB-2/
7www.vislab.ucl.ac.uk/cogent.php

http://surfer.nmr.mgh.harvard.edu/optseq/
www.pstnet.com/products/e-prime
www.neurobs.com
http://psychtoolbox.org/PTB-2/
www.vislab.ucl.ac.uk/cogent.php
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raw data from a single participant in single experimental session 
can be many gigabytes in size. In experiments incorporating cardiac, 
respiratory, kinematic or other physiological data monitoring, a 
third fi le type containing records of such continuous data streams 
may also be produced. Each such data fi le has unique processing 
requirements that can be handled via Python, or using the NumPy 
and SciPy libraries.

Quality assurance and fi ltering
Quality assurance procedures for stimulus and event log fi les 
involve validating event timing by examining deviations from 
nominal event times and durations, detection of skipped stimuli 
or skipped frames, detection of device failures, and identifi cation of 
other experimental anomalies, including task performance devia-
tions. Data quality checks can be easily implemented in Python by 
opening the log fi les generated by NinSTIM and NinDAQ, reading 
in each line with the recorded actual and nominal times, and com-
puting various time differentials. NinPROC uses simple descriptive 
statistics to identify deviations from the expected experimental 
event timing, with relevant functions contained in NumPy (amin, 
amax, mean, std, or median) or scipy.stats (skew, kurtosis, or histo-
gram). There is also an option to graphically display histograms to 
visually identify anomalous timing patterns during particular runs, 
using matplotlibhist() and plot() functions. For physiological or 
NIN data time series, numpy.loadtxt() or numpy.fromfi le() can be 
used to effi ciently read in the data, which can be similarly scanned 
for timing irregularities, intermittent signal dropout or other devia-
tions from the experimental protocol. In addition, multiple time 
series can be quickly and automatically plotted with nindisp.plot() 
for visual inspection.

To identify and remove the sorts of signal artifacts specifi c to NIN 
data, we have included algorithms in NinPROC for semi- automated 

signal pruning. For a variety of reasons, not all source–detector 
pairs will provide useful information in all experiments. Data from 
some source–detector pairs not of primary interest may have been 
recorded during the experiment, some source–detector pairs may 
have been too far apart to provide reliable signals, or a detector 
may have lost contact with the head, thereby generating large sig-
nal artifacts. Within the preprocessing component NinPROC, the 
ninproc.prune() function is available to remove particular sources, 
detectors, or channels based on the known source–detector separa-
tions. In addition, low overall signal intensity can result in unreli-
able information, and high overall signal intensity can indicate light 
leakage from source to detector. Hence, facilities for displaying and 
pruning based on absolute signal intensity and signal-to-noise ratio 
(SNR) are also provided as options (Figure 3). In addition, the nin-
proc.lowpass(), ninproc.highpass(), and ninproc.notch() functions 
provide simple, zero-phase fi ltering to reduce 1/f physiological, 
instrument, or electrical interference noise components.

As with all neuroimaging data, NIN time series can contain 
physiological motion artifacts. When head motion occurs, the 
resulting signal modulations can be substantial and therefore 
must be identifi ed and either excluded or otherwise mitigated. 
Exclusion of a motion contaminated time series segment is a 
less than ideal solution, so effective mitigation is an important 
tool. One approach, which is particularly well-suited to real-time 
applications, is adaptive fi ltering. In previous work, we have 
demonstrated the effi cacy of adaptive fi ltering to identify and 
reduce global physiological interference in NIN signals, including 
signal modulations resulting from cardiac or respiratory oscil-
lations (Zhang et al., 2007a,b). We have recently added a least 
mean squares-based adaptive fi lter for motion artifact reduc-
tion to NinPy called ninproc.lms() (Figure 4). Adaptive fi lter-
ing has shown considerable promise in real-time reduction of 

Amplifier gain se�ngs

Scrolling data display panels

Laser on/off

Start/stop/display/output se�ngs

Acquisi�on board se�ngs

FIGURE 2 | Screenshot from the NinDAQ device control and data acquisition program. Inset: The NIN recording devices and head probe being controlled by 
this software.
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 physiological motion artifacts without the bandwidth loss asso-
ciated with using a low-pass fi lter with a low cutoff frequency. 
Other published approaches to dealing with NIN motion artifacts 
include the use of principle component analysis or independent 
component analysis to identify and separate signal from motion 
waveforms (Morren et al., 2004; Zhang et al., 2005), solutions that 
could be incorporated using the Python-based Modular toolkit 

for Data Processing (Berkes et al., 2008) via mdp.pca() or mdp.
fastica().

Spectroscopic conversion
Table 1 lists multiple types of optical contrast detectible with NIN 
(Villringer and Chance, 1997). Many of these contrasts are computed 
via spectroscopic conversion using the modifi ed Beer–Lambert law 

FIGURE 3 | Graphical depiction of channel by channel SNR, computed as 

mean signal intensity divided by the SD of signal intensity over time 

(S = source position, D = detector position). Source–detector pairs with 
SNR > 50 are connected with green lines, while those with lower SNRs are 

connected with progressively darker lines. Sources or detectors with few or only 
bad connections (e.g., S16, D25) could be candidates for pruning. Regions of red 
colors indicate reduced sensitivity relative to other regions, as seen in the 
vicinity of sources S4 and S6.

A

B

C

DD

E

FIGURE 4 | NIN data motion artifact reduction using NinPROC and adaptive 

fi ltering. Time courses are: (A) raw NIN data; (B) simultaneously acquired raw 
piezoelectric motion sensor data; (C) adaptively fi ltered NIN data, using (A) as the 

target and (B) as the reference signal; (D) signal in (C) plus a second-order 
Butterworth high-pass fi lter using scipy.lfi lter() (cutoff = 0.05 Hz); (E) signal in (D) 
plus a sixth-order Butterworth low-pass fi lter using scipy.lfi lter() (cutoff = 2 Hz).
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(Delpy et al., 1988). These conversions are linear algebra transfor-
mations performed on each time point of raw attenuation data and 
the resulting time series refl ect time-varying changes in chromo-
phore concentrations. To compute chromophore concentrations, 
raw measurements recorded from two or more NIR wavelengths 
are fi rst log transformed to changes in optical density, and then 
to changes in O

2
Hb, HHb, and total hemoglobin (O

2
Hb + HHb) 

concentrations:

Δ λ = − = μ λ λ

= ε λ Δ + ε λ

OD( ) log10( ) DPF( )

O Hb
2Hb 2 HHb

I I Lo aΔ

Δ

( )

( ) ( )

⋅

[ ]O HHHb DPF( )[ ]⎡⎣ ⎤⎦ ⋅L λ

where I is the raw measured intensity at a single point in time, 
I

o
 is the measured light intensity at a reference time point, ΔOD 

represents the change in optical density between I and I
o
, the ε()s 

are extinction coeffi cients for O
2
Hb and HHb at a given wave-

length (λ), L is the source–detector separation, and DPF(λ) is the 
wavelength-dependent differential pathlength factor that converts 
L to the true (scattered) optical pathlength. Recording data from 
two wavelengths (λ

1
 and λ

2
) provides two such equations with 

two unknowns: the change in O
2
Hb and HHb concentrations. The 

 ninproc.extinction_coef() function uses interpolated lookup tables 
to obtain extinction coeffi cients of the various optical chromo-
phores. With these coeffi cients, conversion to concentrations over 

all time points can generally be accomplished compactly in Python 
using NumPy arrays, broadcasting, and its linear algebra capabili-
ties, as shown in Code Fragment 1, where L is a 1D array of source–
detector separations for each channel, rawdata is a 2D array of 
raw (or pruned and fi ltered) NIN data, rawref is a 1D array of raw 
NIN data from a reference period – e.g., N.mean(rawdata[:100],0), 
A is a linear transform between optical density and concentration 
represented as a 2D matrix of extinction coeffi cients, hhb and o2hb 
are 1D arrays of HHb and O

2
Hb concentrations (in units of moles/

mm) over time. While A is normally invertible, sometimes it is not. 
For such cases, one can use numpy.linalg.pinv() in place of numpy.
linalg.inv(). The results of these steps are shown in Figure 5.

IMAGING (NINDISP)
Near-infrared measurements of brain function can be made with 
a single source–detector pair, providing information localized to 
approximately 0.5–1 cm2 of brain tissue (Strangman et al., 2003). 
A spatially-distributed collection of such measurements can be com-
bined into an image for each relevant optical contrast. In functional 
neuroimaging, task-related images of O

2
Hb, HHb and O

2
Hb + HHb 

changes are of primary interest, as these parameters have been 
shown to refl ect underlying changes in neural activity (Jasdzewski 
et al., 2003; Strangman et al., 2002b). Imaging  procedures can 
consist of topology preserving sensor space  representations, back 

ODdata = -numpy.log10(rawdata/rawref)                      # compute optical density
A = ninproc.extinction_coef(wavelengths,'Hemoglobin')      # table lookup
hhb, o2hb = numpy.dot(numpy.linalg.inv(A),ODdata)/(L*DPF)  # compute concentrations

CODE FRAGMENT 1 | Three lines to convert raw NIN data to oxygenation concentrations.

A

B

C

FIGURE 5 | Spectroscopic conversion steps of NIN data time series from one source–detector pair. (A) Raw recorded NIN light intensity data from two 
wavelengths, in arbitrary units. (B) Data from (A) after log transformation to optical density units. (C) Data from (B) after conversion to hemoglobin concentration 
units (red = oxy-Hb, blue = deoxy-Hb, yellow = period of task activity).
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propagation – also called topographic imaging – or tomographic 
reconstructions (Arridge, 1999), as discussed below.

Sensor space representations
Perhaps the simplest approach to imaging, commonly utilized in 
EEG and MEG data displays, involves plotting multiple sensor time 
series or time averages, with each sensor positioned in the display 
according to the scalp location of the measurement. An example of 
this approach from NinDISP, using the powerful matplotlib plot-
ting package (Hunter, 2007), appears in Figure 7B. The surface 
array visualization technique preserves the temporal information 
at each sampling point, and is particularly effective if the sensors 
are widely separated.

Topographic imaging
In topographic imaging, measurements obtained from different 
locations in space are linearly interpolated to a regular grid to gen-
erate 2D images of either the underlying optical signal changes 
or derived parameters. The matplotlib.mlab.griddata() function 
can be used to compute such tomographic images. For example, 
if data is an N × 3 array of [x,y,val] triples irregularly spaced 
over a 10 cm by 6 cm region, a 2D topographic projection of the 
val parameter with 1 mm pixels could be computed as follows 
(see Figure 7C):

# xi is the interpolated, regular grid x-dim
xi = numpy.linspace(0.,10.,100) 
# yi is the interpolated regular grid y-dim
yi = numpy.linspace(0.,6.,60)   
zi = matplotlib.mlab.griddata(data[:,0], 
data[:,1], data[:,2],xi,yi)

This is a simple and compact data visualization technique, 
but it also embodies many important assumptions. In particular, 
interpolation assumes that the time varying optical properties of 
brain tissue between measurement locations can be accurately 

estimated by averaging the signals derived from the neighbor-
ing actual measurements. This may or not be true depending on 
the spatial scales of the signal and the source–detector geometry. 
In the above example, it also assumes accurate prior knowledge 
of the (x,y) coordinates of the val parameter, which may be dif-
fi cult to obtain or estimate. For simple geometries, however, this 
computationally effi cient method is suitable for real-time display 
and can be quite useful for visualizing the spatiotemporal structure 
of signal modulations.

Tomographic imaging
Tomographic imaging, in contrast to topographic imaging, is more 
appropriate when multiple, spatially overlapping NIN measure-
ments are collected. In this case, tomographic image reconstruc-
tion generates a solution that best satisfi es all measurements 
simultaneously. The reconstruction is computed in two stages. 
First, one must estimate the diffusion paths of photons and cal-
culate the sensitivity profi le throughout the brain. In image recon-
struction, this step is termed the “forward problem.” For simple, 
semi-infi nite, homogeneous media, the distribution of photons 
injected into tissue can be approximated by the diffusion equation 
(Farrell et al., 1992), and solved analytically. However, for more 
complicated geometries, analytical solutions are not possible and 
hence numerical solutions are often employed, including fi nite 
difference, fi nite element and Monte Carlo approaches (Jacques 
and Wang, 1995). Here we discuss the Monte Carlo approach. 
For the particularly complex tissue geometry of the head, one 
can start with a standard high resolution, T1-weighted MRI scan 
(Figure 6A). This structural scan can then be segmented into gray 
matter, white matter, cerebrospinal fl uid, skull, and scalp tissue 
types using Python to call any of the MRI tissue segmentation 
tools contained in analysis packages such as SPM88 or FSL9. Next, 

A B C

FIGURE 6 | Simulated photon propagation through the head. (A) Typical 
anatomical MRI scan, with NIN sensor fi ducial markers visible above the 
scalp. (B) Segmentation of the MRI scan in (A) into separate tissue types 
where Python was used to chain together the MRI segmentation modules. 
(C) Example photon densities for a single source–detector pair separated 

by 4 cm, overlaid on the segmented head. The colored areas delimit 
the region to which many NIN instruments would be sensitive, with a loss of 
1 order of magnitude sensitivity per contour line. Images were generated 
using matplotlib.imshow(), NumPy masked arrays, and matplotlib.
contour().

8www.fi l.ion.ucl.ac.uk/spm
9www.fmrib.ox.ac.uk/fsl

www.fil.ion.ucl.ac.uk/spm
www.fmrib.ox.ac.uk/fsl
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each tissue type in the segmented volume is assumed to be homo-
geneous and assigned optical properties based on literature values 
(Choi et al., 2004; Kohri et al., 2002; Leung et al., 2005; Okada and 
Delpy, 2003; Strangman et al., 2003).

To perform the Monte Carlo simulation process, approxi-
mately 100 million photons are injected, one at a time, into the 
segmented model (Figure 6B) at the location of a source or detec-
tor. The propagation of each photon through the tissue is deter-
mined probabilistically given the physics of light and the optical 
properties assigned to each tissue type. This process is repeated for 
each source and detector location and the result is a participant-
specifi c solution to the forward problem. Multiplying together the 
photon densities for a given source–detector pair, point by point 
throughout the brain volume, provides an estimated sensitivity 
profi le for that source–detector measurement pair (Figure 6C). As 
with the MRI segmentation routines, Monte Carlo techniques can 
be implemented with Python calls to existing toolboxes in Matlab 
(Boas, 2004) via mlabwrap (Schmolck, 2007), or by calls to binaries 
such as tMCimg (Boas, 2008) using Python’s os.popen() function. 
For NinPROC, and the steps in Figure 6, we utilized the lattermost 
approach, which allows us to gradually transition complex code 
bases to Python, as time and resources permit.

Given a stable solution to the forward problem (Figure 6C), 
the second imaging step is to generate an image of the optical con-
trast parameter. This step is called “inverse modeling”, and it can 
be accomplished using linear or non-linear methods. The linear 
approach is typically formulated as y = Ax, where y is a length-M 
vector containing the value of the parameter of interest for each 
NIN source–detector pair, x is a length-N vector of all voxels in the 
image reconstruction, and A is the sensitivity matrix (Jacobian), 
which is an M × N matrix based on the Monte Carlo simulation 
that maps the sensitivity of each point in x to each measurement 
in y (Figure 6C). To solve for x, the equation of interest becomes: 
x = A−1y, where A−1 computed using numpy.linalg.inv(A) or, more 
often, the pseudoinverse of A via numpy.linalg.pinv(A). Because 
this problem is usually ill-posed and underdetermined (N >> M), 
regularization is typically applied, often via singular value tapering 
as is used in Tikhonov regularization (Pogue et al., 1999b). NIN 
image reconstruction then essentially reduces to two python func-
tion calls: matrix multiplication via numpy.dot() and regularization 
with numpy.linalg.svd().

STATISTICAL MODELING AND VISUALIZATION
The fi nal stage of an NIR functional imaging experiment, after 
completing the data collection and the signal and image process-
ing steps, involves parameter estimation, statistical modeling, and 
visualization of the results.

Statistical modeling (NinSTAT)
Statistical modeling involves modeling experimental variance to 
derive parameter estimates pertaining to the experimental effects of 
interest. SciPy includes a number of basic statistical functions that 
are suitable for modeling experimental effects in individual subjects. 
However, data from many neuroimaging experiments, particularly 
those involving comparisons of different participant groups, have 
a complex and hierarchical variance structure that cannot be effec-
tively modeled with SciPy routines. In particular, within-subject 

designs, incorporating repeated measurements collected from each 
participant under a range of experimental  conditions are quite 
common. These designs are popular because they have relatively 
high sensitivity, and they avoid the time and expense of recruit-
ing and fully characterizing large groups of research participants. 
Within-subject variability in functional neuroimaging data, while 
substantial, tends to be smaller than between-subject variability. 
Prominent sources of between-subject variation include: (i) brain 
size and shape differences, (ii) neurovascular coupling differences, 
(iii) task performance differences in accuracy or response time, and 
(iv) variation in the specifi c strategy used to perform the task. To 
accurately model both within- and between-subject effects, there-
fore, requires mixed-effects modeling techniques (combining fi xed 
and random effects), which are not available in HomER or SciPy. In 
addition, given the great diversity in experimental designs employed 
in functional neuroimaging experiments, specifi cally coding each 
statistical model in Python would be associated with substantial 
effort. These reasons motivate integration with an external statistics 
package.

R is a widely-used, open-source, statistics package that contains 
a very comprehensive and sophisticated collection of statistical 
analysis methods (R Development Core Team, 2005), including 
tools that are able to model NIN data with complex hierarchical 
structure. One common example is with mixed effects models that 
contain variables measured at different levels in a hierarchy, as in 
the case of summary statistic models in which separate regression 
analyses are computed for each participant, with the resulting fi rst-
level regression coeffi cients being treated as random variables at 
the second level (Pinheiro and Bates, 2000). Rather than rewrit-
ing the requisite statistical procedures in Python, the RPy module 
(Moriera and Warnes, 2004) provides a lightweight yet powerful 
interface between Python and R for statistical analysis, with results 
automatically returned to Python for storage, subsequent process-
ing or display.

A particular advantage of using R is that an extremely broad 
range of models can be applied to the data, since all input vari-
ables are treated equally. In particular, the neuroimaging data can 
be used either as an outcome variable, a predictor, or a covariate. 
This assignment fl exibility is in contrast to that found in the most 
commonly used neuroimaging software packages, including SPM, 
FSL, AFNI, FSFast. These packages require the neuroimaging vari-
able to be the outcome variable, which signifi cantly restricts the 
types of scientifi c questions that can be addressed. For example, one 
question that is receiving growing interest concerns identifi cation 
of brain regions that might provide predictive information about 
treatment response. This determination requires the neuroimaging 
data to act as a predictor and the therapeutic response measure 
to serve as a dependent or outcome variable. Implementing these 
models using existing neuroimaging packages requires extracting 
the data from each potential brain region of interest, exporting the 
data series, and then performing the statistical analysis using an 
external program (Strangman et al., 2008). By directly interfacing 
with R, one can fi t predictive models as easily as those utilizing the 
image data as the dependent variable. Code Fragment 2 provides 
an example of a NinSTATS implementation of predictive modeling. 
Importantly, R includes a large, and continually growing, collection 
of heavily tested and more sophisticated models, including robust 
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covariance and generalized linear models, as well as a wealth of 
post-hoc testing capabilities.

Visualization (NinDISP)
Once a neuroimaging statistical analysis is complete, visualization 
enhances both interpretation and communication of the results. 
Sensor space visualization, an approach discussed earlier, is shown 
in Figures 7A,B. However, it is common in neuroimaging experi-
ments to have even larger collections of spatially coherent univariate 
statistical results. For example, the code in Code Fragment 2 might 
produce 1,000 or more distinct model fi ts. In this case, sensor space 
visualization may be either impossible, because of too many meas-
urements, or misleading, because overlapping measurements may 
be sensitive to different depths. Imaging provides certain advantages 
in these situations, as shown in the topographic image in Figure 7C, 
generated from task-related regression parameters from the O

2
Hb 

traces in Figure 7B. Applying a statistical threshold to topographic 
images helps identify regions that are signifi cantly modulated by 
the task, as shown in Figure 7D.

In addition to statistical parametric maps (Figure 7D), and time 
series plots (Figure 7B) it is often useful to generate and examine 
scatter or bar plots from regions-of-interest, or to produce sum-
mary plots of activity levels in various brain regions, including 
histograms and box plots. The matplotlib module provides all these 
options as well as many additional plot types. Critically, matplotlib 
includes complete customization capabilities for the creation of 
publication-quality fi gures (Hunter, 2007). Math or Greek  symbols 

can be easily added to the plot or axis labels, options that are par-
ticularly important for representing physical or derived units in 
NIN data (cf. Figure 5).

FILE FORMAT INTERFACES TO EXISTING OPTICAL IMAGING TOOLS
Due to the large volume of spatial and temporal data generated by 
neuroimaging experiments, neuroimaging data have always required 
custom fi le formats, and in the 1990s image fi le formats proliferated. 
Fortunately, the NIfTI standard (Cox et al., 2004) has made major 
inroads as a standard fi le format for MRI data. An example of its use 
in NinPy is seen in Code Fragment 2. Other formats still dominate in 
EEG, MEG, PET, as well as NIN, and a number of legacy formats still 
persist with some frequency in MRI applications. Our goal has been 
to integrate NinPy programs with three key data formats: NIfTI, 
the Matlab-based format used by HomER (Huppert, 2006), and 
the broad standard HDF5. These formats enable broad interoper-
ability of the NinPy suite with existing tools for neuroimaging data 
analysis. NIfTI fi les are created, read and written through the use of 
the PyNIfTI package (Hanke, 2008), whereas the HomER fi le format 
can be read and written as a Matlab.mat fi le or HDF5 fi le (also read-
able by Matlab) containing multiple arrays with specifi c variable 
names. Reading and writing Matlab fi les is supported through scipy.
io.loadmat() and scipy.io.savemat(), and thus HomER fi les can be 
saved from appropriate variables in Python as follows:

scipy.io.savemat(‘outname.mat’,{‘d’:nindata,’t’:
timebase,’ml’:meas_list,’aux10’:auxiliary}).

import rpy2.robjects as ro

nin = nifti.NiftiImage(‘allsubj_contrast1.nii’)  # parameter file with subject by X by Y by Z dimensions

tags = numpy.loadtxt(‘allsubj_tags.txt’)         # columns: subjnum, age, pretest score, outcome score
header = [‘subj’,’age’,’pretest’,’outcome’,’nin’]
shape2D = (nin.data.shape[0],numpy.multiply.reduce(nin.data.shape[1:]))

nindata = numpy.reshape(nin.data, shape2D)       # flatten X, Y and Z dimensions (subj by voxel)

# Prepare to save 3 results (coef/sterr/T-score) for 4 terms (intercept,age,gender,nin) at each voxel
results = numpy.zeros((4,3,nindata.shape[1:]),numpy.Float)
for i in xrange(len(nindata.shape[1])):          # loop over all voxels
    # COLLECT NIN DATA FOR THIS VOXEL AND CREATE AN R DATA FRAME
    thisdata = make_RVector_list(tags)           # NINstats helper function for building data frames
    thisdata = thisdata +[ro.RVector(array.array('f',nindata[:,i]))]
    header = header +['nin']
    # CREATE THE DATA FRAME, WITH NAMES (using a dict alone segfaults rpy1.0rc1)
    tl = rlc.TaggedList(thisdata,tuple(header))
    df = ro.RDataFrame(tl)

    # FIT A MULTIPLE LINEAR REGRESSOIN MODEL WITH NIN AS A PREDICTOR
    formula = ro.r.formula(‘outcome ~ age + pretest + nin’) # use NIN data as predictor of outcome
    fittedmodel = ro.r.lm(formula,df)            # fit a linear multiple regression model

    # EXTRACT AND STORE RESULTS FORM THE MODEL FIT FOR THIS VOXEL
    summ = ro.r.summary(fittedmodel)
    ttable = summ[3] # retrieve estimated coefficients and t-table results
    for j in range(len(ttable)):
        results[j,0,i] = ttable[j][0]  # coefficient
        results[j,1,i] = ttable[j][1]  # sterr
        results[j,2,i] = ttable[j][2]  # T-value

CODE FRAGMENT 2 | NinSTATS code fragment to perform statistical analysis with functional NIN data as a predictor of outcome.
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FUTURE EXTENSIONS
MULTIMODAL INTEGRATION
While we have only briefl y discussed MRI integration with regard 
to Monte Carlo simulation, there are additional advantages asso-
ciated with integrating NIN with MRI and other neuroimaging 
modalities. For example, the segmented MRI images (Figure 6B) 
could be used to constrain the NIN image reconstruction process 
by restricting reconstructed brain activity modulations to gray 
matter, thereby not allowing the estimated signal changes to occur 
in scalp, skull, cerebrospinal, or white matter tissue compart-
ments. As another example, automatic identifi cation of optical 
sources and detectors within the MRI space (the white fi ducial 
markers above the head in Figure 6A) could be used as inputs 
to the Monte Carlo simulations or to provide more accurate 
co-registration of NIN statistical parametric maps with under-
lying brain anatomy.

While integration with EEG, MEG, and other neuroimaging 
technologies is occurring at the experimental level, integration at 
the data analysis and interpretation levels is a relatively underde-
veloped area. One interesting possibility for integration involves 
the optical “fast signal”. NIN studies from several labs have shown 
changes in non-invasive optical signals on timescales much faster 
than typical hemodynamic changes, less than 100 ms as compared 
to 2–3 s or more (Franceschini and Boas, 2004; Gratton et al., 1997; 
Morren et al., 2004). Since the nature of this fast NIN signal is an 
area of active investigation, close integration of NIN measurements 
with more direct EEG and MEG measurements of neuronal activity 
could lead to a fuller understanding of the nature of this optical 
fast signal. Integration with new, high-speed, MRI acquisition tech-
niques (Lin et al., 2008a,b) may also help shed light on the nature of 
this optical fast signal and whether or not there might be analogous 
fast hemodynamic signal modulations detectable using MRI.

BA

30 s1 
a.

u.

DC

FIGURE 7 | NIN data visualization. (A) Schematic of the NIN sensor 
region. (B) Sensor space display, with time series plots positioned at the 
source (Sx) and detector (Dx) locations. Individual time series plots show time 
on the x-axes and oxy-hemoglobin (red) and deoxy-hemoglobin (blue) 
concentrations on the y-axes. Yellow highlights the interval in which the 
subjects were engaged in a sequence learning task. A scale bar in the center 
indicates that the task period was 32 s in duration. Concentration is 

shown in arbitrary units (relative concentration), due to an unknown 
scattering factor. (C) Example NIN image of task-related oxy-hemoglobin 
regression parameter Z-scores from (B) corresponding to the rectangular 
area shown in (A). (D) The same data as (C), masked at a statistical threshold 
of p < 0.05 corrected for multiple comparisons. Color bar for Z-scores in both 
(C) and (D) appears in (D). Plots B–D were made with NinDISP using 
matplotlib.
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ADVANCED VOLUME VISUALIZATION
Combining structural and functional neuroimaging results requires 
advanced volume visualization tools. Thus far, we have sought to 
capitalize on the popularity of the NIfTI fi le format, as it allows 
convenient utilization of a range of existing MRI 3D visualization 
packages. However, with the development of Python neuroimag-
ing tools such as NiPy (NiPy Development Team, 2006), as well as 
the impressive capabilities afforded by Python bindings to both 
the Visualization Toolkit (via vtk’s own Python bindings, or via 
Enthought’s tvtk) and OpenGL (via PyOpenGL), adding native 
Python 3D visualization for neuroimaging is expected in the near 
future. Incorporating 3D display capabilities in NinPy would facili-
tate the sorts of fl exible and customized visualization often absent in 
existing packages. Visualization in three dimensions is often critical 
to developing better insights into the structure of high-dimensional 
datasets. The ease with which customization can be made with 
Python scripting, coupled to a high-level visualization package, is 
expected to be widely adopted in a broad array of neuroimaging 
data visualization applications.

CONCLUSION
The relatively short time needed to construct the NinPy suite of 
tools was made possible given the substantial prior efforts refl ected 
in the packages listed in Table 3. Thanks to these developments, 
we can foresee completion of an end-to-end, Python solution for 

developing, conducting, analyzing and displaying the results of NIN 
experiments. Key enabling technologies that have appeared over 
the past few years include the stabilization of numeric arrays and 
processing (NumPy), the advancement and continuing stabilization 
of a broad base of scientifi c algorithms (SciPy), the development 
of a robust interface to the R statistical modeling package (RPy), 
and substantial advances in the mechanisms for stimulus, array 
and volume visualization (e.g., PsychoPy, Matplotlib and Chaco). 
We have found that the use of Python as the core programming 
language for our NIN programs provides signifi cantly better con-
trol over most aspects of an NIN experiment than is possible with 
existing packages. Importantly, our development efforts have not 
required any time-consuming coding or debugging in C, nor do 
users need to learn multiple programming or scripting languages 
to complete a functional neuroimaging experiment. We have found 
that, particularly for complex problems including optical image 
reconstruction, hierarchical statistical analysis, or volume visualiza-
tion, Python can serve as a convenient, powerful, and maintainable 
scripting “glue”. This architecture allows us to rapidly deploy an 
operational end-to-end Python solution, allowing later conversion 
of non-Python algorithms as resources and motivation permit. 
Reducing our dependence on multiple separate software tools or 
programming languages for stimulus presentation, data acquisi-
tion, data analysis, image reconstruction, statistical modeling, and 
graphical display greatly simplifi es the experimental working envi-
ronment, and has substantially increased scientifi c productivity. In 
addition, the single-language solution facilitates the development 
and distribution of easy-to-use, self-contained packages for con-
ducting NIN experiments in mobile or remote settings where a 
dedicated experimenter may not be available. As more open-source 
tools are ported to Python, further improvements in productivity 
are envisioned.

We are releasing the source code for all of the NinPy modules 
for unrestricted use as each sub-module reaches beta level software 
quality. Completed modules will be available under BSD licensing10, 
or by contacting the authors.

ACKNOWLEDGMENTS
We would like to acknowledge support from the National Space 
Biomedical Research Institute through NASA Cooperative 
Agreement NCC 9-58.

Table 3 | Versions utilized and website information for major modules 

and tools used in the NinPy tool suite.

Module Version Website

cgkit 2.0.0a7 http://cgkit.sourceforge.net

chaco/traits 2.5.2001 http://www.enthought.com/products/epd.php

matplotlib 0.98.3 http://matplotlib.sourceforge.net/

mlabwrap 1.0 http://mlabwrap.sourceforge.net/

numpy 1.0.4 http://www.numpy.org/

psychopy 0.97.0 http://www.psychopy.org

pynifti 0.20090303.1 http://niftilib.sourceforge.net/pynifti/

pyparallel 0.2 http://pyserial.wiki.sourceforge.net/pySerial

pyserial 2.2 http://pyserial.wiki.sourceforge.net/pySerial

R 2.8.0 http://www.r-project.org/

rpy 2.0.1 http://rpy.sourceforge.net/

scipy 0.6.0 http://www.scipy.org/
10www.nmr.mgh.harvard.edu/Neural_Systems_Group/software.html
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