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The scale-free and small-world network models reflect the functional units of networks. However,
when we investigated the network properties of a signaling pathway using these models, no
significant differences were found between the original undirected graphs and the graphs in
which inactive proteins were eliminated from the gene expression data. e analyzed signaling
networks by focusing on those pathways that best reflected cellular function. Therefore, our
analysis of pathways started from the ligands and progressed to transcription factors and
cytoskeletal proteins. WWe employed the Python module to assess the target network. This
involved comparing the original and restricted signaling cascades as a directed graph using
microarray gene expression profiles of late onset Alzheimer'’s disease. The most commmonly used
method of shortest-path analysis neglects to consider the influences of alternative pathways that
can affect the activation of transcription factors or cytoskeletal proteins. \\We therefore introduced
included k-shortest paths and k-cycles in our network analysis using the Python modules, which
allowed us to attain a reasonable computational time and identify k-shortest paths. This technique
reflected results found in vivoand identified pathways not found when shortest path or degree
analysis was applied. Our module enabled us to comprehensively analyse the characteristics
of biomolecular networks and also enabled analysis of the effects of diseases considering the
feedback loop and feedforward loop control structures as an alternative path.

Keywords: signal transduction, Alzheimer’s disease, network analysis, k-shortest path analysis, python, network

robustness, graph theory, hippocampal CA1

INTRODUCTION
Network analysis has lead to the discovery of new components of
the metabolic pathways in metabolic pathways and in signal trans-
duction cascades. Examples of network analysis models include
the small-world network model (Jeong etal., 2000), in which
the average path length is shortened, and the scale-free network
model (Wuchty, 2001), which has a degree distribution that fol-
lows a power law. Multilayer structural and motif analyses (Milo
et al.,2002; Shen-Orr et al., 2002) have shown that metabolic path-
ways and protein interactions have more notable cluster structures
(Ravasz et al.,2002) than random networks, and that metabolic and
signaling pathways behave like complex regulatory networks. In
recent research on diseases, network analyses, like degree analysis
of cancer-related genes using gene regulatory networks to identify
the genes (Futreal et al., 2004) and various other analyses of dis-
ease genes, revealed structural effects of disease on biomolecular
networks (Ideker and Sharan, 2008). Taken together, these findings
suggest that cellular functions can be modelled as network struc-
tures and that investigation of disease phenomena through network
analysis has the potential to reveal novel properties and pathways
in biomolecular pathways associated with disease states?

The studies mentioned above assume that proteins do not
change in the absence of external stimulation. Proteins in networks

are known to be regulated by gene expression patterns, as well
as adapting to the external environment (Luscombe et al., 2004).
To characterize the dynamic nature of protein networks, investi-
gations into the effects of diseases on gene expression have been
initiated for Alzheimer disease by means of diffusion kernels and
microarray data (Ma et al., 2007) and for cancer by means of gene
expression data and network information (Chuang et al., 2007).
However, because networks function as multiple-complex regula-
tory structures, it is insufficient to study disease dynamics in protein
networks through analysis of a single factor affecting the network
or through analysis of structural properties.

In the present study, we investigated the protein networks associ-
ated with Alzheimer’s disease through feature analysis of regulated
signal molecules, as well as by structural analysis of network com-
ponent. Intraneuronal amyloid B (AP) is reported to be a major
important factor for Alzheimer’s disease. AP, which is the product
of the protein catabolic enzyme, is normally transported out of
cells (Iwata et al., 2000). In Alzheimer’s disease the aggregation and
deposition of insoluble AP leads to nerve cell damage and is thought
to be the pathogenic mechanism of Alzheimer’s disease (Hardy and
Selkoe, 2002). Studies of AP and protein catabolic enzymes, like
[B-secretase, have focused on changes in certain proteins. Although
a few studies have focused on the entire network, the mechanism
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underlying the accumulation of AP has not been discovered. Thus,
it is still unclear if the accumulation of AP is the direct cause of
Alzheimer’s disease (Heneka and O’Banion, 2007). Here, we
aimed to use a network model to discover the characteristics of
structures that most affect the hippocampal signal transduction
pathway, and the regulatory mechanisms controlling gene expres-
sion in Alzheimer’s disease. We generated a network model for the
Alzheimer’s disease patient signal transduction cascade, referred
to as the Alzheimer’s disease network (“ADN”), from the signal
transduction pathway in the hippocampal CAl region (Ma’ayan
etal., 2005) and from gene expression data derived from patients
with late onset Alzheimer’s disease (Liang et al., 2007).

In order to understand the network form, we conducted feature
analysis of signal molecules in the signal transduction cascade by
measuring k-core, degree, closeness, betweenness, the change in
the average shortest path length, and the change in the articula-
tion points, following the removal of the Alzheimer’s-related sig-
nal molecules from the network. In our structural analysis of the
network, we considered the network density, average clustering
index, and average shortest path length. Regulatory structures, like
the feedback loop and the feedforward loop, are more frequent in
hippocampal signaling pathways than in the randomly generated
networks (Ma’ayan et al., 2005). Therefore, we analysed feedback
loops and feedforward loops in the model network using the k-
cycle structure (Nochomovitz and Li, 2006). The k-cycle structure
is defined as a network structure in which duplicating nodes are
removed from the network when one node to the in-neighbours can
be reached by the k-step. For analysis of pathway characteristics, the
extracellular ligand was set as the input and cytoskeletal proteins
and transcription factors were set as the output. Since there are
many alternative signal transduction pathways (Coulson, 2006),
we used the k-shortest pathway (Rahman and Schomburg, 2006)

instead of the shortest path or path length for pathway analysis.
With our model we were able to reproduce the Alzheimer’s disease
shift in gene expression in the hippocampal signal transduction
pathway and the shift in signal transduction in Alzheimer’s disease
revealed in earlier studies.

MATERIALS AND METHODS

ANALYSIS PACKAGE FOR BIOMOLECULAR NETWORKS

In our study, we developed the network analysis module “Analysis
Package for Biomolecular Networks (BioNetpy)” using the Python
software program. Python is suitable as an open resource because
it excels in readability over other program languages and has supe-
rior system execution by utilizing the just-in-time compiler, psyco’.
The BioNetpy module was constructed using the Python network
analysis module NetworkX-0.3.6? and igraph-0.4.5°. We also used
the numerical package Numpy-1.0.4, which is a Python numeri-
cal module. The BioNetpy module performs the three analysis
methods outlined in Figure 1.

BioNetpy and Supplementary Material can be downloaded
from the following website: http://medcd.iab.keio.ac.jp/bionetpy/;
http://www.frontiersin.org/neuroinformatics/paper/10.3389/
neuro.11/013.2009.

ANALYSIS OF GENE EXPRESSION DATA FOR MODEL ASSEMBLY

We used a network expressed by a directed graph of the signal trans-
duction pathway of the hippocampal CA1 region in humans (Ma’ayan
etal., 2005). This network contains 570 nodes (signal molecules)

'http://psyco.sourceforge.net/
*https://networkx.lanl.gov/
*http://igraph.sf.net/
*http://numpy.scipy.org/

A Node Feature Analysis

*Node Removing test
*Shortest path length
*Articulation points

B Structural Properties

*Centrality Analysis * Structural Feature
*Degree *Network density
*Betweenness *Clustering index
+Closeness +Shortest path length
*k-core *k-cycle

FIGURE 1 | Analysis methods of the BioNetpy module. \We used the BioNetpy module to perform the following three types of analyses: (A) node feature analysis
(centrality and changes in indicators upon removal of node), (B) structural properties, and (C) characteristics of pathways (analysis of network similarity and
pathways analysis). BioNetpy and Supplementary Material can be downloaded from http://medcd.iab.keio.ac.jp/bionetpy/.

C Characteristics of Pathways

*Pathway Analysis
* k-shortest path
*Equal length path

*Network Similarity Analysis
*Cosine correlation
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and 1,333 edges (reactions). The edges can be categorized into three
types of information defined as active, inactive, and bidirected (bidi-
rectional activation or inactivation) information. We extracted gene
expression data derived from GeneChip (Affymetrix) analysis of
human hippocampal CAl region. We applied the Bioconductor
2.2 program to analyse gene expression data (Reimers and Carey,
2006). Bioconductor can be applied to the Python module by using
the Rpy program®. We used the Human Genome U133 Plus 2.0
Array from the Bioconductor affy package (Gautier et al.,2004). We
extracted Alzheimer’s disease-related genes by analyzing GSE5281,
which is a set of gene expression data derived from patients with
late-onset Alzheimer’s (1 = 10) and controls (n = 13) (Liang et al.,
2007) that has been recorded on the GEO database. We normalized
the data by the distribution-free summarization method, which
has been tested with the Spike-ins benchmark test on the Human
Genome U133 Plus 2.0 Array and is known for its high-resolution
summarization of microarray data (Chen et al., 2007). After data
normalization, we used the Bioconductor limma package (Smyth,
2004) to define genes as Alzheimer’s disease-related genes within
the P < 0.005 threshold by employing the empirical Bayes ¢-statistic
test (Jeffery et al., 2006). We matched genes and the corresponding
signal molecules by correlating information from the NCBI Gene
ID (Maglott et al., 2007) and Swiss-Prot ID (Bairoch et al., 2004)
and defined signal molecules coded by Alzheimer’s disease-related
genes as Alzheimer’s disease-related signal molecules. We conducted
feature analyses by measuring k-core, betweenness centrality, close-
ness centrality, and degree centrality. We also analysed changes in the
shortest path length, which is an indicator of a small-world network
(Mason and Verwoerd, 2007), and changes in articulation points,
which is an indicator of network connectivity, after removing nodes
from the Alzheimer’s disease-related signal molecule network. The
k-core of a graph is the maximal subgraph in which each node’s
degree is at least k. Betweenness centrality measures the importance
of a node within a network. Nodes that occur on many short paths
between other nodes have higher betweenness centrality than those
nodes that do not. Closeness centrality is defined as the number of
nodes minus one divided by the sum of the lengths of all shortest
path lengths from and to the given node. Degree centrality is the
number of nodes that a given node is connected to. We were able
to analyse the characteristics of signal molecules in the network on
multiple dimensions using these indicators.

STRUCTURAL PROPERTIES OF HIPPOCAMPAL PATHWAYS OF PATIENTS
WITH ALZHEIMER'S DISEASE

We conducted a structural index analysis by generating an ADN
after removing Alzheimer’s disease-related signal molecules from
the control network (“CN”). We used a k-cycle structure for the
analysis of feedback loop in the networks. The k-cycle structure
is defined as a network structure from which duplicating nodes
are removed when one node can be reached from the in-neigh-
bors. An earlier study (Ma’ayan et al., 2005) and our pilot study
shows that 90% of all nodes can be reached within 9 steps for
input (n = 30). Thus, we defined pathways within 9 steps of each
other to be important for intercellular signal transduction. Because
network structure depends on the number of nodes, we generated

*http://rpy.sourceforge.net/

a randomly removed network (“RRN”) by removing nodes from
the CN to equal the number of nodes of the ADN. We then limited
the network density, average clustering index, and average shortest
pathway length change of this new CN to 5% and compared the
results. The k-cycle data can be analysed according to Eq. 1:

& cycle, (Node,
C=chce”(no e;) (1)

n=1

where C_represents the number of k-cycle structures in the net-
work. The function cycle represents the number of cycle structures
can be reached from the in-neighbors.

CHARACTERISTICS OF HIPPOCAMPAL SIGNAL PATHWAYS IN PATIENTS
WITH ALZHEIMER'S DISEASE

Cellular processes are controlled by many alternate signal transduc-
tion pathways (Coulson, 2006). For this reason, we analysed the k-
shortest pathway instead of analyzing pathway length or shortest
pathways. We also generated an RRN and compared the k-cycle of
the RRN with that of the ADN. Through exploration of the k-shortest
path length, the number of pathways was carried out by calculating
the shortest pathway length between nodes and by using Depth-First
Iterative-Deepening (Korf, 1987). We used the k-shortest pathway
with extracellular ligands (n=30) as input and cytoskeletal pro-
teins (1 = 24) and transcription factors (n = 35) as output to define
1,770 pathways for analysis. We defined the input and output of
two important functions of the neural cell, neuronal plasticity and
neurite outgrowth, to analyse the effects of Alzheimer’s disease on
neural functions. Neuronal plasticity is controlled by depolariza-
tion of the postsynaptic cell by binding of glutamate to its receptors.
Consistent with the network analysis described above, activation of
these receptors activates the cAMP response element-binding protein
(CREB), thus increasing the level of amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor (Hayashi et al., 2000). For
these reasons, we set glutamate as the starting point of the pathway
and CREB as the endpoint for the neuronal plasticity pathway. The
direction of neurite outgrowth is determined by guidance factors
(Dickson, 2002). Therefore, we set the guidance factors acetylcho-
line (ACh), insulin-like growth factor I (IGF1), nerve growth factor
(NGF), and Ephrin at the start of the pathway, and tubulin, a micro-
tubule protein, at the endpoint. An evaluation of robustness, defined
in Eq. 2, was conducted by comparing the robustness values of all
inputs and outputs of the ADN with that of the CN and RRN.

We also conducted a k-shortest pathway analysis of the path-
ways involved in neural cell death, the pathways that link directly
to the amyloid P protein precursor (APP), and the pathways that
link extracellular ligands to transcription factors or cytoskeletal
proteins. Neuronal cells are known to enter apoptosis readily upon
receiving signals of extracellular death ligands or DNA damage
(Jellinger, 2006). We defined the starting points of the neural death
pathway as fas ligand (FasL) and tumor necrosis factor-o. (TNFov),
which induce apoptosis, and the endpoint as the DNA fragmenta-
tion factor (ICAD), an inhibitor of caspase-activated DNase, which
fragments DNA. In addition, we defined the pathways between
all ligands and included the APP-binding family A member 1
(MINT-1) (Yoon etal., 2007) and caspase 3 (Su etal., 2002) in
the APP-related pathway. These pathways are shorter than that of
neural plasticity and neurite outgrowth and can traverse from the
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input to the output through a shorter path. Therefore, we compared

the number of pathways having the same input and output set in

the total number of pathways and the number of pathways in the

RRN in total number of pathways. The number of steps, k, used in

the k-shortest pathway analysis in the k-cycle structure, was defined

as 9 steps, using the following equation:
N, —mean

Ri. =
i SD,

(2)
where R is the robustness value (R-value) of the pathway. In the
pathways from glutamate to CREB and ACh, NGF, IGF1 and from
Ephrin to tubulin, R is the difference between the numbers of k-
shortest paths obtained by all inputs to outputs in all k-shortest
path sets, which is defined as X. In the pathways from FasL and
TNFa. to ICAD, including all inputs to MINT-1 and caspase 3, R
is the difference in the number of k-shortest paths between node i
and node j obtained in the RRN sets, which is defined as X in this
case. N, is the k-shortest path number from node i to node j in
the network of interest. Mean  is the mean of all k-shortest path
sets or nodes in the RRN sets. SD  is the standard deviation of all
k-shortest path sets or nodes in the RRN sets.

Equation 3 below shows the interpretation of network similar-
ity using a single value (Barrett et al., 2006) for the vector space
of inputs and outputs in a network using a matrix expression for
equal-length shortest path (Borgwardt and Kriegel, 2005), which
indicates pathways with equal steps. Our study analyzes the change
in the entire pathway at step e.

S=arc cos| =2 (3)

c’l+|o°

where S represents network similarity between the first mode of
singular value ¢ (equal-length shortest-path matrix of CN) and o
(equal-length shortest-path matrix of ADN or RRN); e represents
the specific step value of the equal-length shortest-path matrix.

RESULTS

FEATURE ANALYSIS OF SIGNAL MOLECULES

Through empirical Bayes t-statistics, we extracted 76 Alzheimer’s
disease-related genes known to downregulate actin (Harigaya et al.,
1996) and beta-catenin (Li et al., 2007), resulting in a decrease in
the level of calcium/calmodulin-dependent protein kinase type II
(CaMKII) (Allison et al., 2000). Please refer to the Supplemental
Material for a list of genes aforementioned. By observing the
pathway functions of the signal molecules encoded by these 76
genes, we found the largest changes in the actual numbers of mol-
ecules with Kinase and Adapter functions, and the largest percent-
age change for nodes in the Receptor and Bcl2Family functional
groups, which decreased at rates greater than the rate of change
for the network overall (13%; Table 1). We conducted a feature
analysis of Alzheimer’s disease-related signal molecules and other
molecules by measuring k-core, betweenness, closeness, degree, the
change in average shortest path length, and the change in articula-
tion points. There were no significant differences in these meas-
urements between Alzheimer’s disease-related signal molecules
and other molecules (P < 0.05, Mann—Whitney U-test; Table 2).

Table 1 | Number of constituent signal molecules on CN and ADN.
"Other” denotes small molecules or histones. The actual connection graph
of the 570 nodes and 1,333 edges of CN and the 494 nodes and 974 edges
of ADN is shown. We extracted 76 Alzheimer's disease-related signal
molecules known to decrease actin, beta-catenin, and CaMKII. This group of
genes represents 13% of the CN. By observing the pathway functions of
these 76 Alzheimer’s disease-related signal molecules, we discovered that
nodes in the Bcl2Family and Receptor groups decreased at a rate greater
than the network as a whole.

Function Number of signal molecules in networks
ADN CN CN-ADN (%)
Adapter 89 103 14 (14)
Kinase 71 86 15(17)
Receptor 39 51 12 (24)
Transcriptional factor 28 35 7 (20)
Ligand 30 30 0(0)
Cytoskeletal protein 21 24 3(13)
Vesicle 17 21 4(19)
lon channel 17 20 3(15)
GEF 19 20 1(5)
Inhibitor 17 18 1(6)
GAP 13 13 0(0)
GTPase " 13 2(15)
PDE 9 M 2(18)
G protein 9 10 1(10)
Ribosome 10 10 0(0)
Activator 8 8 0(0)
Bcl2Family 6 8 2 (25)
Protease 8 8 0(0)
Phosphatase 15 16 1(6)
Other 57 65 8(12)
494 570 76 (13)

When we removed these Alzheimer’s disease-related signal mol-
ecules, the ADN contained 494 nodes and 974 edges. In total, 91%
of the input—output sets were connected in the CN (average path
length = 5.94), and 50% of those sets were connected in the ADN
(average path length = 6.68).

k-CYCLE ANALYSIS OF ADN

By comparing the number of k-cycle structures (k=4,5, ...,9) of
RRN, CN, and ADN, we showed that the all-step k value decreased
(Figure 2). However, the graph shape was similar for each RRN
and for each cycle structure number corresponding to the steps
in the random sampling network; the correlation coefficient
between ADN/CN and RRN/CN was 0.99. This finding also dem-
onstrates that network size, not external factors, has an effect on
cycle structure.

k-SHORTEST ANALYSIS OF ADN

The k-shortest pathway analysis (k=9) of CN, ADN, and RRN
showed no notable difference in distribution shape between all
inputs and outputs. There were also no differences in the average
network pathway between ADN (67 £ 216) and RRN (144 + 342)
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Table 2 | Network feature analysis of signal molecules. Network feature analysis of Alzheimer’s disease-related signal molecules and other signal
molecules in the network (“Others”) performed by measuring k-core, betweenness, closeness, degree, change in average shortest path length, and change
in articulation points (mean + SD). There were no significant differences in these measurements between Alzheimer’s disease-related signal molecules and
other signal molecules in the network (P < 0.05, Mann-Whitney U-test). This network feature is the same as that of disease-related molecules defined in

earlier studies. IN means the incoming paths OUT means the outgoing paths, and ALL means both incoming and outgoing paths.

Centrality analysis

Node removal analysis

k-core Betweenness Closeness Degree Average path length Articulation point
AD
ALL 0.61+124 0.006 +£0.013 0.21+0.18 0.012+0.015 5.453 +0.024 10778 +0.75
out 0.66 £ 1.05 0.006 £ 0.013 0.27+£0.30 0.012+0.015
IN 2.62+1.33 0.007 £0.016 0.24+0.04 0.009+£0.013
OTHERS
ALL 0.70+1.10 0.005+0.011 0.21+0.17 0.010 £ 0.011 5.452 +0.022 10783 £ 0.64
ouT 0.76 +1.42 0.005+0.011 0.21+0.23 0.010 £0.011
IN 259+ 125 0.006 +£0.013 0.24+0.04 0.008 £ 0.009
100% ADNCN. = RRNCN which has a mai'ntenance function in nerve cells, and ACh (Hoshi
et al., 1997), which decreases as AR accumulates. For the pathways
associated with neuronal plasticity, the decrease in robustness for
_— NGF and ACh was within the top 10% of all combinations. The
° set that showed the largest change in robustness was the pathway
3 between glutamate and actin signal transduction (R-value was
8 s0% ~14.9, —13.6 and —1.29 for ADN subtracted by CN, ADN sub-
5 tracted by RRN and RRN subtracted by CN). The same change
g in robustness for the glutamate to actin signal transduction path-
S 25% way was observed between ADN and RRN and between ADN
and CN. This finding suggests that these changes in robustness
do not depend on signal molecule number, network density, the
0% k=4 k=5 k=6 KT k=8 k=9 average clustering index;, or the average shortest path length. In the

FIGURE 2 | Result of k-cycle structure rate of ADN/CN and RRN/CN. The
X-axis represents step kand the Y-axis represents the rate of decrease. The
error bar represents a top value of 95% and a bottom value of 5%. \We used
RRN with a random Alzheimer’s disease-related signal molecule set, in which
the rate of change in the three indicators (network density, average clustering
index, and average shortest path length) is within 5%. By comparing the
number of k-cycle structures (k= 4, 5, ..., 9) of RRN, CN, and ADN, we
showed that the all-step k value decreased. However, the graph shape was
similar for each cycle structure number corresponding to the steps; the
correlation coefficient between ADN/CN and RRN/CN was 0.99. This finding
also demonstrates that network size, not external factors, has an effect on
cycle structure.

at k= 9. Thus, there was no difference in the effect of Alzheimer’s
disease-related signal molecules and random signal molecule
on any of the inputs or outputs. Next, we conducted an analysis
of change in robustness (k=4, 5, ..., 9) for pathways associated
with neuronal plasticity and neurite outgrowth, and for pathways
associated with neuronal death and APP (Figure 3). The change
in robustness was the greatest for the pathways associated with
neuronal plasticity (Walsh et al., 2002) for ADN subtracted by CN
and ADN subtracted by RRN, for each k value. Likewise, for the
pathways associated with neurite outgrowth, there was a decrease
in robustness for those involving NGF (Tuszynski et al., 2005),

analysis of the pathways associated with neural cell death, there
were no changes in robustness observed for the FasL to ICAD
pathway; however, CN and RRN showed increases in each step of
the TNFo. to ICAD and caspase 3 pathways. TNFo. and caspase 3
correlate positively with the accumulation of A (Cacquevel et al.,
2004; McCusker et al.,2001). Furthermore, these results show that
Alzheimer’s disease-related signal molecules have more selective
effects on neural plasticity and neurite outgrowth than random
signal molecules.

Analysis of certain inputs to all outputs showed a large decrease
in signal molecules associated with neuregulin (NRG), which is a
substrate of BASE1 (Willem et al., 2006); with NGE which is the
drug target in Alzheimer’s disease; with reelin, which is thought to be
related to Alzheimer’s disease (Botella-Lopez et al., 2006); and with
dopamine, which is a neurotransmitter (Figure 4). By comparison,
epidermal growth factor (EGF) and the neurotrophin family, which
includes brain-derived neurotrophic factor (BDNF) and neuro-
trophin 4 (NT4), showed an increase in associated signal molecules.
The level of BDNF is increased in patients with Alzheimer’s disease
and in the hippocampus of a transgenic mouse model of Alzheimer’s
disease (Laske et al., 2006; Tang et al., 2000). However, our finding
that the R-value of inputs was between 0.8 and —1.2 suggests that
the effect of BDNF on robustness in Alzheimer’s disease is small.
Analysis of all inputs to certain outputs revealed that the largest
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A glutamate to CREB B ACh to tubulin
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$ 3 3 3
4 (4
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o 1 o 1
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FIGURE 3 | Pathway robustness: individual input-output relationships in
ADN subtracted by CN, ADN subtracted by RRN, and RRN subtracted by
CN (k=4,5, ...,9). (A) Robustness changes in the pathways associated with
neuronal plasticity: input is glutamate and output is CREB. (B-E)

Robustness changes in the pathways associated with neurite outgrowth:
inputs are ACh, Ephrin, IGF1, and NGF, and output is tubulin. The decrease

= ADN-CN = ADN-RRN - RRN-CN

k=4k=5k=6k=7k=8k=9

k=4k=5k=6k=7k=8k=9

k=4k=5k=6k=7k=8k=9

C Ephrin to tubulin

—14
—12
—10
-8
—6
—4
-2
0

2

k=4k=5k=6k=7k=8k=9

Change of R-value

F FasL to ICAD

Change of R-value
o = N W b

k=4k=5k=6k=7k=8k=9

| All to caspase3

Change of R-value
O = N W b

k=4k=5k=6k=7k=8k=9

in robustness was large for the pathways involved with NGF, which has a
maintenance function in nerve cells, and ACh, which decreases as A
accumulates. (F, G) Change in the number of pathways associated with
neural cell death: inputs are FasL and TNFa, and output is ICAD. (H, 1)
Accumulation of APP: all inputs to MINT-1 as output (H) and to caspase 3
as output (I).

decrease in associated signal molecules was for key factors in neural
activity, including actin and tubulin, which are cytoskeletal proteins
regulating neural plasticity and neurite outgrowth, and CREB, which
is a transcription factor (Figure 4). By comparison, transcription
factors, such as the nuclear factor of activated T cells (NFAT), and
actin-binding proteins, such as o-actinin and profilin, showed an
increase in associated signal molecules. Because the R-value range
was between 1.2 and —4.3, the result for the comparison of input to
total output implies that Alzheimer’s disease affects the expression
of output molecules more than input molecules.

The analysis of the change in similarity between the input and
output sets of CN, ADN, and RRN, shown as a matrix, indicate that
ADN is lower than RRN when e =5 and 9, but higher than RRN
when e = 6,7 and 8 (Figure 5).

DISCUSSION

MICROARRAY AND CENTRALITY ANALYSIS OF SIGNAL MOLECULES

In our study, we conducted a feature analysis of Alzheimer’s disease-
related signal molecules in a network. We conducted the analysis on

genes from a large sample of patients in the early stage of late-onset
Alzheimer’s disease. It is thought that new information on a disease
pathogenesis can be gained by observing changes in a signaling
pathway produced by the changes in the stages of Alzheimer’s dis-
ease. Data similar to that used in the present study, namely the reg-
istered expression data derived from the hippocampal CA1 region
of Alzheimer’s patients at different stages (Blalock et al., 2004),
may be used for a similar analysis in the future. The data from the
aforementioned study covers the four categories of Alzheimer’s
disease status termed control, incipient, moderate, and severe.
Therefore, we believe that we will be able to conduct time-series
network analyses of these symptoms. The present study focuses only
on gene expression data, yet Alzheimer’s disease characteristics not
regulated by gene expression may also be considered by using alter-
native experimental methods, for example, the large-scale databases
from other in vivo experiments (Bertram et al., 2007) or positron-
emission tomography (PET) studies (Tuszynski et al., 2005).

In the feature analysis, we found no significant difference in
signal molecules for all indicators. By comparison the average
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FIGURE 4 | Robustness of inputs and outputs in ADN subtracted by CN,
ADN subtracted by RRN, and RRN subtracted by CN (k= 9). (A) Robustness
analysis of the pathway from certain ligands to all outputs (transcription factors
and cytoskeletal proteins). The R-value range of inputs was between 0.8 and
—1.2. Robustness analysis showed a large decrease in signal molecules
associated with NRG, which a substrate of BASE1. EGF and the neurotrophin
family, which includes BDNF and NT4, showed an increase in associated

signal molecules. (B) Robustness analysis of the pathway from all ligands to
certain transcription factors (R-value range, —2.1 to 1.1). (C) Robustness
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analysis of the pathway from all ligands to certain cytoskeletal proteins

(R value range, —4.3 to 1.3). Robustness analysis of the key factors in neural
activity in (B) and (C) revealed that the largest decrease in signal molecules
was for those associated with actin and tubulin, the cytoskeletal proteins that
regulate neural plasticity and neurite outgrowth, and for those associated with
CREB, which is a transcription factor. By comparison, transcription factors,
including the nuclear factor of activated T cells (NFAT), and actin binding
proteins, such as o-actinin and profilin, showed an increase in associated
signal molecules.

of indicators including degree and betweenness increased, for
Alzheimer’s disease-related signal molecules compared to the
other signal molecules. This trend is the same as that for charac-
teristic disease-related genes defined in earlier studies (Ideker and
Sharan, 2008). Changing the threshold for defining Alzheimer’s
disease-related genes has an effect on the results of gene expres-
sion data analysis In addition, it is difficult to analyze indicators
like degree and betweenness, due to the method of calculating
substances at the ends of networks. For this reason, substances
like ACh and NGF, which are located at the ends of networks
and are targets of drug development, require a combination of
signal molecule analysis and pathway analysis that controls the
input and output data. Therefore, additional findings on the

pathogenesis of Alzheimer’s disease may be discovered through
additional feature analysis of networks for data other than gene
expression.

NETWORK STRUCTURE

In the analysis of k-cycle structure, we discovered that k-cycle
numbers decreased in all steps in the ADN/CN compared with
that in RRN/CN and that the rate of decrease increased accord-
ing to the step number. We also discovered that RRN had more
k-cycle structure than ADN. However, since the decreasing rate
at each step was the same in ADN and CN, the change in k-cycle
number in this study has a larger effect on the network scale than
the Alzheimer’s disease-related signal molecules. Moreover, the
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FIGURE 5 | Network similarity analysis of CN, ADN, and RRN. The X-axis
represents step e and the Y-axis represents the angle value (S). Error bars
represent the SD. The results of the network similarity analysis for the input
and output set are converted into a matrix and indicate that ADN is lower than
RRN when e =5and 9, but is higher than RRN when e =6, 7 and 8.
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reason for the greater change in cycle structure by step number is
believed to result from the effect of an increase in the number of
nodes, which were randomly moved into the cycle. In future stud-
ies, it may be necessary to normalize changes in the network scale
to conduct analyses on k-cycle structure. It must be noted that in
this study, we focused on feedforward and feedback loops in the
results of loop structure.

PATHWAY CHARACTERISTICS

Our k-shortest pathway analysis of pathway characteristics
revealed no changes between the R-values of all inputs and out-
puts and the pathway average. This result suggests that the effect
of Alzheimer’s disease on the hippocampal signal transduction
pathway does not correspond to the number of pathways or to
the distribution of k-shortest pathways. We also discovered that
the ADN-CN and ADN-RRN sets of Alzheimer’s disease-related
signal molecules affect specific pathways more selectively than
the random sets. In addition, the glutamate-actin pathway plays
an important role in the formation of mature spines in the rat
brain (Serge et al., 2003), which showed the most significant
decrease in R-value, also showed the most significant decrease
in the RRN-CN pathway.

In the analysis of inputs, the decrease in robustness of NGF
agreed with the decrease in robustness of Alzheimer’s disease.
Increase in robustness was seen in both NT4 and BDNE. Earlier
studies suggested that BDNF tends to increase in early-onset
Alzheimer’s disease and decrease in late-onset Alzheimer’s disease.
Also, insulin and IGF1 decreased in our study, but an increase
in insulin and IGF1 was thought to occur as the result of an
increase in AP in prior studies (Cole and Frautschy, 2007). An
increase in the level of the EGF receptor and A is reported to
be correlated (Zhang et al., 2007), yet we found no evidence of
this relationship in the present study. With respect to output fac-
tors, there were significant decreases of R-value in cytoskeletal
proteins, like actin and tubulin, or in CREB thus suggesting that

Alzheimer’s disease selectively affects the neural plasticity and
neurite outgrowth. Moreover, increase was seen in actin bind-
ing proteins such as o-actinin and profilin. The reason for the
decrease in actin might be explained by the tendency of actin-
binding proteins to bind other proteins, such as cortactin, cofilin,
and B-catenin; thus, actin may perform other functions that are
specific to Alzheimer’s disease. There was an increase in NFAT in
ADN, which is expressed at the same time as BDNF (Groth and
Mermelstein, 2003), and thus we believed that changes in NFAT
synchronized with the changes in BDNF. In addition, the angle
value in CN showed more change by step compared with RRN.
This is because the effects of Alzheimer’s disease-related signal
molecules are different at each step, and further interpretation
of each step in the k-shortest pathway will be required in future
studies. In our study, we succeeded in indicating changes caused
by Alzheimer’s disease in signal transduction pathways through
analysis of the features of signal molecules and of the properties
of pathways in network structures.

CONCLUSION

We conducted a feature analysis on networks of signal molecules
regulated by Alzheimer’s disease and analysed the properties of the
network structure. In our analysis of signal molecules, we found no
significant difference in all indicators. Network structure analysis
revealed that Alzheimer’s disease-related signal molecule sets have
a specific effect on the average shortest path length, with effects on
motif structures, like feedforward and feedback loops, controlling
the functions of neuronal cells. Also, our analyses of pathway char-
acteristics extracted pathways related to neuronal plasticity, neurite
outgrowth (including ACh and NGF), and neural death (including
the TNFo pathway and caspase 3). In addition, similar changes in
R-value in our study were observed for other Alzheimer’s disease
signal transduction pathways. Similarity and k-shortest analysis
of pathways showed that the effect of Alzheimer’s disease-related
genes on networks depends on steps. This finding indicates that
a k-shortest pathway analysis is more useful than a shortest path-
way analysis. In summary, the Python module use in the present
study enabled us to comprehensively analyse the characteristics
of biomolecular networks and to assess the effects of Alzheimer’s
disease using feedforward and feedback loop control structures as
alternative paths.
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