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Neuromorphic hardware systems provide new possibilities for the neuroscience modeling 
community. Due to the intrinsic parallelism of the micro-electronic emulation of neural 
computation, such models are highly scalable without a loss of speed. However, the communities 
of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. 
We present a software concept that provides the possibility to establish such hardware devices 
as valuable modeling tools. It is based on the integration of the hardware interface into a 
simulator-independent language which allows for unifi ed experiment descriptions that can be 
run on various simulation platforms without modifi cation, implying experiment portability and 
a huge simplifi cation of the quantitative comparison of hardware and simulator results. We 
introduce an accelerated neuromorphic hardware device and describe the implementation of 
the proposed concept for this system. An example setup and results acquired by utilizing both 
the hardware system and a software simulator are demonstrated.
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followed by production and testing phases. This process normally 
takes several months. Further fundamental differences between 
hardware and software models will be discussed in the Section 
“Neuromorphic Hardware”.

Except for the system utilized in this work, all cited neuromorphic 
hardware projects currently work with circuits operating in biological 
real-time. This allows interfacing real-world devices such as sensors 
(Serrano-Gotarredona et al., 2006) or motor controls for robotics, 
as well as setting up hybrid systems with in vitro neural networks 
(Bontorin et al., 2007). The neuromorphic hardware systems we 
consider in this article, as described in Schemmel et al. (2007, 2008), 
possess a crucial feature: they operate at a highly accelerated rate. 
The device which is currently in operation (Schemmel et al., 2007) 
(see “The Accelerated Hardware System” for a detailed description) 
exhibits a speedup factor of 105 compared to the emulated biological 
real time. This opens up new prospects and possibilities, which will 
be discussed in the Section “Neuromorphic Hardware”.

This computation speed, together with an implementation path 
towards architectures with low power consumption and very large 
scale networks (Fieres et al., 2008; Schemmel et al., 2008), makes 
neuromorphic hardware systems a potentially valuable research 
tool for the modeling community, where software simulators are 
more commonplace (Brette et al., 2006; Morrison et al., 2005, 
2007). To establish neuromorphic hardware as a useful compo-
nent of the neural network modelers’ toolbox requires a proof of 
the hardware system’s biological relevance and its operability by 
non-hardware-experts.

An approach which can help to fulfi l both of these conditions is to 
interface the hardware system with the simulator-independent lan-
guage PyNN (Davison et al., 2008) (see “PyNN and NeuroTools”). 
The PyNN meta-language allows for a unifi ed description of  neural 

INTRODUCTION
Models of spiking neurons are normally formulated as sets of dif-
ferential equations for an analytical treatment or for numerical 
simulation. So-called “neuromorphic” hardware systems represent 
an alternative approach. In a physical, typically silicon, form they 
mimic the structure and emulate the function of biological neural 
networks. Neuromorphic hardware engineering has a tradition going 
back to the 1980s (Mead, 1989; Mead and Mahowald, 1988), and 
today an active community is developing analog or mixed-si gnal 
VLSI models of neural systems (Ehrlich et al., 2007; Häfl iger, 2007; 
Merolla and Boahen, 2006; Renaud et al., 2007; Schemmel et al., 2007, 
2008; Serrano-Gotarredona et al., 2006; Vogelstein et al., 2007).

The main advantage of the physical emulation of neural network 
models, compared to their numerical simulation, arises from the 
locally analog and massively parallel nature of the computations. 
This leads to neuromorphic network models being typically highly 
scalable and being able to emulate neural networks in real time or 
much faster, independent of the underlying network size. Often, the 
inter-chip event-communication bandwidth sets a practical limit 
on the scaling of network sizes by inter-connecting multiple neural 
network modules (Berge and Häfl iger, 2007; Costas-Santos et al., 
2007; Schemmel et al., 2008). Compared to numerical solvers of 
differential equations which require Von-Neumann-like computer 
environments, neuromorphic models have much more potential 
for being realized as miniature embedded systems with low power 
consumption.

A clear disadvantage is the limited fl exibility of the implemented 
models. Typically, neuron and synapse parameters and the net-
work connectivity can be programmed to a certain degree within 
limited ranges by controlling software. However, changes to the 
implemented model itself usually require a hardware re-design, 
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network experiments, which can then be run on all supported back-
ends, e.g. various software simulators or the presented hardware 
system, without modifying the description itself. Experiment port-
ability, data exchange and unifi ed analysis environments are only 
some of PyNN’s important implications. For neuromorphic devices, 
this provides the possibility to calibrate and verify the implemented 
models by comparing any emulated data with the corresponding 
results generated by established software simulators. Every scientist, 
who has already used such a simulator with scripting support or 
with an interpreter interface, will easily learn how to use PyNN. 
And every PyNN user can operate the presented hardware system 
without a deeper knowledge of technical device details.

In the Section “Simulator-like Setup, Operation and Analysis”, 
the architecture of a Python (Rossum, 2000) interface to the hard-
ware system, which is the basis for integration into PyNN, will be 
described in detail. The advantages and problems of the PyNN 
approach for the hardware system will also be discussed. In the 
Section “The Interface in Practice”, an example of PyNN code for 
the direct comparison of an experiment run on both the hard-
ware system and a software simulator, including the corresponding 
results, will be presented.

NEUROMORPHIC HARDWARE
Unlike most numerical simulations of neural network models, 
analog VLSI circuits operate in the continuous time regime. This 
avoids possible discretization artifacts, but also makes it impos-
sible to interrupt an experiment at an arbitrary point in time and 
restart from an identical, frozen network state. Furthermore, it 
is not possible to perfectly reproduce an experiment because the 
device is subject to noise, to cross-talk from internal or external 
signals, and to temperature dependencies (Dally and Poulton, 
1998). These phenomena often have a counterpart in the biologi-
cal specimen, but it is highly desirable to control them as much 
as possible.

Another major difference between software and hardware mod-
els is the fi niteness of any silicon substrate. This in principle also 
limits the software model size, as it utilizes standard computers with 
limited memory and processor resources, but for neuromorphic 
hardware the constraints are much more immediate: the number 
of available neurons and the number of synapses per neuron have 
strict upper limits; the number of manipulable parameters and the 
ranges of available values are fi xed.

Still, neuromorphic network models are highly scalable at con-
stant speed due to the intrinsic parallelism of their circuit operation. 
This scalability results in a relative speedup compared to software 
simulations, which gets more and more relevant the larger the 
simulated networks become, and provides new experimental pos-
sibilities. An experiment can be repeated many times within a short 
period, allowing the common problem of a lack of statistics, due 
to a lack of computational power, to be overcome. Large param-
eter spaces can be swept to fi nd an optimal working point for a 
specifi c network architecture, possibly narrowing the space down 
to an interesting region which can then be investigated using a 
software simulator with higher precision. One might also think 
of longer experiments than have so far been attempted, especially 
long-term learning tasks which exploit synaptic plasticity mecha-
nisms (Schemmel et al., 2007).

THE ACCELERATED HARDWARE SYSTEM
Within the FACETS research project (FACETS, 2009), an inter-
disciplinary consortium investigating novel computing paradigms 
by observing and modeling biological neural systems, an acceler-
ated neuromorphic hardware system has been developed. It will 
be described in this section.

Neuron, Synapse and Connectivity model
The FACETS neuromorphic mixed-signal VLSI system has been 
described in detail in recent publications (Schemmel et al., 2006, 
2007). Implemented is a leaky integrate-and-fi re neuron model 
with conductance-based synapses, designed to exhibit a linear cor-
respondence with existing conductance-based modeling approaches 
(Destexhe et al., 1998). The chip was built on a single 25 mm2 die 
using a standard 180 nm CMOS process. It models networks of up 
to 384 neurons and the temporal evolution of the weights of 105 
synapses. The system can be operated with an acceleration factor 
of up to 105 while recording the neural action potentials with a 
temporal resolution of approximately 0.3 nS, which corresponds 
to 30 µs in biological time.

The neuron circuits are designed such that the emulated mem-
brane potential V(t) is determined by the following differential 
equation for a conductance-based integrate-and-fi re neuron:
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index j in the fi rst sum runs over all excitatory synapses while the 
index k in the second sum covers the inhibitory ones. The activa-
tion of individual synapses is controlled by the synaptic opening 
probability p

j,k
(t) (Dayan and Abott, 2001). The synaptic conduct-
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j,k

(t) 
and a maximum conductance max( )j kg t, . The neuron emits a spike 
if a threshold voltage V

th
 is exceeded, after which the membrane 

potential is forced to a reset voltage V
reset

 and then released back 
into the infl uence of excitatory, inhibitory and leakage mecha-
nisms. The weights are modifi ed by a long-term plasticity algo-
rithm (Schemmel et al., 2007) and thus can vary slowly with time. 
Table 1 summarizes the most important hardware parameters, 
with their counterparts in the biological model, their available 
ranges and uncertainties.

Each chip is divided into two network blocks of 192 neurons 
each, and each block can receive 256 different input channels. Each 
input channel into a block can be confi gured to receive either a 
feedback signal from one specifi c neuron within the same block, a 
feedback signal from the opposite block, or an externally  generated 
signal, for example from some controlling software. Every neuron 
within the block can be connected to every input channel via a 
confi gurable synapse. Synaptic time constants and the values for gmax 
are shared for every input channel, while the connection weights 



Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 3

Brüderle et al. Python interface for neuromorphic hardware

can be set between 0 nS and gmax with a four bit resolution for each 
individual connection.

Although the free parameter space is already large, the model 
fl exibility is clearly limited, especially in terms of its inter-neuron 
connectivity. Based on the experience acquired with the proto-
type chip described above, a wafer-scale integration1 system (Fieres 
et al., 2008; Schemmel et al., 2008) with up to 1.8 × 105 neurons and 
4 × 107 synapses per wafer is currently under development. It will 
be operated with a speedup factor of up to 104 and will provide a 
much more fl exible and powerful connectivity infrastructure.

Support framework
In order to give life to such a piece of manufactured neuromorphic 
silicon, an intricate framework of various pieces of custom-made 
support hardware and software layers has to be deployed, which has 
previously been reported on. The chip is mounted on a carrier board 
called Nathan (Fieres et al., 2004; Grübl, 2007, Chapter 3) which also 
holds, among other components, an FPGA for direct communication 
control and some RAM memory modules for storing input and out-
put data. Up to 16 of these carrier boards can be placed on a so-called 
backplane (Philipp et al., 2007), which itself is connected to a host 
PC via a PCI-based FPGA card (Schürmann et al., 2002).

The connection from chip to computer via the PCI card allows the 
confi guration of the hardware, the defi nition and application of spike 
stimuli and the recording of spiking activity from within the network. 
Analog sub-threshold data can only be acquired via an oscilloscope2, 
which is connected to pins that can output selectable membrane 
potentials. Via a network connection, the  information from this 
oscilloscope can be read and integrated into the software running 
on the host computer (see Figure 1 for a setup schematic).

Both an FPGA on the backplane and those on the carrier 
boards are programmed and confi gured with dedicated code. 

Communication with the PCI board utilizes a specifi c device 
driver and a custom-made protocol (Philipp, 2008, Chapter 2.2.4). 
Multi-user access is realized via userspace daemon multiplexing 
connections to different chips while encapsulating control com-
mands and data from multiple users in POSIX Message Queues 
(IEEE, 2004). Data transfer from and to the oscilloscope is based 
on TCP/IP sockets (Braden, 1989; LeCroy, 2005). Interconnecting 
multiple chips in order to set up larger networks will be possible 
soon (Philipp et al., 2007).

SIMULATOR-LIKE SETUP, OPERATION AND ANALYSIS
As proposed in the introduction, attracting neuroscience experts 
into the fi eld of neuromorphic engineering is essential for the 
establishment of hardware devices as modeling tools. Neuroscience 
expertise has to be consulted not only during the design process, 
but also, and especially, after manufacturing, when it comes to 
verifying the device’s biological relevance. This implies a whole set 
of requirements for the software which provides the user interface 
to the hardware.

If the system is to be operated by scientists from fi elds other 
than neuromorphic engineering, the software must hide as many 
hardware-specifi c details as possible. We propose that it should pro-
vide basic control mechanisms similar to typical interfaces of pure 
software simulators, i.e. an interpreter for interactive operation and 
scripting. Parameters and observables should be given in biological 
dimensions and follow a biological nomenclature. Moreover, drawing 
the attention of the neuroscience community to neuromorphic hard-
ware can be strongly facilitated by the possibility of porting existing 
software simulation setups to the hardware with little effort.

Multiple projects and initiatives provide databases and tech-
niques for sharing or unifying neuroscientifi c modeling code, see 
for example the NeuralEnsemble initiative (Neural Ensemble, 2009), 
the databases of Yale’s SenseLab (Hines et al., 2004) or the soft-
ware database of the International Neuroinformatics Coordination 
Facility (INCF Software Database, 2009). Creating a bridge from 
the hardware interface to these pools of modeling experience will 
provide the important possibility of formulating transparent tests, 

1A silicon wafer which will not be cut into single chips as is usual, but left in one 
piece. Further post-processing steps will interconnect the disjoint reticles on the 
wafer, resulting in a highly confi gurable silicon neural network model of unique 
dimensions.
2Currently: LeCroy WaveRunner 44Xi.

Table 1 | The most important hardware model parameters, the type of physical quantity used for their implementation, their confi gurability and an 

estimation of uncertainty. The fi rst four columns show their typical biological interpretation and the resulting value ranges. The translation between both 

domains depends on the chosen speedup and the desired biological parameter value ranges. The given estimations (some being educated guesses) of 

confi guration uncertainty refl ect the current state of available methods to measure, to adjust or to calibrate the values, and may not necessarily refl ect 

hardware limitations. The uncertainty of Ee is load-dependent, the relation is not yet suffi ciently analyzed.

 Biological Interpretation Hardware parameter implementation

Param Unit Min Max Physical quantity Confi gurable Estimation of uncertainty (%)

Cm nF 0.2 0.2 Capacitance No 10

Gl nS 20 40 Current Yes 10

El mV −80 −55 Voltage Yes 2

Ei mV −80 −55 Voltage Yes 2

Ee mV −80 20 Voltage Yes Unknown

Vth mV −80 −55 Voltage Yes 5

Vreset mV −80 −55 Voltage Yes 10

τsyn ms 30 50 Current Yes 25

gmax nS 1 100 Current Yes 25
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benchmarks and requests that will boost further hardware develop-
ment and its establishment as a modeling tool.

Most software simulators for spiking neuron models come with 
an interpreter interface for programming, experiment setup and 
control. For example, NEURON (Hines and Carnevale, 2006; Hines 
et al., 2009) provides an interpreter called Hoc, NEST (Diesmann 
and Gewaltig, 2002; Eppler et al., 2008; Gewaltig and Diesmann, 
2007) comes with a stack-based interface called SLI, and GENESIS 
(Bower and Beeman, 1998) has a different custom script language 
interpreter also called SLI. Both NEURON and NEST also pro-
vide Python (Rossum, 2000) interfaces, as do the PCSIM (PCSIM, 
2009; Pecevski et al., 2009), Brian (Goodman and Brette, 2008) and 
MOOSE (Ray and Bhalla, 2008) simulators. Facilitating the usage 
of neuromorphic hardware for modelers means providing them 
with an interface similar to these existing ones. But there are further 
requirements arising from hardware specifi c issues.

TECHNICAL REQUIREMENTS
As shown in the Section “Support Framework”, operating the pre-
sented neuromorphic hardware system involves multiple devices 
and mechanisms, e.g. Message Queue communication with a user-
space daemon accessing a PCI board, TCP/IP socket connection 
to an oscilloscope, software models that control the operation of 
the backplane, the carrier board and the VLSI chip itself, and high-
level software layers for experiment defi nition. On the software side, 
this multi-module system utilizes C, C++ and Python, and multiple 
developers from different institutions are involved, applying various 
development styles such as object-oriented programming, refl ec-
tive programming or sequential driver code. The software has to 
follow the ongoing system development, including changing and 
improving FPGA controller code and hardware revisions with new 
features.

This complexity and diversity argues strongly for a top-level 
software framework, which has to be capable of effi ciently gluing all 
modules together, supporting object-oriented and refl ective struc-

tures, and providing the possibility of rapid prototyping in order 
to quickly adapt to technical developments at lower levels.

One further requirement arises: the speedup of the hardware 
system can be exploited by an interactive, possibly intuition-guided 
work fl ow which allows the exploration of parameters with imme-
diate feedback of the resulting changes. This implies the wish to 
have the option of a graphical interface on top of an arbitrary 
experiment description.

EXISTING INTERFACES
Descriptions in the literature of existing software interfaces to neu-
romorphic hardware are very rare. In Merolla and Boahen (2006), 
the existence and main features of a GUI for the interactive opera-
tion of a specifi c neuromorphic hardware device are mentioned.

Much more detailed software interface reports are found in Dante 
et al. (2005). They describe a framework which allows exchange of 
AER3 data between hardware and software while experiments are 
running. The framework includes a dedicated PCI board which 
is connected to the neuromorphic hardware module and which 
can be interfaced to Linux systems by means of a device driver. 
A C-library layered on top of this driver is available. Using this, 
a client-server architecture has been implemented which allows 
the on-line operation of the hardware from within the program 
MATLAB. The use of MATLAB implies interpreter-based usage, 
scripting support, the possible integration of C and C++ code, 
optional graphical front-end programming and strong numerical 
support for data analysis. Hence, most of the requirements listed 
so far are satisfi ed. Nevertheless, the framework is somewhat stand-
alone and does not facilitate the transfer of existing software models 
to the hardware.

In Oster et al. (2005), an automatically generated graphical front-
end for the manual tuning of hardware parameters is  presented, 
including the convenient storing and loading of confi gurations. 

3Address Event Representation.

PC

digital

analog

Computer Network

Oscilloscope

Backplane

Carrier boards

Neural Network Chip

FIGURE 1 | Schematic of the accelerated FACETS hardware 

system framework. Via a digital connection, software running on the 
host computer can control the parameters of any neural network chip 
mounted on a carrier board on the communication backplane. It can 

stimulate the network with externally generated spikes and can record 
spikes generated on the chip. Analog sub-threshold information acquired with 
an oscilloscope can be integrated into the software via a network 
connection.
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Originally, a similar approach was developed for the hardware sys-
tem utilized here, too (Brüderle et al., 2007). Manually defi ning 
parts of the enormous parameter space provided by such a chip via 
sliders and check-boxes can be useful for intuition-guided hard-
ware exploration and circuit testing, but it turns out to be rather 
impractical for setting up large network experiments as usually 
performed by computational neuroscientists.

CHOOSING A PROGRAMMING LANGUAGE
Except for the convenient portability of existing experiment set-
ups, an interface to the neuromorphic hardware system based on 
the programming language Python solves all of the requirements 
stated in the Sections “Importance of the Software Interface” and 
“Technical Requirements”, especially the hardware-specifi c ones. 
Python is an interpreter-based language with scripting support, 
thus it is able to provide a software-simulator-like interface. It can 
be effi ciently connected to C and C++, for example via the pack-
age Boost.Python (Abrahams and Grosse-Kunstleve, 2003). Python 
supports sequential, object-oriented and refl ective programming 
and it is widely praised for its rapid prototyping. Due to the pos-
sibility for modular code structure and embedded documentation, 
it has a high maintainability, which is essential in the context of a 
quickly evolving project with a high number of developers.

In addition to its strengths for controlling and interconnect-
ing lower-level software layers, it can be used to write effi cient 
post-processing tools for data analysis and visualization, since a 
wide range of available third-party packages offers a strong foun-
dation for scientifi c computing (Jones et al., 2001; Langtangen, 
2008; Oliphant, 2007), plotting (Hunter, 2007) and graphics (Lutz, 
2001, Chapter 8; Summerfi eld, 2008). Hence, a Python interface 
to the hardware system would already greatly facilitate modeler 
adoption.

Still, the possibility of directly transferring existing experiments 
to the hardware is even more desirable; a unifi ed meta-language 
usable for both software simulators and the hardware could achieve 
that. Thus, the existence of the Python-based, simulator-independ-
ent modeling language PyNN (see PyNN and NeuroTools) was the 
strongest argument for utilizing Python as a hardware interface, 
because the subsequent integration of this interface into PyNN 
depended on the possibility of accessing and controlling the hard-
ware via Python.

Possible alternatives to Python as the top layer language for the 
hardware interface have been considered and dropped for different 
reasons. For example, C++ requires a good understanding of mem-
ory management, it has a complex syntax, and, compared to inter-
preted languages, has slower development cycles. Interpreter-based 
languages such as Perl or Ruby also provide plotting functionality, 
numerical packages (Berglihn, 2006; Glazebrook and Economou, 
1997) and techniques to wrap C/C++ code, but eventually Python 
was chosen because it is considered to be easy to learn and to have 
a clean syntax.

PYNN AND NEUROTOOLS
The advantages of Python as an interface and programming lan-
guage are not limited to hardware back-ends. For the software 
simulators NEURON, NEST, PCSIM, MOOSE and Brian, Python 
interfaces exist. This provides the possibility of creating a Python-

based, simulator-independent meta-language on top of all these 
back-ends. In the context of the FACETS project, the open-source 
Python module PyNN has been developed which implements such 
a unifi ed front-end (see Davison, 2009; Davison et al., 2008).

PyNN offers the possibility of porting existing experiments 
between the supported software simulators and the FACETS hardware 
and thus to benchmark and verify the hardware model. Furthermore, 
on top of PyNN, a library of analysis tools called NeuroTools (2009) 
is under development, exploiting the possibility of a unifi ed work 
fl ow within the scope of Python. Experiment description, execution, 
result storage, analysis and plotting can be all done from within the 
PyNN and NeuroTools framework. Independent of the used back-
end, all these steps have to be written only once and can then be run 
on each platform without further modifi cations.

Especially since the operation of the accelerated hardware gener-
ates large amounts of data at high iteration rates, a sophisticated 
analysis tool chain is necessary. For the authors, as well as for every 
possible PyNN user, making use of the unifi ed analysis libraries 
based on the PyNN standards (e.g. NeuroTools) avoids redun-
dant development and debugging efforts. This benefi t is further 
enhanced by other third-party Python modules, like numerical or 
visualization packages.

INTERFACE ARCHITECTURE
The complete software framework for interfacing the FACETS hard-
ware is structured as follows: Various C++ classes encapsulate the 
functionality of the neural network chip itself, of its confi guration 
parameter set, of the controller implemented on the carrier board 
FPGA, and of the communication protocol between the host soft-
ware and this controller. There is a stand-alone daemon written in 
C++ which provides the transport of data via the PCI card. It utilizes 
a device-driver which is available for Linux systems. Furthermore, 
there is a C++ class which encapsulates the TCP/IP Socket com-
munication with the oscilloscope.

The Boost.Python library (Boost.Python, 2003) is used to bind 
C++ classes and functions to Python. An instructive outline of the 
wrapping technique used can be found in Abrahams and Grosse-
Kunstleve (2003).

On top of these Python bindings, a pure Python framework 
called PyHAL4 (Brüderle et al., 2007) provides classes for neurons, 
synapses and networks. All these classes have model parameters 
in biological terminology and dimensions, and their constructors 
impose no hardware specifi c constraints.

The main functionality of PyHAL is encapsulated by a hard-
ware access class which implements the exchange layer between 
these higher-level objects and the low-level C++ classes exposed to 
Python via Boost. The hardware access layer performs the transla-
tion from biological parameters like reversal potentials, leakages, 
synaptic time constants and weights to the available set of hardware 
confi guration parameters. This set consists of discrete integers, for 
example for the synaptic weights, and of analog values for currents 
and voltages. Some of these parameters do have a direct biological 
counterpart, some do not. For example, neuron voltage param-
eters like reversal potentials are mapped linearly to the available 
 hardware membrane potential range of approximately 0.6–1.4 V, 

4Python Hardware Abstraction Layer.
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while membrane leakage conductances and synaptic time constants 
have to be translated into currents.

The translation layer also performs the transformation from 
biological to hardware time domain and back. Furthermore, all 
hardware-specifi c constraints, like the limited number of possi-
ble neurons or connections, the fi nite parameter ranges and the 
synaptic weight discretization, are incorporated in this hardware 
access class, generating instructive warnings or error messages in 
case of constraint violations.

Since the PyHAL framework is all Python code, it provides the 
desired interpreter-based interface to the hardware, correspond-
ing to comparable Python interfaces to, for example, NEST or 
PCSIM. Also, as for these software simulators, a module for the 
integration of this interface into the meta-language PyNN has been 
implemented. Figure 2 shows a schematic of the complete software 
framework with its most important components.

Thanks to this integration, all higher-level PyNN concepts like 
populations and inter-population projections plus the analysis and 
visualization tools developed on top of PyNN are now available for 
the hardware system.

Still, the integration of the hardware interface into PyNN also 
raises problems. Some of the PyNN API function arguments are 
specifi c to software simulators. In the hardware context, they have 
to be either ignored or be given a hardware-specifi c interpreta-
tion. For example, the PyNN function setup has an argument 
called timestep, which for pure software back-ends determines 
the numerical integration time step. In the PyNN module for 
the continuously operating hardware, this argument defi nes the 
temporal resolution of the oscilloscope for membrane potential 
recordings. Furthermore, the strict constraints regarding neuron 
number, connectivity and possible parameter values require an 
additional software effort, i.e. checking for violations and provid-
ing the messages mentioned above. PyNN does not yet suffi ciently 
support fast and statistics-intensive parameter space searches with 
differential formulations of the changes from step to step, which 

will be needed to optimize the exploitation of hardware specifi c 
advantages.

Without having access to the real hardware system, it is of course 
not possible to use the PyNN hardware module, hence it is not 
available for download. Still, it is planned to publicly provide a 
modifi ed module on the PyNN website (Davison, 2009) which 
allows testing of PyNN scripts intended to be run on the hardware, 
i.e. to get back all warnings or error messages which might occur 
with the real system. With such a mapping test module, scripts can 
be prepared offl ine for a later, optimized hardware run.

THE INTERFACE IN PRACTICE
To demonstrate the usage and functionality of the PyNN interface, a 
simple example setup is given in the following. Listing 1 shows the 
experiment described in PyNN, which is then executed both on the 
hardware system and using the software simulator NEST. A network 
consisting of 80 excitatory and 20 inhibitory neurons is created. The 
inhibitory sub-population is fed back into the network randomly 
with a probability of 0.5 for each possible inhibitory-to-excitatory 
connection. 160 excitatory and 40 inhibitory Poisson spike trains 
are randomly connected to the network with the same probability 
of 0.5 for each possible train-to-neuron connection.

Figure 3 shows a schematic of the implemented network 
architecture.

The maximum synaptic conductance gmax is 0.5 nS for excita-
tory and 1.6 nS for inhibitory connections. The output spikes 
of eight neurons are recorded, and the average fi ring rate of 
these eight neurons over a period of 5 s of biological time is 
determined.

In line 1, the PyNN back-end NEST is chosen. In order to utilize 
the hardware system, the only necessary change within this script 
is to replace line 1 by from pyNN.hardware.stage1 import 
*, all the rest remains the same. From lines 4 to 9, the population 
sizes, the numbers of external stimuli, and the synaptic weights 
are set. In lines 11–17, the neuron parameters are defi ned. Lines 19 

PyNN

PyNN.hardware

PyHAL

Spike Train In

Communication Spike Train Out

Chip Model

C++ (Boost.Python wrapper)

PyScope

C++

Chip Config

PyNN.neuron

HOC

NEURON

PyNN.nest

SLI

NEST

Socket Comm

Trace Manager

PyN

???

?

FIGURE 2 | Schematic of the software framework for the operation of the 

hardware system. It is integrated into the Python-based, simulator-independent 
language PyNN, which also supports back-ends like NEURON, NEST and more. 

The module for the hardware back-end consists of Python-based sub-modules 
for the digital and analog access to the chip. Each of those wrap the functionality 
of lower-level C++ layers, which are described in more detail in the text.
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type is possible. For the NEST back-end, the neuron type deter-
mines parameter values for e.g. C

m
, which are fi xed to resemble the 

hardware. Line 26 concatenates the two populations. In lines 28 
and 29, the Poisson spike sources are generated, passing the type of 
source, the previously defi ned parameters and the desired number. 
From lines 31 to 34, the neurons and spike generators are intercon-
nected. The arguments of the connect command specify fi rst a list 
of sources, then a list of targets, followed by the synaptic weights, 
the synapse types and fi nally by the probability with which each 
possible pairing of source and target objects is actually connected. 
The recording of the spikes of eight neurons and of one membrane 

and 20 determine the rate and duration of the Poisson spike train 
stimuli. In line 22, PyNN is initialized, the numerical integration 
step size of 0.1 ms is passed. If the hardware back-end is chosen, no 
discrete step size is utilized due to the time continuous dynamics in 
its analog network core, and the function argument is used instead 
to determine the time resolution of the oscilloscope, if connected. 
In lines 24 and 25, the excitatory and inhibitory neurons are cre-
ated, with the neuron parameters and the size of the populations 
as the second and the third arguments.

The fi rst argument, IF_facets_hardware1, specifi es the neu-
ron type to be created. For the hardware system, no other neuron 

from pyNN.nest2 import *
# OR: from pyNN.hardware.stage1 import *

numInhNeurons = 20
numExcNeurons = 80
numInhInputs = 40
numExcInputs = 160
w_exc = 0.0005 # uS
w_inh = 0.0016 # uS

neuronParams = { ’v_reset’ : -80.0, # mV
’e_rev_I’ : -75.0, # mV
’v_rest ’ : -70.0, # mV
’v_thresh’ : -57.0, # mV
’g_leak ’ : 20.0, # nS
’tau_syn_E’ : 30.0, # ms
’tau_syn_I’ : 30.0 } # ms

inputParameters = { ’rate’ : 5.0, # Hz
’duration’ : 5000 } # ms

setup(timestep=0.1)

n_inh = create(IF_facets_hardware1 ,neuronParams ,n=numInhNeurons)
n_exc = create(IF_facets_hardware1 ,neuronParams ,n=numExcNeurons)
net = n_exc + n_inh

i_exc = create(SpikeSourcePoisson ,inputParameters ,n=numExcInputs)
i_inh = create(SpikeSourcePoisson ,inputParameters ,n=numInhInputs)

connect(i_exc ,net ,weight=w_exc ,synapse_type=’excitatory’,p=0.5)
connect(i_inh ,net ,weight=w_inh ,synapse_type=’inhibitory’,p=0.5)

connect(n_inh ,net ,weight=w_inh ,synapse_type=’inhibitory’,p=0.5)

record(net[0:8] , ’spikes.dat’)
record_v(net[0], ’membrane.dat’)

run(5000) # duration in ms
end()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

LISTING 1 | PyNN Example Script. For detailed explanation see text.
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potential is prepared in lines 36 and 37 (not all neurons, due to a 
bug in the current hardware revision). In line 39, the experiment is 
executed for a duration of 5000 ms. Line 40 defi nes the end of the 
script, and deals with writing recorded values to fi le.

The experiment was run both on the FACETS hardware sys-
tem and using the software simulator NEST. The fi ring rate of the 
stimulating Poisson spike trains was varied from 0 to 9 Hz in steps 
of 0.5 Hz, and for each rate the experiment was repeated 20 times 
with different random number generator seeds. Figure 4 shows the 
resulting average output fi ring rates.

The fi ring rates measured on both back-ends exhibit a qualitative 
and, within the observed fl uctuations, quantitative correspondence. 
For both NEST and the hardware system, the onset of fi ring activ-
ity occurs at the same level of synaptic stimulation. The small but 
seemingly systematic discrepancy for higher output rates indicates 
that for the NEST simulation the inhibitory feedback has a slightly 

stronger impact on the network activity than on the hardware 
platform. The fi ring rate does not refl ect dynamic properties like 
fi ring regularity or synchrony, which might be interesting for the 
estimation of possible differences in network dynamics due to the 
limited precision of hardware parameter determination or due to 
electronic noise. With PyNN, studies like these have now become 
possible, but go beyond the scope of this paper.

To give an impression of the inhomogeneities of a hardware 
substrate and of the noise a typical hardware membrane is exposed 
to, a second measurement is shown. A single neuron receives 80 
excitatory and 20 inhibitory Poisson spike trains with 2.5 Hz each. 
It is connected to these stimuli with the same synaptic weights 
as in the setup described above, but gets no feedback from other 
neurons. The spike sources fi re for 4 s, with a silent phase of 0.5 s 
before and after. Using a single PyNN description, the identical 
setup with identical spike times and identical connectivity can be 
deployed for both NEST and the hardware system. Figure 5 shows 

NEST Simulation

Hardware Neurons

20
m

V
20

0
m

V

10 µs

1 s

FIGURE 5 | Membrane potentials of a neuron under Poisson stimulation. 

Input spike times are identical for all traces. The uppermost trace (red) 
represents a NEST simulation. Spike times determined by NEST are marked 
with dashed vertical lines in light gray. The lower six traces (blue) represent 
measurements from adjacent hardware neurons recorded in separate runs. 
For the hardware traces, the given time and voltage scales indicate the real 
physical dimensions of the emulation.
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FIGURE 3 | Connectivity schematic of the implemented network. An 
excitatory and an inhibitory population of Poisson spike train generators 
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projections have a unit-to-unit connection probability of 0.5.
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a function of input rate. The script shown in Listing 1 has been executed with 
various stimulation rates on both the hardware system (blue circles) and the 
software simulator NEST (red squares). Each data point represents the mean 
over 20 runs, the error bars denote the corresponding standard deviations.
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the resulting membrane potential trace simulated by NEST and the 
membrane potentials acquired from six adjacent neurons on the 
neuromorphic hardware. For the hardware traces, the unprocessed 
time and voltage scales are given as measured on the chip in order to 
illustrate the accelerated and physical nature of the neuromorphic 
model. The PyHAL framework automatically performs a transla-
tion of these dimensions into their biological equivalents.

The constant noise level in the hardware traces can be best 
observed during the phases with no external stimulation. This noise 
is a superposition of the noise actually occurring within the neuron 
circuits and the noise being added by the recording devices. The 
differences from hardware neuron to hardware neuron represent 
mainly device fl uctuations on the transistor level, which strongly 
dominate time-dependent infl uences like temperature-dependent 
leakages or an unstable power supply. Counterbalancing these fi xed-
pattern effects with calibration methods is work in progress.

DISCUSSION
Today, the communities of computational neuroscientists and neu-
romorphic engineers work rather in parallel instead of benefi tting 
from each other. We believe that closing this gap will boost the 
development, the usability and the number of application fi elds of 
neuromorphic systems, including the establishment of such devices 
as valuable modeling tools that will contribute to the understand-
ing of neural information processing. Based on this motivation, 
we have described a set of requirements that a software interface 
for a neuromorphic system should fulfi ll.

Following these guidelines, we have implemented a Python-
based interface to an existing accelerated neuromorphic hardware 
system developed within the research project FACETS, and we have 
integrated it into the common neural network simulator interface 
PyNN, proving the potential of PyNN to also serve as a hardware 
interface. This approach provides the novel possibility of porting 
existing experiments from the software simulator to the hardware 
domain and vice versa with a minimum of effort. In order to illus-
trate the unifi cation and portability aspects, we have presented 
an example PyNN code sequence for a simple experiment. The 
correspondence between the results acquired with both a software 
simulator and the hardware system demonstrate the functionality 
of the framework.

With a neuromorphic device accessible and controllable via 
PyNN, its advantages can be exploited by non-hardware-experts 
from all fi elds. Hardware and software co-simulations based on 
PyNN descriptions can be used to test, to tune and to benchmark 
neuromorphic devices. Furthermore, the integration of hardware 
interfaces into the PyNN framework can avoid parts of the often 
redundant effort that has to be invested into creating a new indi-
vidual software layer stack on top of any new neuromorphic system, 
since high-level tools, e.g. for analysis and plotting, are already 
available and maintained by an active community.
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