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Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest 
may be characterized by power spectral distribution (PSD) trends of the form 1/f α. Trends with 
1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple 
time scales. Estimates of the fractal properties enable the quantifi cation of phenomena that 
may otherwise be diffi cult to measure, such as transient, non-linear changes. In this study 
it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes 
related to dynamic, multi-scale alterations in cerebral blood fl ow (CBF) after a transient 
hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before 
and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, 
Hurst exponent H) characterizing the trends were measured from BOLD signals. The results 
show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even 
during the dynamic CBF change that follows hyperventilation. The most dominant effect on 
the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-
reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. 
Df was most sensitive to grey matter. H correlated with default mode network areas before 
hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In 
the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used 
for analyzing multi-scale alterations of cerebral blood fl ow.
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et al., 2009; Maxim et al., 2005). The Hurst exponent (H) and the 
fractal dimension (D

f
) have been used to estimate the scale invari-

ant features of the time series. According to Sprott (2003), the H 
and D

f
 are related to α by equations α = 2H − 1 and α = −2D

f
 + 3 

in fGn model. The H is most often used as it can describe the most 
essential scaling properties of a temporal signal on a scale from 0 
to 1. D

f
 on the other hand can be used to describe the high dimen-

sionality of the structure with a scale in theory from 0 to infi nitum 
(in practice from 0 to 3, Herman et al., 2009).

Theoretically, BOLD signal fl uctuations form as an interference 
of physiological processes affecting the deoxyhemoglobin level in 
the cortex (Kiviniemi, 2008). Spontaneous low frequency fl uctua-
tions (LFF) affecting the cerebral cortex, i.e. vasomotor, pCO

2
, elec-

trophysiologic and metabolic fl uctuations all affect the detected 
T2*-weighted signal (Kannurpatti et al., 2008; Laufs, 2008; Obrig 
et al., 2000; Pattison et al., 2009; Shmuel and Leopold, 2008). It has 
been shown that sedation, blood withdrawal and brain diseases 
all increase low frequencies of BOLD fl uctuations in a wide range 
and alter 1/f trends (Kannurpatti et al., 2008; Kiviniemi et al., 2005; 
Zang et al., 2007). Metrics measuring multiscale effects in BOLD 
signal 1/f trends have high potential for giving crucial information 
on the dynamics of the brain cortex.

In this study, we aim to fi nd a suitable metric for characteriz-
ing dynamic multi-scale changes in cerebral blood fl ow. We used 

INTRODUCTION
Natural phenomena, from coastline dimensions to organization of 
brain functional connectivity, incorporate self-similarity; i.e. the 
proportional characteristics of the observed variables resemble each 
other in multiple scales (Mandelbrot, 1975; Maxim et al., 2005; van 
den Heuvel et al., 2008; Wink et al., 2008). The latin word fractus 
(engl. broken), was fi rst used by Mandelbrot to describe the whole 
phenomenon as being based on these repeatable small pieces, as if 
they were broken parts of the whole (Mandelbrot, 1975).

Fractal temporal signals have power spectrum characteristics fol-
lowing a 1/f trend (Herman et al., 2009; Maxim et al., 2005; Sprott 
et al., 2003). Functional magnetic resonance imaging (fMRI) can 
provide temporal signals refl ecting the blood oxygenation level 
(BOLD) contrast with T2 and T2*-weighted image sequences 
(Ogawa et al., 1990). In the absence of cued stimuli, the BOLD signal 
variations in the brain follow a power spectral distribution (PSD) 
trend 1/f α, where f is the frequency and α is an index describing the 
trend (Biswal et al., 1995; Kiviniemi et al., 2000, 2005; Purdon and 
Weisskoff, 1998; Zarahn et al., 1997). In the frequency domain, the 
parameter α (also often referred to as the spectral index β) describes 
the PSD trend slope on a logarithmic scale.

Fractal signals fall into two categories, depending on whether 
they have a stable (fractional Brownian motion, fBm), or a time 
dependent variance (fractional Gaussian noise, fGn) (Herman 

Edited by:

Jussi Tohka, Tampere University of 
Technology, Finland

Reviewed by:

John Suckling, University of 
Cambridge, UK
Julien Cohen-Adad, Harvard Medical 
School, Charlestown, USA

*Correspondence:

Vesa Kiviniemi, Department of 
Diagnostic Radiology, Oulu University 
Hospital, P.O. Box 50, Oulu OYS 90029, 
Finland.
e-mail: vesa.kiviniemi@oulu.fi 



Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 18 | 2

Kiviniemi et al. Mapping multi-scale dynamics of BOLD

hyperventilation to induce a transient cerebral blood fl ow (CBF) 
reduction. A transient CBF reduction also alters the vasomotor fl uc-
tuations dynamically in several temporal scales; i.e. the fl ow returns 
towards a normal level within minutes, and the increased vasomo-
tor waves gradually return towards the original level (Kannurpatti 
et al., 2008). We hypothesize that differences in metrics measuring 
the 1/f trends (α, H, D

f
) could be used to localize the effects of the 

dynamic CBF alterations in the brain cortex. In the analysis of 1/f 
fractal properties, the temporal stability of variance, i.e. the fBm or 
fGn nature of the signal, should be examined and accounted for. 
Therefore we also investigated whether fBm or fGn model based 
analysis methods would be more accurately matched with grey 
matter signal behaviour.

MATERIALS AND METHODS
SUBJECTS, EXPERIMENTAL SETUP AND IMAGING PROCEDURE
Twenty-three healthy student volunteers (six females, mean age 
25 ± 3 years) were imaged in rest with closed eyes in normal 
ad liberam ventilation before and after 2 min of hyperventila-
tion. The study was approved by the Ethics Committee of the 
University of Oulu, and each subject gave written informed con-
sent. The imaging was performed by a 1.5-T General Electric 
Signa HDX scanner using 8-channel head coil with a parallel 
imaging acceleration factor of 2. Hearing was protected using 
earplugs, and motion was minimized using soft pads fi tted over 
the ears. Two separate scanning sessions were performed, one 
before (Pre-HV) and one after hyperventilation (Post-HV) using 
GR EPI sequence with 1764 ms TR, 40 ms TE, 90° fl ip angle, 
25.6 cm × 25.6 cm FOV and 64 × 64 image matrix. The whole 
brain volume was covered using 28 slices, with 0.4 mm space 
between slices and a 4 mm slice thickness. 250 brain volumes, 
lasting 7 min 21 s, were collected after exclusion of the fi rst three 
volumes due to T1 equilibrium effects. In addition to resting-
state fMRI, T1-weighted 1 mm3 voxel scans were taken with 3D 
FSPGR BRAVO-sequence in order to obtain anatomical images 
for segmenting the brains and for co-registration of the fMRI 
data to standard space coordinates.

PHYSIOLOGICAL MEASUREMENTS AND HYPERVENTILATION 
PROCEDURE
The subjects were monitored with a Schiller Maglife C 400G MRI-
compatible anaesthesia monitor. Expiratory end tidal CO

2
 (ETCO

2
) 

was measured from an MRI-dedicated ventilation mask. Peripheral 
blood oxygen saturation (SpO

2
) and heart rate (HR) were measured 

from the right index fi nger tip. Diastolic (DP) and systolic (SP) 
blood pressure were measured from the left arm using an auto-
mated cuff. The measurements were taken before the fi rst resting-
state scans, and during the last 15 s of the hyperventilation periods 
before the second resting-state scans. DP and SP were successfully 
collected from 16 subjects; hyperventilation-related motion arte-
facts prevented the automated measurement of blood pressure in 
seven subjects prior to the second scan.

During hyperventilation, the subjects were instructed to breathe 
forcefully as deeply and as quickly as they could for 2 min. The 
physiological measurements were repeated at the end of hyperven-
tilation just before the start of the second resting state. During each 
of the scans the subjects breathed spontaneously. One of the authors 

(VK) gave the instructions, and monitored the subjects beside the 
scanner throughout the duration of scanning sessions.

To ascertain that hypocapnia was induced by hyperventilation, 
the group level differences of normal ventilation and hyperventila-
tion-induced state in physiological measurements (ETCO

2
, SpO

2
, 

HR, DP and SP) were evaluated with paired t-test (states Pre and 
Post respectively; Table 1). SPSS software version 14.0 was used for 
the data processing.

PROCESSING OF STRUCTURAL BRAIN IMAGES
The 3D FSPGR images were co-registered with the fMRI datasets of 
corresponding subjects and with a Montreal Neurological Institute 
(MNI) standard structural space template (avg152T1 template 
included in FSL) to produce transformations for spatial normali-
zation of the fMRI results. FSL 4.0 FLIRT with default settings was 
used for registrations. The brain was extracted from the 3D FSPGR 
and BOLD images prior to registrations with the FSL 3.3 BET tool 
(f = 0.25 and f = 0.5 respectively, g = default).

Grey matter (GM), cerebrospinal fl uid (CSF) and white mat-
ter (WM) were segmented from the original brain-extracted 3D 
FSPGR data using the FAST segmentation tool in FSL 4.0 (default 
settings). The resulting subject-specifi c probabilistic segment maps 
were co-registered to MNI-templates with the same transforma-
tions as whole-brain structural images.

Registered segments and whole-brain structural images were 
averaged to produce group level mean segments and anatomy for 
overlaying the fMRI results on them, and for correlating the fMRI 
results with them. Whole-brain structural images were intensity-
normalized prior to averaging by dividing their intensities with 
their mean intensity.

fMRI PRE-PROCESSING
Brain extraction was carried out for BOLD images with FSL 3.3 BET 
using f = 0.5. Motion was corrected using the FSL 3.3 MCFLIRT. 
All the subjects exhibited less than 1.5 mm motion, and the mean 
motion of volumes relative to the previous time point was tested to 
be not statistically signifi cantly different between the scans before 
and after hyperventilation. As motion affects the BOLD signal 
(Friston et al., 1996), and especially its PSD (Maxim et al., 2005) 
even after motion correction, the movement-related confounding 
effects were removed from the BOLD signal time courses accord-
ing to Friston and co-workers, using motion parameter estimates 
produced by MCFLIRT, in-house developed Matlab software and 
FSL 4 fsl_regfi lt tool.

ESTIMATION OF VARIABLES α, H AND Df

All brain BOLD signal time courses were detrended by fi tting 
a + b × t to them (where t is time). 128-point Discrete Fourier 
Transformations (DFTs) were computed for 123 128-points wide 
rectangular windowed sections of detrended time courses. Sections 
were overlapped by 127 points. Rectangular windowing was used in 
DFT with a spectrogram function in Matlab. As fMRI time courses 
are real-valued, their amplitude spectra are positively symmetric, 
and phase spectra are negatively symmetric with respect to Nyquist 
frequency. Consequently, we only used the fi rst N/2 + 1 coeffi cients 
of N-point DFT. As a result, 64 DFT coeffi cients were obtained for 
each 128-point section. PSDs were estimated as second powers of 
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are denoted by D
fH,

 and the values estimated with the modifi ed 
algorithm by D

fHmedian
.

ANALYSIS OF BOLD DATA USING VARIABLES α, H AND Df

The estimation resulted in variables α, H
DOSD

, H
WDOSD

, H
FWD

, D
fH

 
and D

fHmedian
 for each voxel for the states of normal (state Pre) and 

hyperventilation-modulated CBF (state Post). Subject-level brain 
maps of these values were spatially normalized using transforma-
tions obtained from co-registration of 3D FSPGR to the original 
BOLD data and MNI template (c.f. “Processing of structural brain 
images”).

After spatial normalization, we tested on the group level whether 
each variable in each voxel (i.e. MNI standard space coordinate) 
exhibited a statistically signifi cant change between the states. The 
testing was done with a T-statistic in a permutation test framework. 
The randomise tool in the FSL software was used with 10,000 per-
mutations and with threshold-free cluster-enhancement (TFCE) 
for multiple comparisons correction. TFCE (Smith and Nichols, 
2007) does not require cluster-level thresholds, making the results 
independent of any bias due to arbitrary cluster-forming thresh-
old selection. Since TFCE enhances areas with values exhibiting 
spatial contiguity, it should be suitable for use in this study since 
we expected those values (changes of variables α, H and D

f
) to be 

extensively present and quite uniform in GM. Randomise was run 
separately for positive and negative changes between the states: 
1-sample testing was used on Post minus Pre, and Pre minus Post 
variable values of all patients in each voxel, resulting effectively in 
2-sample paired testing.

The resulting group level 1-p maps describing corrected p- values 
were spatially correlated to probabilistic group level mean tissue 
segment maps with the FSL 4 fslcc-tool (Table 2). Confi dence 
intervals (CI) for correlation coeffi cients were calculated using 
normality transformation. This shows how sensitively and specifi -
cally changes from baseline resting-state values of variables due to 
altered CBF correspond to GM, and thus how potent these changes 
are as temporal feature contrasts in detecting changes in CBF. For 
variables α and H, the correlation was calculated using 1-p maps 
corresponding to testing of Post minus Pre values, and for D

f
-vari-

ables using 1-p maps corresponding to testing of Pre minus Post 
values, since these are the dominant directions of change in these 
variables (Figures 2–4).

RESULTS
Physiological variables such as ETCO

2
, HR and DP changed signifi -

cantly between the states (p < 0.01; Table 1), while SpO
2
 and SP did 

not. The signifi cant change of ETCO
2
 agrees with the assumption 

that an hypocapnic state was achieved with the hyperventilation 
procedure.

Figure 1 shows mean FFT power spectra of probabilistic seg-
ments of the brain cortex. In all of the spectra, the power at the 
lowest frequencies is elevated, clearly altering the shape of the power 
spectrum rather than elevating any single frequency. The lowest 
frequency trends prevail after removing the signal trends suggestive 
of dynamic changes in BOLD variance throughout the POST-V 
scan.

Figure 2 illustrates the mean α, H and D
f
-histograms of 

the segmented brain voxels. Fractional Brownian motion and 

amplitude spectra (divided by the number of samples and sampling 
frequency). The fi nal PSD estimate for a time course was computed 
by averaging PSDs from individual sections. The averaging reduces 
noise related to the selection of the sampling period (Ifeachor and 
Jervis, 2002), but works under the assumption of at least some 
stationarity in the signal.

The actual 1/f α PSD trend of individual BOLD time courses were 
modelled through α by fi tting a + b × f −α to their PSD (Kiviniemi 
et al., 2000, 2005). The Ezyfi t 3rd party toolbox1 (version 2.04, 
default settings) was used for fi tting the model to individual PSDs 
(initial values a = 0, b = 1, α = 0).

For estimation of the Hurst exponent H and fractal dimension 
D

f
, both original and integrated versions of the detrended BOLD 

time courses were used as inputs for the estimation algorithms. The 
value at each time point in an integrated time course is a sum of the 
values at corresponding and previous time points in an original, 
detrended BOLD time course. This way the estimation of H and 
D

f
 assumes fractional Gaussian model (fGn) of underlying BOLD 

PSD trends, which has been shown to be a fi t description of rest-
ing-state BOLD data corrected for motion-related confounding 
effects (Maxim et al., 2005). In the fractional Brownian motion 
(fBm) model analysis, the original BOLD time courses were used 
as was earlier suggested by Maxim et al. (2005).

Three estimates of H were computed from integrated BOLD 
signals with the Matlab function wfbmesti. One estimate given 
by this function is based on discrete the second-order derivative 
(DOSD) method (Istas and Lang, 1994) and another on the wave-
let-based version of DOSD. A third one uses the linear relationship 
that exists on a double-logarithmic scale between the variance of 
details produced by wavelet transformation and the corresponding 
detail level (Flandrin, 1992). These three estimates are later denoted 
as H

DOSD
, H

WDOSD
 and H

FWD
.

One estimate of D
f
 was calculated from integrated BOLD sig-

nals according to Higuchi. This method has been demonstrated to 
give stable estimates with limited data (Higuchi, 1988; Klonowski, 
2007), which is also the case regarding the length of BOLD time 
courses. The procedure involves computing a curve length (line 
integral) of the original time course and average curve lengths of 
its down-sampled versions. Down-sampled versions of time courses 
are used to extract information about signal characteristics on dif-
ferent scales. The curve lengths constitute a line when plotted on a 
double-logarithmic scale (base 10) against the lengths (k) of cor-
responding down-sampling intervals. The absolute value of the 
slope of the line is the fractal dimension.

Individual average curve lengths may be sensitive to outliers. If 
there is a wave form present on one scale, but not on others (i.e. 
some deterministic pattern that would yield a spike in the PSD 
that does not follow the general underlying trend of that PSD), this 
could bias the line fi t in a double-logarithmic coordinate system. 
In other words, the original algorithm of Higuchi could be sensi-
tive to distinct BOLD fl uctuations with large enough amplitude. 
In order to overcome this problem, we investigated the use of 
median instead of mean curve lengths on different time scales, 
since median is more insensitive to individual large outliers. From 
here on, the values of D

f
 estimated with the original algorithm 

1www.fast.u-psud.fr/ezyfi t

www.fast.u-psud.fr/ezyfit
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Gaussian noise hypotheses were both used to calculate the D
f
 

and H  metrics. The α-values stay within −1 < α < 1-limits, show-
ing that the variance is not time dependent, and therefore the 
BOLD signal in both states matches with an fGn model rather 
than an fBm model. Also regarding the fGn model, D

f
 estimated 

from integrated BOLD time courses varied between 1 and 2, 
and H between 0 and 1, as they should. The histograms of fBm 

measurements both in D
f
 and H show no signifi cant difference 

between the pre and post- hyperventilation scans, also pointing 
to the same conclusion. Based on the fi ndings, we chose to use 
the fGn model in the following estimations of the metrics. The 
median yields even greater separation between the states in D

f
 

measurements.
The mean values of α, H and D

f 
based on the fGn model from 

mapped probabilistic regions of interest are shown in Table 2. The 
changes are in line with the idea that hyperventilation related blood 
fl ow reduction transiently increases in low frequency fl uctuation. 
There were signifi cant changes detected between the pre and post-
hyperventilation scans in α, H

FWD
, D

fH 
and D

fHmedian
 in the selected 

ROI’s. DOSD and wavelet DOSD values were not signifi cantly 
altered.

The group level mean maps of estimated α showed a signifi cant 
change in cortical structures between pre and post-hyperventila-
tion scans (Figure 3). Please note that in the normal status, the 
cerebral blood vessel-related pulsation of the major cerebral arteries 
dominate the α values with the given threshold. After hyperventi-
lation, the arterial pulsation dynamics completely alter and a low 
frequency fl uctuation in the cortex becomes a dominant source of 
the α contrasted map.

Unlike the α plots, the D
f 
values are quite uniform over the whole 

brain in normal ventilation (Pre-HV), c.f. Figure 3. The fractal 
dimension, in contrast to both α and H, is reduced during reduced 
blood fl ow in the brain cortex after hyperventilation, as predicted. 
The D

fHmedian
 version of the D

f 
analysis is more sensitive to grey 

matter changes than the version using mean D
fH,

 c.f. Figure 3. This 
is in line with the histogram results in the Figure 2, showing more 
differentiation between the two conditions.

Interestingly, the H presented focusing on the ventromedial 
frontal, parieto-occipital and precuneal cortices similar to default 
mode regions, as well as visual cortices in occipital lobe (Fox and 
Raichle, 2007). Also the H

FWD
 analysis was highly sensitive to dif-

ferences in the BOLD signal between pre and post-hyperventila-
tion scans; following hyperventilation the H increased throughout 
the cortex and the default mode-pattern vanished with the given 
thresholding, c.f. Figure 3.

Table 3 shows how well 1-p maps describing the signifi -
cance of variable changes between states (Pre and Post), spatially 
 correlated with GM, CSF and WM. There was a strong anatomical 

Table 1 | Group level mean values and standard deviations of physiological measurements in the state of normal ventilation (Pre), and the 

hyperventilation-modulated state (Post), and the statistical signifi cance of differences of group level changes between the states.

 Pre Post Signifi cance*

 Mean SD Mean SD t p

ETCO2 (kPa) 3.3 1.3 1.1 0.6 10.4a < 0.001

SpO2 (%) 97 1.8 98 3.5 −1.4a 0.175

Heart rate (1/min) 71 14 104 19 −7.1a < 0.001

BLOOD PRESSURE

Diastolic (mmHg) 99 22 107 26 −3.5b 0.003

Systolic (mmHg) 84 25 91 30 −2.0b 0.064

*Paired t-test (two-tailed signifi cance).
adf = 22, bdf = 15.
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FIGURE 1 | The grey (GM), white (WM) and cerebrospinal fl uid (CSF) 

mean power spectral before (pre in black) and after (post in red) 

hyperventilation, showing the elevation of the power at the lowest 

frequencies and the altered PSD confi guration after hyperventilation.
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similarity between a change of all variables (α, H, D
f
), although 

DOSD-method based estimates of H performed poorly in every 
way. The confi dence intervals in the r-values are very small relative 
to the differences between the r-values with the ∼2.9 × 105 voxels 
in the analysed ROI. Therefore all the differences between the r-
values are signifi cant in Table 3. Quantitatively, variables α, D

fH, 

D
fHmeadian

 and H
FWD

 provide quite similar accuracy for mapping 
the effects of CBF change within the brain cortex. However, some 
qualitative differences in the spatial distribution of the detected 
alterations do exist.

Figure 4 shows statistically signifi cant (p < 0.05, TFCE cor-
rected) changes of variables α, H

FWD
, D

fH
 and D

fHmedian
 overlaid on 

the probabilistic GM segment. In line with the quantitative meas-
ure of spatial correlation of probabilistic segment maps of GM, 
WM and CSF (Table 2), the most signifi cant changes of variables 
were detected in GM, in agreement with the BOLD signal origin. 
Concerning sensitivity to GM, the change of D

fHmedian
 provided 

the contrast best coinciding with it. α provided the second best 
 contrast in this sense, while H

FWD
 and D

fH
 had performances similar 

to each other. However, sagittal views revealed that, in general, no 
variable changed signifi cantly in the occipital cortex around the 
visual cortex or at susceptibility artefact areas near the mastoid 
and frontal sinuses.

According to the sagittal view in Figure 4, there is a lack of 
signifi cant change in the metrics in the visual cortex, precuneus, 
temporal cortex. Changes in the superior temporal areas in D

fH
, 

D
fHmedian

 and H
FWD

 are not detected as clearly as in α. These results 
indicate that changes of variables are not uniform throughout the 
cortex. Accordingly, the spatial correlation results (Table 3) remain 
clearly below the identical correlation of 1. Interestingly, the BOLD 
signal trends alter signifi cantly along major blood vessel structures, 
also suggesting vasomotor changes. Also a spot in the bilateral hip-
pocampi was noticeable in all the measures, but it was not uniform 
through the limbic regions.

FIGURE 2 | Group mean histograms of α, D
f
 and H

FWD
 of the whole brain. The fBm and fGn model options were both assessed for Df and H.
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FIGURE 3 | Group mean images α (hot-cold), D
fH

,
 
and D

fHmeadian
 (red) and H

FWD
 (green) in the brain during the state of normal ventilation (Pre-HV, on the left) 

and after hyperventilation (Post-HV, on the right) were overlaid on an MNI-coordinated grey matter template image. The range of color-encoding of each 
metric is shown in the middle of the image.

Table 2 | Mean (SD) metrics based on the fGn model of grey matter, white matter, and CSF, before and after hyperventilation.

 Pre Post t p

 Mean SD Mean SD

ALPHA

 Grey −0.068 0.182 0.207 0.310 −3.748 0.001

 White −0.128 0.153 0.090 0.296 −3.204 0.004

 Csf −0.190 0.340 0.127 0.315 −3.805 0.001
D

fH

 Grey 1.742 0.046 1.690 0.072 2.626 0.015

 White 1.759 0.045 1.713 0.070 2.452 0.023

 Csf 1.747 0.044 1.692 0.066 3.019 0.006
D

fHmedian

 Grey 1.693 0.049 1.616 0.090 3.346 0.003

 White 1.715 0.048 1.646 0.085 3.176 0.004

 Csf 1.700 0.046 1.619 0.077 4.065 0.001
H

dosd

 Grey 0.608 0.054 0.624 0.058 −1.419 0.170

 White 0.578 0.035 0.587 0.041 −1.118 0.276

 Csf 0.593 0.081 0.613 0.073 −1.386 0.179
H

fdw

 Grey 0.370 0.043 0.428 0.086 −2.894 0.008

 White 0.336 0.043 0.385 0.081 −2.587 0.017

 Csf 0.356 0.042 0.423 0.075 −3.837 0.001
H

wdosd

 Grey 0.596 0.054 0.600 0.056 −0.374 0.712

 White 0.562 0.036 0.565 0.039 −0.416 0.681

 Csf 0.586 0.078 0.591 0.074 −0.397 0.695

p, signifi cance of paired t-test.
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DISCUSSION
In this study, BOLD signal power spectrum estimates α, H and 
D

f
 were found to alter signifi cantly between scans taken before 

and immediately after 2 min of hyperventilation. Quantitatively, 
all variables have a similar performance in terms of the goal of 

 mapping these effects. The spatial correlation of the detected 
changes was highest with the grey matter maps of the same 
group, suggesting that areas responsive to respiratory challenges 
are dominantly located in those cortical structures with the high-
est CBF.

FIGURE 4 | Statistically signifi cant variable changes (between the state 

of normal ventilation (Pre) and the hyperventilation modulated state 

(Post) (2-sample paired TFCE corrected permutation test, p < 0.05). 

The detected voxels are overlaid on the group level mean GM segment in 

the MNI coordinates in the same locations as in Figure 3. From left to 
right: α, DfH, DfHmedian and HFWD. Cold-blue colours = decrease, and 
warm red-yellow colours = increase in variable between Pre and Post, 
respectively.

Table 3 | Correlation coeffi cients r with confi dence intervals computed between the group mean probabilistic tissue-segment maps and the 1-p 

maps describing signifi cant of group level changes in different metrics between Pre-HV and Post-HV.

 GM CSF WM

 r 95% CI r 95% CI r 95% CI

α 0.75 0.748–0.752 0.66 0.658–0.661 0.55 0.547–0.552

DfH 0.74 0.738–0.742 0.59 0.587–0.592 0.66 0.658–0.661

DfHmedian 0.80 0.798–0.801 0.63 0.627–0.632 0.71 0.708–0.712

HDOSD 0.43 0.427–0.433 0.40 0.397–0.402 0.32 0.316–0.323

HFWD 0.74 0.738–0.741 0.64 0.638–0.642 0.60 0.597–0.602

HWDOSD 0.34 0.336–0.343 0.32 0.316–0.323 0.27 0.266–0.273

r, correlation coeffi cient; CI, confi dence interval; GM, grey matter; CSF, cerebrospinal fl uid; WM, white matter.
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dimension estimate D
fHmedian

 provided the contrast that coincided 
best with GM, and consequently also with changes in BOLD signal 
generation from physiological processes related to CBF. The altera-
tion of the blood CO

2
 level due to hypocapnia induces a global 

reduction of blood fl ow, and its effects can be prominently detected 
in grey matter and CSF, less so in white matter (van der Zande et al., 
2005). Occipital areas of GM (sagittal view) failed to be mapped 
with a change of any variables. The vasomotor reactivity may not 
be so prominent in these areas due to the reduced number of sym-
pathetic nerves controlling the posterior cerebral artery compared 
to other parts of the brain (Heistad, 1984).

The estimation of α was based on averaged spectral estimates 
of segments that were computed without zero-padding regard-
ing DFT. This also makes the estimation of α itself more stable. 
The estimation could, however, be regionally biased toward some 
direction or another, if the temporal BOLD signal in those areas 
contains signal components with high power on some character-
istic frequencies, thus affecting the PSD fi tting procedure used to 
acquire α. With current knowledge of characteristic resting-state 
BOLD signal PSD spikes, i.e. the prominent frequencies, it would 
be challenging to fi lter these effects automatically from the sig-
nals, without affecting the baseline signal and, consequently, the 
estimation of α.

The estimation used for D
f
 is suitable for data analysis with 

relatively few time points (Accardo et al., 1997; Higuchi, 1990). 
Accardo et al. (1997) showed that less than 125 data points are 
needed in order to obtain reliable estimations of D

f
. We have tested 

the algorithm with 50–500 time points, and agree that stable results 
can be obtained with at least 150 time points.

In contrast to previous vasoreactivity studies using often hyper-
capnic elevations of pCO

2
 with repeated blocks of respiratory chal-

lenges, there were no respiratory nor other challenges going on 
during the scanning. A 2-min respiratory challenge was performed 
prior to scanning. This was done in order to introduce a dynamic 
multi-scale CBF alteration without affecting or stimulating the sub-
ject during scanning. The transient hypocapnia returns to normal 
and induces a long time scale change in vasomotor waves and/or 
CO2-fl uctuations (Kannurpatti et al., 2008; Pattison et al., 2009). 
This dynamic low frequency alteration was used, instead of a tem-
porally sustained elevation in the mean BOLD signal intensity level, 
to give functional contrast to brain structures. The lack of tasks 
during imaging ensured that there was no interference from task-
related neural activity to the resting-state BOLD signals measured. 
At the same time, confounding hyperventilation related motion 
artefacts were also minimized.

The hypocapnic state was effi ciently achieved based on ETCO
2 

reduction, although it has to be mentioned that only intubation 
would give accurate, non-leaked ETCO

2
-values. Intubation that 

requires sedation of the awake control subjects was not used for eth-
ical reasons. The expiratory and arterial ETCO

2
 is closely matched 

in a supine position, with a difference of 0.8 mmHg (Serrador et al., 
2006). Based on the literature, the ETCO

2
 reduction of 2.2 kPa 

(i.e. 16.5 mmHg) achieved in this study will, on average, reduce 
regional blood fl ow by 40% and volume by 8% (Last et al., 2007; 
Poppel et al., 2007). Hyperventilation was selected as the method 
since it has a relatively smaller effect on the cerebral blood volume 
(CBV) compared to CBF, and thus partial volume effects affecting 

As the cardiorespiratory challenge that we used was a dynamic 
change occurring over several minutes after cessation of hyper-
ventilation, (i.e. while the pCO

2
-level was normalizing), it was 

hypothesized that the variance of the BOLD signal might alter as 
a function of time, i.e. be fBm in nature. However, after spin his-
tory and motion correction, the BOLD signal behaves according to 
the fGn rather than the fBm theory based on the −1 < α < 1 type 
histograms (Maxim et al., 2005). This means that the variance of 
the BOLD signal does not change as a function of time, and the fGn 
analysis option is valid also in this study. The subsequent analyses 
of both D

f
 and H were therefore performed according to the fGn 

hypothesis.
Despite the slowly returning arterial CO

2
-level and the sub-

sequent diminishing of low-frequency vasomotor effects after 
hyperventilation, the changes of BOLD signal characteristics were 
successfully observed in the cortical structures. Furthermore, the 
changes of variables α, H and D

f
 observed in this study were found 

to be located in the same cortical structures as block design respira-
tory tests have shown vasoreactivity and arterial blood fl ow reserve 
alterations (Hedera et al., 1996; Lu et al., 2003; Lythgoe et al., 1999; 
Rostrup et al., 1994; van der Zande et al., 2005; Vesely et al., 2001). 
Hyperventilation has also been shown to reduce electrophysiologi-
cal complexity brain cortex and vagal outfl ow. (Müller et al., 2003; 
Penttilä et al., 2003).

Through similar map assessment, contrast based on D
fHmedian

 was 
also found to least coincide with the CSF segment at the cortical 
boundary, making it more specifi c to GM than the contrast based 
on straight-forward PSD trend estimation (contrast based on α). 
Considering some coincidence observed between changes of all 
variables and the WM segment, we argue that it is probably due to 
partial volume effects in image data collection causing some GM 
to contribute in areas mainly occupied by WM. Also the interin-
dividual anatomical variability across subjects affects the results, 
dispite spatial normalization.

The property of α maps to be able to differentiate between blood 
vessels and cortical structures makes it a very informative tool in 
the overall assessment of BOLD signal dynamics. The resting-state 
map of α in the state of normal ventilation (state Pre, Figure 2) also 
corresponded to the earlier results (Maxim et al., 2005).

H
FWD

 was the only Hurst exponent estimate evaluated in this 
study that provided reasonable results in mapping the effects of 
CBF alterations. A more detailed study of the signal properties 
would be required in order to understand which factors led to the 
insensitive H estimate when using DOSD-based methods. Different 
applications are likely to require different choices of estimators; 
for example, in Maxim et al. (2005) H was used in the analysis of 
Alzheimer’s disease by measuring the aspects of fGn noise that may 
refl ect the BOLD response related more on the neuronal activity. 
Maps of regional homogeneity (ReHo) and amplitude of low fre-
quency fl uctuation (ALFF) tend to give rather similar maps (Zang 
et al., 2004, 2007) focusing on default mode areas (Fox and Raichle, 
2007). This pattern was abolished after hyperventilation, as the H 
increased over the whole cortex. This effect may be confounded by 
attentional shifts in the default mode after the rather demanding 
hyperventilation challenge.

As maps and ROI based analysis of the most signifi cant variable 
changes were inspected (Figure 3; Table 2), changes of the fractal 
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the BOLD signal caused by changes in blood vessel diameter are 
minimized (Fortune et al., 1995).

Despite the dominantly blood fl ow instead of volume change 
following hyperventilation, a reduction of 3.6–4.8 ml in brain vol-
ume is to be expected, based on existing literature. This grey mat-
ter volume loss that will be compensated with CSF space can be 
estimated. The simultaneous detection of changes in the CSF, WM 
and GM areas with the BOLD technique may partially result from 
compensatory volume alterations and subsequent partial volume 
effects. The same effect is bound to happen also in the more often 
used studies assessing vascular reactivity with repeated hyperven-
tilation challenges.

A potential application of functional 1/f trend based estimates 
such as α, H and D

f
 could be the detection of altered vasoreactivity, 

i.e. vasomotion, in the pre-capillary arteries and the following ves-
sels. Blood perfusion heterogeneity has been shown to be increased 
during ischemia (Simonsen et al., 2002). Stroke, transient ischemic 
attacks or other factors reducing regional perfusion increase the 
low-frequency vasomotion amplitude and reduce the dominant 
frequency (Hudetz et al., 1995; Liu et al., 2007). A lack of endothe-
lium in tumor neovasculature induces extended hypoxic states that 
are also refl ected in a BOLD signal as low-frequency events altering 
the temporal signal properties (Baudelet et al., 2006; Wardlaw et al., 
2008). These metrics may reveal new pathological mechanisms and 
enable the detection of areas at risk of cerebrovascular incidents.

We agree with Liu et al. (2007) and Baudelet et al. (2006) that 
the analysis of the low-frequency characteristics of the BOLD signal 
offers a new contrast mechanism refl ecting changes in vascular 
physiology in addition to neuronal changes. Indeed recently, the 
valuation of the microvascular state of rectal tumors have shown 
promising results (Wardlaw et al., 2008). As some of the changes 
in physiological low-frequency factors tend to occur over a wide 
range of low frequencies, instead of one single frequency, variables 
related to PSD trends and other features extracted from a temporal 
BOLD signal could be used as an improved marker of neurovascular 
integrity in tissue.

As the formation of the BOLD signal is a sum of several oscil-
lations affecting the deoxyhemoglobin, the resulting BOLD sig-
nal can be quite complex (Kiviniemi, 2008). A very important 
paper addresses this issue by incorporating the method to distinct 
monofractal and multifractal dynamics (Wink et al., 2008). This 

method may improve the sensitivity of the fractal properties, as 
the stationarity of the fractality is assessed. Also importantly, as 
the BOLD signal in the brain is an indirect measure of regional 
neuronal activity, the Hurst exponent type measurement may reveal 
important information about the long-lasting memory of neuronal 
population activity over multiple time-scales. The multi-fractality 
has been shown to be connected to Alzheimer’s disease and medica-
tion effects (Wink et al., 2008).

In general, the factors altering the PSD trend measures α, H and 
D

f
 need not be solely related to factors affecting CBF. In theory, the 

assessment of any factor capable of changing the low frequency 
BOLD signal oscillations (i.e. neuronal or metabolic activity as well) 
may be detectable as long as CBF, blood pressure and other factors 
contributing to the oscillations are within normal limits and remain 
stationary enough during experimentation. At present, it seems that 
during normal awake status, the neuronal activity fl uctuations are a 
major source of BOLD signal low-frequency fl uctuations (Fox and 
Raichle, 2007). The fractal dimension estimations described in this 
study offer new methods that are also applicable in the analysis of 
neuronal activity refl ected in temporal BOLD signals.

CONCLUSION
Estimates of 1/f trends of temporal BOLD signals can be used in 
mapping the dynamic multi-scale effects of cerebral blood fl ow 
induced by transient hypocapnia in the brain cortex. Estimation of a 
trend from the PSD itself (estimate α) was able to separate the brain 
cortex and cerebral arteries. The median variate of a fractal dimen-
sion (D

fHmedian
) estimate may provide a contrast that is more sensitive 

to changes of vasoreactivity than the Hurst exponent or α. The H
FWD

 
was able to detect a default mode pattern during normal status with 
specifi c windowing. However, in general, performance of α, D

fHmedian
 

and H
FWD

 was rather similar with respect to grey matter specifi city 
in depicting the dynamic neurovascular change. Applications of 
the metrics could include new diagnostic approaches to disorders 
affecting cerebral blood fl ow dynamics and to the assessment of 
the effectiveness of the treatment of such disorders.
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