
Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 09 July 2009
doi: 10.3389/neuro.11.021.2009

Neural simulations on multi-core architectures

Hubert Eichner 1*, Tobias Klug2 and Alexander Borst1

1 Max-Planck-Institute of Neurobiology, Martinsried, Germany
2 Faculty for Informatics, Technical University of Munich, Garching, Germany

Neuroscience is witnessing increasing knowledge about the anatomy and electrophysiological 
properties of neurons and their connectivity, leading to an ever increasing computational 
complexity of neural simulations. At the same time, a rather radical change in personal computer 
technology emerges with the establishment of multi-cores: high-density, explicitly parallel 
processor architectures for both high performance as well as standard desktop computers. 
This work introduces strategies for the parallelization of biophysically realistic neural simulations 
based on the compartmental modeling technique and results of such an implementation, with a 
strong focus on multi-core architectures and automation, i.e. user-transparent load balancing.

Keywords: computer simulation, computer modeling, neuronal networks, multi-core processors, multithreading, 

parallel simulation

types of transmembrane currents as well as their irregular distri-
bution across a neuron. We propose two methods dealing with 
this issue. For solving, we use the comparatively simple, previously 
published splitcell method (Hines et al., 2008a) for splitting neurons 
into subtrees and extend the method to automatically identify a 
split compartment and distribute the workload for solving of these 
subtrees onto processors in a balanced way.

The next section will give a short introduction to parallel pro-
gramming, multi-core architectures and multithreading. The sec-
tion on “Compartmental Modeling” contains a summary of the 
compartmental modeling technique and the splitcell method. The 
section on “Details about the Sample Implementation” describes 
the sample simulator software we implemented to test our algo-
rithms. The algorithms themselves are presented in detail in the 
subsequent section, “Parallelized Simulations”. This part of the 
manuscript also contains a subsection comparing our approaches 
to previous neural simulator algorithms. The section “Results” 
presents performance results obtained with our sample implemen-
tation for models of varying complexity and memory requirements, 
followed by a discussion section summarizing the work and giving 
a short outlook.

PARALLEL PROGRAMMING AND MULTI-CORES
In the last 40 years, processor manufacturers increased perform-
ance mainly by a) creating faster and smaller transistors and 
circuits allowing for higher clock frequencies, and by b) automati-
cally exploiting parallelism inherent in the sequence of incoming 
instructions using overlapping and out-of-order execution. With 
the limited amount of instruction level parallelism in a sequential 
program and physical restrictions on the speed of transistors and 
electric signals traveling through a circuit, recent developments 
focus on providing multiple, user-visible processing units (PUs, 
also called cores). In the last few years, a new kind of architecture 
referred to as multi-cores emerged: Decreasing transistor sizes 

INTRODUCTION
With neurobiology and biochemistry advancing steadily, bio-
physically realistic modeling has become an indispensable tool for 
understanding neural mechanisms such as signal propagation and 
information processing in both single neurons and neural networks. 
The high computational complexity of such neural simulations due 
to detailed models of ion channels and synapses, combined with 
high spatial resolutions of neuronal morphology, often result in 
long run times or require the use of a whole network of computers 
(a computer cluster).

The evolution of multi-cores, a new processor architecture in 
personal computer technology where several standard processing 
units are combined on one chip, providing the user with a multiple 
of the previous available computational power, has the potential 
to overcome these limitations. Moreover, multi-cores are likely to 
replace the current single-core processors completely in the future; 
as of today, most computers are available with dual-core or quad-
core processors, only.

However, exploiting the potential of multi-cores requires man-
ual adaptation of the algorithms and the source code. This, in turn, 
requires thorough knowledge of the internals of these chips, careful 
examination and parallelization of the algorithms used and exten-
sive measurements to ensure the applicability of the parallelized 
program to a wide range of models.

This work introduces techniques for the parallelization of bio-
physically realistic neural simulations in a shared memory envi-
ronment (i.e., where the processing units access a common main 
memory) using multithreading with a special focus on the char-
acteristics of multi-core architectures.

Setting up the system of equations usually takes much more 
time than solving the equations, and parallel solving is algorith-
mically demanding; we therefore mainly focus on setting up the 
equations in parallel. Here, care must be taken to avoid workload 
imbalances due to different computational complexities of different 
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and improving manufacturing technologies are exploited to put 
multiple, full-blown PUs onto one chip. To exploit the computa-
tional capacities of this architecture, programs must be explicitly 
designed to make use of the available processing resources by 
fi rst analyzing their algorithms for potential parallelism, followed 
by writing new or modifying existing source code that identi-
fi es workload distributions and subsequently assigns jobs to the 
available cores1.

GENERAL RULES FOR PARALLELIZATION
Computer clusters and single computers with multiple processing 
chips or multi-cores all require adapting the algorithms and code 
to make use of the available processing resources. Parallel code 
must strive to meet the following requirements:

• The time spent on sequential, i.e. non-parallel, regions of the 
code must be minimized.

• The work must be distributed across the PUs in a manner as 
balanced as possible.

• Overhead due to parallelization must be minimized. This 
includes overhead for initialization routines and synchroniza-
tion operations.

Before continuing, two frequently used synchronization opera-
tions, mutexes and barriers, are introduced.

Mutexes (derived from mutual exclusion algorithm, also referred 
to as locks) are used to prevent the concurrent execution by differ-
ent processes (running instance of a program) of specifi c parts of 
the code (or, thereby, the concurrent access to common data). A 
lock can be held by one process at a time only; processes trying to 
acquire a lock must wait until the lock is released by the process 
currently holding the lock.

In contrast, barriers are special functions that, once called, only 
return when all other processes have called the function as well. 
They are used to make sure all processes have reached a certain 
point in the program.

Both mutexes and barriers are indispensable methods in paral-
lel programming. However, they come at the cost of inter-process 
communication; depending on how big the latency of the intercon-
nection technology is, they can infl uence the runtime signifi cantly 
if not used with caution. In typical message-passing environments 
(see Programming Multi-Cores) where inter-process communica-
tion usually requires sending messages across a network from one 
computer to another, latencies for small messages range between 
about 4 µs (Infi niBand, see Liu et al., 2005) and 30 µs (Ethernet, 
see Graham et al., 2005). Thus, synchronization operations quickly 
become a bottleneck. It is therefore necessary to reduce such com-
munication as far as possible, i.e. let the processes compute inde-
pendently as long as possible.

In contrast, inter-core communication on multi-cores is 
extremely fast (see next section) and allows for much fi ner-grained 
parallelization, i.e. the effi cient parallel computation even of small 
problems where synchronization operations are frequent. Still, 

 synchronizations come at a certain cost and can have a signifi cant 
effect on runtime if used extensively.

MULTI-CORE CHARACTERISTICS
In some architectures, different types of PUs are combined on 
one chip, e.g. IBM’s Cell Broadband Engine Architecture (Johns 
and Brokenshire, 2007). However, the most widespread type are 
homogeneous multi-core architectures where multiple copies of 
the same PU are placed on a single chip, e.g. Intel’s Core 2 Duo 
processors (Intel Corp., 2006), AMD’s Opteron K10 series (AMD, 
Inc., 2007a) or IBM’s POWER5 dual-cores (Sinharoy et al., 2005). 
This work will focus on the latter architecture, although most 
concepts derived in this work are applicable to heterogeneous 
multi-core architectures as well.

Before going into further detail, a note about caches must be 
made because they play a very important role in developing soft-
ware for multi-cores. In the context of processors, a cache refers to a 
very fast (compared to main memory) on-chip memory where pre-
viously accessed data from main memory is temporarily stored to 
reduce the latency of subsequent memory read and write accesses. 
A good way to ensure cache-effi ciency is to layout data in main 
memory both in a packed way and in the sequence of program 
accesses. This allows the processor to perform so-called prefetching 
of data when it realizes the program traverses an array.

The use of multiple caches requires a mechanism referred to as 
cache-coherency protocol to ensure integrity when different cores 
access the same location in main memory. Depending on what 
type of cache-coherency protocol is used, communication between 
cores that share a cache may be much faster than between cores that 
access separate caches (explained later in this section).

Figure 1 opposes a single-core processor with memory and I/O 
controllers attached via the front side bus (FSB) to two modern 
quad-core processors, Intel’s Xeon X5355 and AMD’s Opteron K10 
2347. Three important characteristics of homogeneous multi-core 
processors and consequences arising therefrom can be observed:

• All cores are full-blown copies of a single-core’s PU; this makes 
programming for multi-cores a comparatively simple task 
because a single program can be used on all four cores, and 
porting existing applications is simple from a programmer’s 
point of view.

• All cores on a chip share external resources like main memory, 
main memory bandwidth as well as processor-external hard-
ware and hardware bandwidth (network controllers, hard 
disk drives etc.). While the access to shared resources simpli-
fi es programming and allows for fast interaction between the 
cores, it also bounds the effi ciency of parallel programs that 
require a high memory or I/O bandwidth and low latency for 
every core.

• Inter-core communication is very fast compared with com-
puter clusters where latencies range between 4 and 30 µs. The 
latency of inter-core communication strongly depends on 
whether cores share a cache or not and the exact cache-cohe-
rency protocol used.

For instance, the inter-core latency on Intel’s Xeon X5355 can 
be as low as 26 ns if two cores communicate via a shared cache 
but is much higher if the two cores do not share a cache (between 

1This is not necessarily the case for programs that are interpreted by another pro-
gram such as MATLAB or IDL code; here, the intermediate software layer may au-
tomatically identify workload distributions for simple operations such as matrix 
multiplications and execute them in parallel transparently for the original program 
(ITT Visual Information Solutions, 2007; Moler, 2007).
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500 and 600 ns depending on whether the two cores are on the 
same or on different chips) because communication is performed 
by exchanging data via the comparatively slow main memory 
(Intel Corp., 2007). In contrast, on AMD’s Opteron K10 2347, 
the set of cores used does not infl uence the inter-core latency 
signifi cantly; on our test system, we measured latencies of 240 
and 260 ns for two cores sharing a cache or not, respectively. 
This is because AMD processors use a different way for ensuring 
cache coherency (AMD, Inc., 2007b) where cores can commu-
nicate directly without accessing main memory even if they are 
located on different chips.

The main intention of this work is to evaluate, in the context 
of neural simulations, how the advantages of multi-core architec-
tures can be exploited and when their limitations infl uence effi -
ciency. This requires mentioning another computer architecture 
fi rst, symmetric multi-processing (SMP). Here, multiple processor 
chips (possibly multi-core chips) are combined in one computer 
in a manner similar to how cores are combined on a multi-core 
chip. The main differences are a) that multi-cores are becoming 
ubiquitous devices, while SMP systems never saw widespread use 
except for some scientifi c areas and in servers, b) that cores on the 
same chip can communicate much faster, and c) that the number 
of processors/chips in one SMP system is low (usually two, seldom 
more than four) while multi-core chips are likely to comprise up 
to 32 or more cores on a chip in the near future. Therefore, albeit 
there are no differences between these two architectures from a 
programmer’s point of view, the higher number of cores and the 
low inter-core communication latency pose new scalability require-
ments, while at the same time allowing for fi ner grained paralleliza-
tion strategies. Nevertheless, the principles derived in this work are 
applicable to SMP systems as well.

PROGRAMMING MULTI-CORES
Parallel programming paradigms can be divided into two classes, 
message-passing and shared memory programming. In message-
passing, every process accesses its own memory region and com-
municates with other processes by explicitly sending and receiving 
messages. This is the standard programming model for all kinds 
of computer clusters but is also frequently used on hybrid archi-
tectures (networks of multiprocessor systems) or even on shared 
memory systems.

Shared memory programming, on the other hand, is based on 
processes communicating with each other by accessing common 
physical memory regions to change and read shared variables. This 
model can take various forms, for instance two different programs 
that share a small region of memory to exchange information. 
The most common method of shared memory programming in 
scientifi c computing is multithreading; here, multiple instances 
of the same program, so called threads, are executed in parallel, 
all residing in the same memory space (i.e. sharing all memory 
regions2), although different threads may be at different points in 
the program at one time.

This paper user multithreading for two reasons. First, it is a 
standard method for concurrent programming on desktop com-
puters and is available on most modern operating systems without 
requiring the installation of additional libraries. Second, using mul-
tithreading instead of message-passing for compartmental model 
simulations is a rather novel approach that deserves exploration. 
The exact method is a slight modifi cation of the Fork&Join model, 
e.g. used by OpenMP (OpenMP Architecture Review Board, 2002). 
The program is executed in a single-threaded manner, except for 

A B

C

FIGURE 1 | (A) Processor with a single core featuring Level 1 instruction and 
data caches (L1I and L1D), Level 2 cache (L2), and main memory (RAM) 
accessed via the Front Side Bus (FSB); the core is equipped with subunits 
for e.g. vector arithmetics, fl oating point processing, memory management 

and an interrupt controller. (B) A multi-core processor with four cores 
where two cores share a L2 cache, respectively. (C) A multi-core processor 
where all cores have a private L2 cache but a L3 cache shared between all 
four cores.

2The only exceptions are the stack and Thread Local Storage.
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parallel regions of the code, where the fi rst thread invokes other 
threads to take part in the parallel computation of this region.

The next section will introduce the mathematical and algorith-
mic basis of most types of realistic neural simulations, compart-
mental modeling.

COMPARTMENTAL MODELING
This work focuses on a popular technique in neural simulations: 
compartmental modeling based on an electric equivalent circuit of 
a neuron. There, a neuron’s morphology is represented by a set of 
cylinders of different length and diameter, so-called compartments, 
that are electrically coupled with axial conductances. The accuracy 
of this spatial discretization method depends solely on the user’s 
requirements; cells can be modeled with only one compartment 
or in a highly detailed fashion using up to tens of thousands of 
compartments; also, different regions of a cell may be modeled 
with varying precision.

Figure 2A depicts the compartmental representation of a VS1 
cell from the blowfl y’s visual system, reconstructed from a cobalt-
fi lled cell (Borst and Haag, 1996).

Ion channels, ion pumps, synapses and membrane capaci-
tance are all modeled with electric equivalent circuits that aim 
to imitate the real behavior as good as possible or computa-
tionally feasible. Figure 2B shows how a single compartment is 
represented by a circuit comprising axial currents I

axial
, capacitive 

currents I
cap

, and a current I
mech

 modeling the sum of various 
neural mechanisms such as ion channels and pumps, chemical 
synapses and gap junctions3, and voltage or current clamps. For 
every compartment i with adjacent compartments j ∈ adj

i
 and 

directed currents as illustrated in Figure 2B, this results in a 
current balance equation,

I I Ii i icap mech axial, , ,+ + =∑ 0

yielding

C V g V V I Vm i ij j i
j

m i
mi i

= − − ,...
∈ ∈
∑ ∑( ) ( )

adj mechs

The set of all equations representing the compartmental model of a 
neuron forms a system of coupled ordinary differential equations, 
one for every compartment. Such systems are solved by apply-
ing a temporal discretization scheme, for instance forward Euler, 
backward Euler or Runge–Kutta methods, to every equation. The 
simulation is then carried out by starting at t = 0 and advancing 
in time step by step, i.e. from time t to t + Δt to t + 2Δt and so on. 
For every time step t → t + Δt, the neural simulation software sets 
up all equations based on voltages V(t), rate variables etc. defi ned 
at time t and solves the system for V(t + Δt).

Depending on the temporal discretization method used, solv-
ing the system for the new membrane potentials requires either a 
matrix-vector multiplication and a vector-vector addition, only 
(explicit methods), or a linear system of equations (LSE) must be 
solved (implicit methods). This work will focus on implicit meth-
ods because parallelization is rather simple for explicit methods 
and because implicit methods provide a higher degree of numerical 
stability which is often crucial for neural simulations. When using 
an implicit method such as the backward Euler method,

V t t
V t t V t

t
( )

( ) ( )+ Δ = + Δ −
Δ

which is also NEURON’s default method, and applying an approxi-
mation to the mechanism terms (for details, see Section 4.3 and 
Appendix A in Eichner, 2007 or pp. 168–169 in Carnevale and 
Hines, 2006), the equations can be rewritten in matrix-vector form 
with some right-hand side term rhs as

G V rhs⋅ + Δ =( )t t

Figure 3A shows a numbered graph whose circles represent com-
partments, while the lines represent electrical couplings between 
the compartments. The corresponding layout of G is illustrated in 
Figure 3B, where X denotes non-zero entries. G can thus be seen as 
the adjacency matrix of the underlying, tree shaped neuron.

For n compartments, G ∈ ×Rn n is a sparse matrix with all ele-
ments being zero except for about 3n elements, namely diagonal 
elements (i,i) and off-diagonal elements at (i,j) and (j,i) for two 
axially connected compartments i and j; i.e., the matrix layout 
refl ects the connectivity structure of the model. For example, 
an unbranched cable yields a strictly tridiagonal matrix G. 
Hines (1984) discovered that solving LSEs corresponding to tree 

A B

FIGURE 2 | (A) Compartmental model of a VS1 cell from the blowfl y’s visual system. The magnifi cation inset emphasizes how cylinders are used to model the cell. 
(B) Example of an electric equivalent circuit used to simulate a compartment. The circuit in the picture is the one used by NEURON.

3Electrical synapses/gap junctions can be modeled in a manner similar to the axial 
terms; however, this prohibits the usage of a highly optimized Gaussian elimination 
method presented in the next section. Therefore, we assume gap junctions to be 
modeled as mechanisms with the respective approximation.
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 structured grids can be performed such that the required time 
is linear in the number of compartments [O(n), as opposed to 
the usual complexity of O(n3)] if they are numbered in a special 
way and the solver algorithm exploits the sparse structure of the 
resulting matrix.

In short, the compartments are numbered increasingly using 
depth-fi rst search, starting with 0 at some arbitrarily chosen root 
compartment. Then, Gaussian elimination requires only O(n) non-
zero elements above the diagonal to be eliminated (fi ll-in does not 
occur) instead of the usual O(n2), and the sparse structure allows 
to reduce the weighted addition of two rows required for elimina-
tion to the weighted addition of only two fl oating point values. 
The complexity of back-substitution, usually O(n2), can also be 
reduced to O(n) because the number of left-diagonal elements in 
every row is limited to one.

A closer look at the data dependencies of Gaussian elimination 
reveals that there are several possibilities in what order the com-
partments may be processed (i.e., in what order above-diagonal 
elements are eliminated). While one might start with compart-
ment 8, proceeding with compartment 7, 6 and so on, another 
possibility is to process compartments 4, 3, 6 and 5, then proceed 
with compartment 2 etc. The governing rule is that a compartment 
may only be processed once all subordinate compartments in leaf 
direction have been processed. The same applies, with inverse data 
dependencies, to back-substitution.

This observation is visualized in Figure 4. Part A shows the 
data dependency graph for Gaussian elimination, while part B 
depicts the data dependency graph for the back-substitution 
algorithm. Although the data-dependencies impose some restric-
tions on the order of how compartments are processed, there is 
nonetheless a certain degree of freedom in choosing a sequence 
of compartments during Gaussian elimination or back-substi-
tution. Again, the choice of the root compartment (and thus 
the exact data dependency graph) is left to the programmer. 
These observations will play an important part in parallelizing 
Gaussian elimination. For a more detailed explanation of these 
fi ndings, see Eichner (2007). Iterative methods for solving the 
LSE such as Gauss-Seidl or conjugate gradients (Hestenes and 
Stiefel, 1952) are not considered because of the superior perform-
ance of Hines method.

DETAILS ABOUT THE SAMPLE IMPLEMENTATION
We implemented our algorithms in a stand-alone application for 
Linux. The source code is based on the numerical core of NEURON 
(Carnevale and Hines, 1997, 2006). Specifi cally, we re-implemented 
the fi xed-step backward Euler scheme and ported a set of mecha-
nisms to our application by modifying the C source code generated 
by NEURON’s nrnivmodl to suit our needs. The program is miss-
ing a user interface; it runs simulations by reading in a confi guration 
fi le that contains the matrix and information about what mecha-
nisms are used on what compartments and mechanism specifi c 
parameters. This confi guration fi le completely describes the model 
and can be generated by an arbitrary frontend. As we wanted to 
simulate existing NEURON models and reproduce the results, we 
patched NEURON 6.0 such that it generates the confi guration fi le 
upon initializing a model; the fi le is then used by our application 
to perform the simulation.

We checked the validity of our results by printing the voltage 
at every time step for every 100th compartment and comparing 
it to the corresponding value NEURON computes. The results 
never deviate more than 1 µV from NEURON’s results for the same 
model; in most cases, the deviations are smaller than 0.001 µV4.

The program uses the Native POSIX Thread Library implemen-
tation (Drepper and Molnar, 2005) of the POSIX threads stand-
ard (IEEE Portable Applications Standards Committee, The Open 
Group, ISO/IEC Joint Technical Committee 1 2004) for managing 
threads and synchronizations. Additional threads are created by the 
fi rst thread in an initialization function and invoked when parallel 
regions are encountered. Then, the threads are notifi ed of the code 
and the data they must process.

One important technical aspect is how inter-core communica-
tion for notifying or waiting for other threads is implemented. 
Threads can wait passively by relinquishing their processor to 
the operating system, waiting to be invoked again at some later 

A B

FIGURE 3 | (A) Numbered graph representing a set of connected 
compartments. (B) Layout of the corresponding matrix G.

A B

FIGURE 4 | Data dependency graphs for (A) Gaussian elimination and (B) 

back-substitution of an LSE with a matrix as depicted in Figure 3.

4Examining our and NEURON’s assembler code produced by the compiler for the 
passive mechanism leads us to the hypothesis that a different order of fl oating point 
operations generated for effectively the same computations is responsible for these 
deviations.
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point in time when a signal from another thread arrives. The other 
 alternative is to wait actively by spin-waiting on some shared vari-
able to be changed by another thread. While the passive waiting 
method is fairer because the processor is only utilized when any-
thing useful is computed, it bears a certain overhead due to the 
invocation of the operating system. In contrast, the active waiting 
method is much faster but fully occupies the processor even when 
no actual computation is performed. When the relative importance 
of the notifi cation method is high, i.e. for small models, the operat-
ing system visible method becomes ineffective. We implemented 
and benchmarked both methods but decided to only show results 
obtained with the spin-waiting method. In summary, both meth-
ods give identical performance for larger models but spin-waiting 
is much more effective for smaller models. The implementation’s 
source code, the confi guration fi les used in this paper, the result fi les 
and corresponding documentation for building and running the 
program are freely available from http://fneuron-mc.myselph.de.

PARALLELIZED SIMULATIONS
In most neural simulations, setting up the equations and computing 
the actual conductances as a result of the previous voltage distribution 
takes up the majority of the time. Our experience is that about 40% of 
the time is spent on equation setup when only a passive mechanism 
is used, while additional active membrane mechanisms increase this 
value to between 80–95% or even more. Fortunately, it is rather simple 
to gain proper parallel performance for mechanism setup. At the same 
time, parallelizing the equation solver is diffi cult from both an algo-
rithmic and from a programmer’s point of view, while the infl uence 
on the performance of the program is usually rather small.

Therefore, this work will focus on parallel equation setup fi rst 
without considering solving the equations. Then, a simple but effec-
tive algorithm for parallel solving of single cells and networks of 
cells is presented.

Although handling equation setup and solving as independent 
tasks seems like an obvious choice, this is nonetheless one of the 
main novelties presented in this paper which was not employed 
by previous approaches to parallel neural simulations; it will be 
compared to existing techniques in the section “Comparison to 
Existing Approaches”.

PARALLEL EQUATION SETUP
While the setup of an equation consists of computing capacitive and 
axial terms as well, it is the calculation of transmembrane currents of 
all kinds modeled by mechanisms that is responsible for the majority 
of the runtime spent on this compartment. To simplify the follow-
ing considerations, two terms must be introduced. A mechanism 
or mechanism type comprises the code used for computation of the 
transmembrane current contributions of this mechanism. A mecha-
nism instance is the result of an instantiation of a mechanism type 
for a specifi c compartment, encapsulating the data this mechanism 
needs to compute its current contribution to this compartment.

The transmembrane current for compartment i is a combination 
of the capacitive current C

m
V

i
 and the contribution of all mecha-

nism instances mechs
i
 on this compartment:

I I Vi m i
m i

mech
mechs

,
∈

= ,...∑ ( )

Mechanism types range from fairly simple mechanisms like the 
linear model for passive ion channels to complex and therefore 
computationally intensive mechanism types for ionic currents 
with the conductance governed by voltage- or ion-concentration 
dependent fi rst-order kinetics, or models for synaptic mechanisms 
with highly detailed models of both transmitter release and postsy-
naptic ion channel kinetics. In particular, the kind and the location 
of mechanisms used in a model depend on the user’s requirements 
of accuracy as well as the knowledge about the modeled cell’s elec-
trophysiological properties.

The number and the complexity of mechanisms used on a specifi c 
compartment are model-specifi c; while the blowfl y’s HS network 
simulated in the section “Automatic Cell Splitting and Distribution” 
uses passive ion channels only, the more elaborate CA1 pyrami-
dal cell model in the section “Mechanism Computation” uses up 
to six mechanism types per compartment for different kinds of 
ion channels. Whether parallel execution is worthwhile depends 
on several parameters such as the number of compartments, the 
number and the complexity of the involved mechanisms, and the 
number of threads and cache architecture used. We will approach 
this question in the “Results” section.

This work is based on the assumption that there are neither 
inter-compartmental nor intra-compartmental dependencies 
imposed upon mechanism computation, i.e. the order in which 
different mechanism instances on the same compartment or on 
different compartments are computed does not affect the result5. In 
other words, the contribution of a mechanism to a compartment’s 
transmembrane current may be computed in parallel to other 
mechanism currents on this or other compartments. Care must 
be taken when two mechanism instances on the same compartment 
are computed by different cores, however. While the computation 
itself can be performed in parallel, synchronizations must be used 
at some point to prevent the concurrent modifi cation of the equa-
tion by these cores.

This leaves many possibilities for distributing mechanism 
instance computation onto the available cores; however, several 
constraints must be taken into account:

(1) Different mechanisms are often used on different sets of 
compartments, e.g. passive ion channels and synaptic mecha-
nisms on dendritic compartments, active ion channels on 
somatic and axonal compartments.

(2) Different mechanism types have different computational 
requirements. Taking into account the fi rst point as well, 
this means simply splitting up the set of compartments into 
equally large subsets for every core does not necessarily give 
a proper load balance.

(3) The overhead spent on synchronizations between cores for 
ensuring no equation is accessed concurrently by different 
cores must be minimized. Although inter-core commu-
nication as required for synchronizations is very fast on 
multi-cores, it can still lead to problems if used extensi-
vely. For instance, it is not feasible to use lock and unlock 

5Mechanism currents at the next time step are estimated based on known values 
from the current time step. This approximation, which is specifi c to implicit metho-
ds, is explained in Sections 4.3 and Appendix A in Eichner (2007) and pp. 168–169 
in Carnevale and Hines (2006).

http://fneuron-mc.myselph.de
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 operations around every single write access of a mechanism 
to an equation.

(4) To avoid equation variables being transferred between diffe-
rent core’s caches, a compartment should be processed (i.e. 
computing its mechanism instances and solving its equation) 
by as few cores as possible (also, this reduces the amount of 
synchronizations).

Several techniques were evaluated and compared; the follow-
ing two methods were found to account best for the mentioned 
restrictions.

Splitting up Mechanism Types
A very simple method that guarantees load balance is to split up the 
set of mechanism instances of every mechanism into ncores subsets 
that contain the same amount of compartments. Every core then 
computes its part of every mechanism instance set.

Two mechanism instance sets assigned to different cores may 
affect in part the same compartments; in particular, this results 
in the equations of some compartments being modifi ed by two 
different cores, a possible source of concurrent write accesses. 
This problem is illustrated in Figure 5. Here, some distribution 
of mechanism instances for different mechanism types across a 
compartmental model is shown. The hatching indicates to which 
of two cores the subset is assigned. For some compartments, the 
mechanism instances are computed by more than one core, e.g. 

some of the axonal compartments are processed by both the second 
and the fi rst core. If the fi rst core is ahead of the second core (e.g. 
because other running programs or hardware events interrupted 
the second core for some time), a situation may occur where the 
fi rst core accesses an axonal compartment during the passive 
mechanism computation which is at the same time accessed by the 
second core computing this compartment’s Active K instance. 
Similar confl icts could occur for the synaptic current computation 
in dendritic compartments.

The simplest way to prevent such accesses is to perform a barrier 
operation after every mechanism type computation, illustrated in 
the pseudo code listing in Figure 6. As the instances of a specifi c 
mechanism are distributed across the cores in a balanced manner, 
the time spent on waiting in the barrier function for other cores is 
usually very low. However, this overhead may still pose a problem 
when the model complexity per time step is rather low relative to 
the time spent on inter-core communication. This is the case for 
rather small models or models with a high amount of different 
mechanisms with only few instances each. The synchronization 
overhead could be mitigated by determining where confl icts can 
actually occur and only use barrier functions there (in Figure 5: 
only after Active K and Passive), but many models still require 
a high amount of synchronizations.

A second possibility is to let the mechanisms store their com-
puted values in extra arrays instead of adding them to the equa-
tions. Then, no synchronizations are needed between mechanism 
types, and the values are collected and added to the equations after 
all mechanism types have been computed. We implemented this 
method but found it to be inferior to the default method in the cases 
we tested, possibly due to the increased memory requirements.

Splitting up the Set of Compartments with Dynamic Load Balancing
Using synchronizations can be avoided in the fi rst place if a com-
partment’s mechanism instances are all computed by one core 
only, i.e. the set of compartments is split up into ncores sets, and 
every core processes all mechanism instances on compartments in 
its set. The heterogeneity of mechanism complexity and mecha-
nism distribution does not allow for simply splitting up the set of 
compartments into equally large consecutive subsets for each core, 
as one core might be assigned a computationally more demanding 
part of the cell than another core. Using non-consecutive subsets, 
e.g. distributing small subsets in a striped manner, would lead to 
cache-effi ciency problems. The set of equations a core accesses 
during solving would be largely different from the set it accesses 

FIGURE 5 | Mechanism type level parallelization. Height of mechanism 
type bars indicates per-compartment complexity. Distribution of different 
mechanisms (height indicates complexity) across the cell is often spatially 
inhomogeneous. Here, computation of the mechanism instances on one 
specifi c compartment is often performed by different cores and requires 
synchronizations after each mechanism type.

for (i=0; i<number_mechs; i++) {
    barrier();
    for (t=1; t<number_threads; t++) {
        send_job_to_thread(t, mech[i].function,
                           mech[i].start[t], mech[i].end[t]);
        mech[i].function(mech[i].start[0], mech[i].end[0]);
  }
}

FIGURE 6 | Pseudo-code listing for mechanism type level parallelization. The fi rst thread waits for the other threads to be ready, then assigns them jobs in the 
form of a mechanism function and parameters that defi ne the fi rst and the last mechanism instance this thread must compute. Finally, the fi rst thread calls the 
mechanism function itself.
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during equation setup, leading to a high amount of inter-core 
communication between the stages of setting up an equation and 
solving it, and vice-versa. What is needed is some estimate of the 
complexity of a compartment, so a distribution algorithm can 
calculate the size of consecutive compartment subsets assigned 
to a core.

Figure 7 shows how a balanced assignment of compartments to 
cores might look like. Although the set of compartments assigned to 
the fi rst core is much smaller, the distribution of mechanisms across 
the cell makes this assignment the fairest in terms of mechanism 
complexity balance. No synchronizations are required because an 
equation is accessed by one core, only. The main question is how 
to identify these sets because the complexity of a mechanism is 
not known in advance.

Hines et al. (2008a) estimated a per-mechanism-type  complexity 
before the actual simulation by performing a dummy simulation 
with 100 compartments for every mechanism type; mechanism 
complexity and mechanism distribution were then taken into 
account when distributing parts of cells onto nodes in a computer 
cluster. This requires additional simulations before the actual simu-
lation and is only worth the overhead for longer simulations.

This work proposes a dynamic load balancing technique where 
the sets of compartments assigned to cores are resized during 
runtime to gain the best possible workload balance. After a fi xed 
number of time steps, e.g. nsteps = 20, a per-mechanism-instance 
complexity mc

m
 is estimated for every mechanism type m based on 

the accumulated time spent on this mechanism type on every core 
c, t

m,c
 in the last nsteps timesteps and the number of mechanism 

instances of mechanism type m, | |Mm :

mc

t
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m c
c

ncores

m

=
× | |

,
=

∑
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Following this, a per-compartment complexity co
i
 is calculated 

for every compartment i based on the mechanism types mechs
i
 

used on this compartment:
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When assigning only consecutively numbered compartments 
to a core, the fi rst set of a out of ncomp compartments may then 
be determined by the following formula:
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This technique has proven slightly superior to splitting up mech-
anism types (because of the missing synchronization operations) 
and signifi cantly superior to simply splitting up the set of com-
partments without subsequent load-balancing (see Results). The 
technique is multithreading specifi c, i.e. it is not easily applicable to 
message-passing architectures such as computer clusters. Resizing 
sets during runtime is simple when the PUs share main memory 
because only loop indices must be changed; in message-passing 
environments, each PU has its own main memory, and resizing 
working sets requires parts of cells being loaded/unloaded during 
simulation and data such as voltages or rate variables must be sent 
to other PUs. This is possible in principle but diffi cult to implement, 
even more on top of an existing simulation program.

PARALLEL EQUATION SOLVING
Although equation solving usually represents only a small part 
of the overall runtime, it is nonetheless necessary to evaluate and 
exploit its parallel potential. First, there exist a signifi cant number 
of models where compartments only with (computationally cheap) 
passive ion channels comprise the majority of the cell or even the 
whole model. Then, solving becomes a signifi cant portion of the 
execution time. Second and more importantly, with the very good 
parallel performance of mechanism computation, equation solv-
ing would quickly become the time-limiting factor, especially for 
higher numbers of cores.

The following two sections will treat two ways of parallel solv-
ing, fi rst how whole cells in a network of neurons, then how single 
cells may be solved in parallel. Finally, these two approaches will be 
combined in a simple algorithm which was found to deliver proper 
results in all models tested for this paper.

Whole Cell Balancing
In the section “Compartmental Modeling”, it was shown how the 
combination of equations for all compartments in a cell results in 
a system of coupled equations for every time step. Different cells 
may be seen as independent, i.e. not coupled, systems of equations. 
Although cells may be semantically connected by chemical synapses 
or gap junctions, these connections are modeled using mechanisms 
instead of off-diagonal elements in the connectivity matrix6. Thus, 
current fl owing between two cells is accounted for during equation 
setup; solving the system of equations for different cells may be 
performed independently.

The complexity of solving the system of equations for a cell is 
linear in its number of compartments. Therefore, the resulting 

FIGURE 7 | Compartment level parallelization. Solid line separates the two 
sets of compartments assigned to different cores. This boundary is chosen 
such that the overall complexity per core is very close to the average.

6Representing connections between cells with off-diagonal elements works only 
for currents linear in the voltage difference, i.e. I g V Vij j i= −( ) . This holds true for 
axial resistances and could be used for gap junctions as well but does not work for 
chemical synapses. Modeling gap junctions with off-diagonal entries prohibits the 
usage of the effi cient solver algorithm presented in the section “Compartmental 
Modeling”, however, while not increasing accuracy signifi cantly.
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problem is to distribute the computation of solutions for n cells 
with different numbers of compartments onto ncores processing 
units such that the imbalance between cores is minimized; here, 
imbalance is defi ned as the difference between the two process-
ing units with the highest and the lowest load. Although this 
appears to be a rather simple task at fi rst glance, it is an NP-com-
plete problem known as Number Partitioning Problem (Hayes, 
2002). This means that fi nding the solution requires checking an 
amount of cells-to-cores assignments increasing exponentially 
with the number of cells [O(ncoresn)]. Fortunately, heuristic algo-
rithms with a much lower complexity exist that give reasonably 
good solutions.

The distribution algorithm used in this paper is very simple – the 
cells are fi rst sorted in decreasing order according to their size (in 
compartments), then they are subsequently assigned to the core 
with the so far lowest number of compartments. Sophisticated algo-
rithms like Karmarkar–Karp (Karmarkar and Karp, 1982; Korf, 
1997) exist as well but were not tried because the performance 
reached by the above mentioned algorithm was found to deliver 
satisfactory load balance.

Whole-cell balancing has been employed frequently in paral-
lel neural simulations, although not independently from equa-
tion setup (see “Comparison to Existing Approaches” for details). 
A much more interesting and challenging problem is to solve a 
single cell in parallel which is the focus of the next section.

Cell Splitting
It is important to once again emphasize that this work concentrates 
on the rather complex problem of parallelizing the process of solv-
ing LSEs. When explicit integration methods are used (which is the 
case for many simulators, e.g. the default in GENESIS), the system 
of equations may be solved by simply performing a matrix-vector 
multiplication, followed by a vector-vector addition, both tasks 
that are very effi cient in parallel.

Implicit methods result in an LSE; solving LSEs in parallel has 
been a hot topic in research for a long time. In the special case of 
sparse matrices representing a tree-shaped connectivity structure, a 
method developed by Hines et al. (2008a) allows for parallel solving 
of a cell by two PUs. This paper uses a similar, slightly enhanced 
version of this algorithm which is based on the following two facts. 
First, an arbitrary compartment may be chosen as the root compart-
ment (see Compartmental Modeling). Second, subtrees of the root 
compartment may be solved in parallel, besides a synchronization 
operation between Gaussian elimination and back-substitution 
(see Figure 4).

The main question is how to choose a root compartment given 
a specifi c neuron because this choice governs the number and size 
of the subtrees and thus the load balance achieved by splitting 
a cell. Most importantly, load balancing, including cell splitting, 
should be automated, i.e. require no user-interaction. The  following 
algorithm is designed for the special case when only one cell is 
simulated; the case of parallel solving in networks of neurons is 
dealt with in the next section.

For single-cell simulations, the size of the largest subtree of the 
root compartment usually governs the load balance after distrib-
uting the single subtrees onto cores. Therefore, an algorithm that 
identifi es the root compartment whose largest subtree is minimal 

among all possible root compartments seems to be a good solution. 
The algorithm presented here starts at an arbitrary compartment 
and traverses the tree by descending into the largest subtree of each 
visited compartment. It stops when the size of the largest subtree 
of the current compartment is lower than or equal to half of the 
overall number of compartments. This is the compartment whose 
largest subtree is smaller than or equal to all other compartments’ 
largest subtrees (a proof is given in Eichner, 2007).

Figure 8 illustrates how an unnumbered graph (A) represent-
ing a neuron may be numbered such that the size of the largest 
subtree is minimal (B). The resulting subtrees (colored, part 
C) are then distributed onto the available cores with the same 
heuristic method that was introduced in the previous section 
for whole cell balancing. While Gaussian elimination may pro-
ceed simultaneously in the subtrees, all threads (at most three) 
must access the variables representing the root compartment’s 
equation, which is therefore not assigned to any core and not 
colored. This requires using mutexes for preventing concurrent 
write accesses to the root compartment’s equation and a barrier 
function to ensure every core has seen the changes of all other 
cores to that equation before using its values to continue with 
back-substitution.

Combining Cell Splitting and Whole Cell Balancing
A more common scenario is simulating more than just one cell. 
Trying to decide what cells to split and with what root compart-
ment, i.e. sizes of subtrees, reveals several obstacles.

First, choosing a root compartment such that single cell 
Gaussian elimination is as effi cient as possible may not be the best 
global choice, i.e. when taking all other cells and subsequent load 
balancing of whole cells and subtrees into account. Second, trees 
cannot simply be split such that the number of subtrees and the 
subtree sizes connected to the root compartment fulfi ll a certain 
requirement – even the rather simple constraint of choosing a root 
compartment such that its subtrees may be partitioned into two 
equally large sets often cannot be met as Figure 9 shows. Third, 
whole-cell balancing alone is NP-complete, so balancing subtrees 
and non-split whole cells is NP-complete as well.

A B C

FIGURE 8 | (A) Yet unnumbered tree-shaped graph representing the 
connectivity of some neuron. (B) Same graph, numbered such that the largest 
subtree connected to the root compartment (compartment 0) is as small as 
possible. (C) Same graph and numbering as for the middle graph, but 
restructured and colored to emphasize the distinct subtrees that may be 
solved in parallel.
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A heuristic approach seems reasonable that combines cell 
splitting and whole-cell balancing. The technique presented in 
this section is a combination of splitting neurons and distributing 
a number of neurons onto a set of processors. First, all cells are 
ordered according to their sizes. Then, the cells are split one after 
another, largest cell fi rst, until the imbalance resulting from whole 
cell balancing of the subtrees of split cells and whole cells left is 
low enough, i.e. below a certain threshold. In our implementa-
tion, we use a maximal imbalance of 2% of the overall number of 
compartments. This method makes sure that unnecessary split-
ting of cells is avoided because every split cell results in additional 
synchronization overhead.

A more sophisticated method presented in Hines et al. (2008a) 
computed a large set of possible root compartments for every cell 
along with the sizes of the connected subtrees and an estimate 
of their mechanism-dependent complexity in advance and made 
use of this information to split and distribute subtrees to PUs. 
This method requires considerable overhead as well as a mecha-
nism-complexity estimate before the actual simulation is started. 
Most importantly, this method is designed for message-passing 

architectures where both dynamic load balancing is very diffi cult 
and the load balance achieved plays a much more important role 
as the net section will show.

The basic anatomy of a time step using compartment level paral-
lelization and cell splitting is illustrated in Figure 10. When mecha-
nism type level parallelization is used instead, the equation setup 
stage is divided into several parallel regions separated by barriers, 
one for reseting the equation variables, one for every mechanism 
type used. Similarly, the last step, update mechanism variables, where 
voltage dependent variables of mechanisms (e.g. gating variables 
for ion channels) are computed, then requires one barrier for each 
mechanism type.

COMPARISON TO EXISTING APPROACHES
Previous attempts for parallel neural simulations were, to the 
authors’ best knowledge, mostly based on the message-pass-
ing paradigm (Bower and Beeman, 1998; Hines et al., 2008a,b; 
Migliore et al., 2006). A notable exception is NEST (Gewaltig and 
Diesmann, 2007); this neural simulation software supports mul-
tithreading. However, its main application area are large networks 
of simple neurons each modeled with one or few compartments 
of the Integrate&Fire or Hodgkin–Huxley type, only, instead of 
anatomically and electrophysiologically detailed models.

In contrast, this work is based on biophysically detailed simula-
tions with multithreading. The former restriction to message-passing 
environments lead to the far-reaching decision to not treat paral-
lelization of equation setup and solving as independent tasks for 
several reasons:

• The simplest way to enhance an existing non-parallel neural 
simulator for message-passing environments is to support 
inter-cell-communication, i.e. sending and receiving synap-
tic currents, via messages as well. Also, this delivers good load 
balance for larger models and/or smaller clusters.

• For higher numbers of processors and/or lower numbers of 
cells, the most straightforward way to enhance the imple-
mentation is to support some kind of cell splitting and only 
transfer a set of split-compartment specifi c values between 
Gaussian elimination and back-substitution (see Hines et al., 
2008a). Thus, both equation setup and solving for a specifi c 
compartment are performed on the same PU.

• One of the main limiting factors in message-passing environ-
ments is communication latency; therefore, keeping the num-
ber of messages at a minimal level like the above mentioned 
techniques is crucial.

FIGURE 9 | A VS2 cell’s compartmental model from the blowfl y’s visual 

system (Borst and Haag, 1996) split such that the largest subtree is 

minimized. Red indicates location of the root compartment. This cell cannot 
be split in a manner such that its subtrees can be partitioned into two equally 
large sets.

FIGURE 10 | Flowchart illustrating how a time step is performed with multiple threads. While several barriers must be used to separate confl icting parts of the 
program, mutexes are used during triangularization when two threads access the same root compartment of a split cell.
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large models with thousands or tens of thousands of compart-
ments, not a very common case in every-day neural modeling. 
The main reason is that communication overhead for synchroniza-
tion and data exchange quickly becomes the limiting factor when 
model size decreases. Multi-cores are fundamentally different in 
that inter-core communication only becomes a limiting factor 
once the model is so small that parallel simulation is not going 
to be of much use, anyway, because simulation times are short 
enough in the fi rst place.

RESULTS
All measurements were performed on two systems running Ubuntu 
Linux 7.04, one equipped with two Xeon X5355 quad-cores, the 
other one with two Opteron K10 2347 quad-cores. They are 
 illustrated in Figure 11 along with some benchmark results that 
are the topic of the next section.

INFLUENCE OF CACHE ARCHITECTURE AND MODEL COMPLEXITY
The performance of algorithms and their implementations 
depends on many variables of both the input problem (the 
model) and the underlying architecture. To evaluate the infl u-
ence of these parameters, we generated artifi cial models, each 
consisting of eight equally large neurons, each in turn modeled 
as eight connected cables, with a Hodgkin–Huxley mechanism 
on every compartment and one current injection mechanism 
per cell. This prevents cell splitting to infl uence the runtime. 
Between models, we varied the number of compartments and 
the number of simulated time steps while keeping the product 
of these two terms (and, thus, the computational work) at a 
constant value of 5 × 223. This allows us to emphasize the relative 
infl uence of architectural characteristics such as cache size and 
interconnection latency.

Panels A and C in Figure 11 depict the results obtained on our 
two test architectures; their structure, i.e. cores, caches and memory 
connection, are shown right to the results in Panels B and D. The 
model size, and thus the memory requirements, increase from left 
to right; the specifi c values for the number of compartments and 
the number of time steps are shown on the abscissa. For every 
model size, a number of bars are illustrated, each indicating the 
simulation runtime for a specifi c number of threads and what cores 
these threads were assigned to (i.e. cores with shared or separate 
caches, cores on the same or different chips etc.). Our aim is to 
show how runtime decreases with the number of threads and how 
this decrease depends on model size, cache size, cache architecture 
and memory requirements.

For the small 128-compartment model, the infl uence of 
inter-core communication for synchronizations is rather strong. 
Detailed benchmarks (not shown) indicate that when using two 
cores with separate caches on the Intel system, the two threads 
spend a total of about 20% of the overall runtime on waiting for 
other threads; on the AMD system, the cumulative synchroniza-
tion time for two threads can be up to 40%. The reason for this big 
infl uence of  synchronizations on the runtime is that their amount 
is proportional to the number of time steps and the number of 
cores. Accordingly, the cumulative time spent on synchronizations 
for the model with 512 compartments is approximately halved, 
thus having a much lower infl uence on the runtime. Even for 128 

Message-passing programming can be diffi cult when existing 
programs are enhanced that were not designed with message-
 passing in mind from the beginning on. For instance, allowing 
equation setup and solving for a specifi c compartment to take place 
on different PUs as employed by the techniques introduced in this 
paper is rather diffi cult in message-passing environments. There, 
parts of the equations must be transferred between setup PU and 
solving PU before solving, and parts of the solution vector again 
must be transferred from the solving PU to the PU that sets up the 
equation again for the next time step.

In addition to programming issues, such an approach is not 
guaranteed to deliver proper performance because of both com-
munication latency and bandwidth; overhead for message- passing 
might very well ruin what is gained by a better load balance dur-
ing the equation setup stage. However, this depends on various 
parameters such as the model size, the number of PUs, the per-
formance of cell splitting and the interconnection technology. Such 
an approach has not been implemented or tested and is a topic of 
further research.

The choice made thus far to bind equation setup and solving 
for a compartment to a specifi c PU results in a major limitation. 
Because the distribution of compartments onto PUs is governed 
by the dependencies of Gaussian elimination and back-substitu-
tion, load balancing problems in the solver stage are very severe 
because they apply to the much more time intensive mechanism 
computation stage as well. Proper balance in the solver stage is 
therefore of much more interest in message-passing based imple-
mentations and lead to techniques like splitcell and the sophisticated 
but complex multisplit method (Hines et al., 2008b). This reveals 
why decoupling equation setup and solving is such an important 
concept in this work.

Another advantage of multithreaded programming can be 
observed when recalling the dynamic load balancing technique. 
It would be very hard to implement such a technique in a mes-
sage-passing environment because not only would cells or parts of 
cells have to be loaded/unloaded during the simulation, but also 
would it be necessary to transmit data such as ion channel states 
or ion concentrations from the originally responsible process to 
the one taking over computation of these mechanism instances. In 
a multithreaded environment, however, dynamic load balancing 
reduces to simply changing thread specifi c start and stop indices 
of a loop over compartments.

There are more advantages to using a shared memory sys-
tem. The simplicity of programming these systems, e.g. by using 
OpenMP to enhance existing C/C++/Fortran source code, com-
bined with the intentional simplicity of the algorithms presented 
in here, makes these concepts applicable to custom simulation 
software. This is supported by the fact that virtually every mod-
ern operating system supports multithreading, while message-
passing requires the installation of additional libraries and a 
comparatively complex run-time environment (regardless of 
the necessity to accommodate and administrate a computer 
cluster).

The most important novelty is the support for small models, 
however. The effi ciency of simulating models in a parallel way 
directly depends on model size and inter-process communication 
latency. In general, computer clusters can only be used for rather 
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 compartments, however, using two cores that share a cache on the 
Intel system gives a nearly linear speedup because of the low inter-
core latency (the cumulative synchronization time is only 10% of 
the overall runtime).

We did not observe a similar effect on the AMD system; instead, 
we were surprised to see that using two cores with a shared L3 cache 
even leads to a lower runtime than using two cores with separate 
L3 caches on different chips, although in theory, communication 
should be slightly slower in the latter case. On the other hand, the 
AMD system exhibits better scaling for higher numbers of cores, 
even allowing for a speedup of 3.2; this means simulating 1 s of 
the 128 Hodgkin–Huxley compartments at a reasonable time step 
of 0.025 ms takes only about half a second.

For a wide range of model sizes, that is, from above 512 up to 
about 65.536 compartments (data for the latter not shown), we 
observe nearly linear and sometimes even superlinear speedups 
for two, four and eight threads. For this region of model sizes, the 
data fi ts largely into the cache(s) of the processor(s). The effect of 
the limited cache capacity can be seen clearly in the single-threaded 

case, where performance results are nearly constant up to a specifi c 
model size [16.384 (not shown) for the AMD, 32.768 for the Intel 
processor], refl ecting the constant overall complexity. However, 
for larger models, the memory requirements signifi cantly exceed 
the capacity of the core’s cache as estimated from the memory 
requirements per compartment (below 100 bytes). Thus, more data 
must be fetched from main memory, leading to a lower perform-
ance of the program. The same effect can be observed for two or 
more cores on the Intel system, depending on the cumulative cache 
size available to these cores – if two cores with their own caches are 
used, the cache size is effectively doubled, leading to a slightly better 
performance for these core combinations. This can be observed in 
Figure 11 for 131.072 compartments simulated on the Intel system; 
the effect is much less visible on the AMD system.

Another interesting observation is that on the Intel system, the 
bandwidth of the internal on-chip bus may be a limiting factor 
for large models. For the two largest models shown with 131.072 
and 524.288 compartments, using combinations of two or four 
cores that lie on two chips gives better results than using the same 

A B

C D

FIGURE 11 | Results for simulations (A,C) on two test systems (B,D) of 

artifi cially generated models where computational complexity is held 

constant by varying both model size and number of time steps 

simultaneously, thus emphasizing the infl uence of inter-core 

communication and memory bandwidth. Legend right to the diagrams 

indicates number of threads, cache organization (number of L2 caches for Intel 
processor/number of L3 caches for the AMD processor) and whether the cores 
used are located on one or two chips. The connection between two chips on the 
AMD system (D) is illustrated by a thick line modeling the HyperTransport 
interconnect (HyperTransport Consortium, 2007).
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number of cores located on one chip only, even if the cache size 
is the same.

The above results must be interpreted with the fact in mind 
that to rule out the effect of cell splitting, we used eight cells, thus 
avoiding the otherwise involved synchronization overhead. Also, 
the Hodgkin–Huxley mechanism was distributed homogeneously 
across the cell. In the next two sections, we will look at the infl uence 
of more heterogeneous mechanism placement and how iterative 
cell splitting helps for models with fewer cells.

MECHANISM COMPUTATION
The measurements in Figure 11 did not take into account cell split-
ting nor multiple mechanisms and their heterogeneous distribu-
tion across a cell. Using artifi cial models again to test how well 
our sample implementation handles these challenges was not an 
option because the distribution of mechanism type complexities 
and mechanism instances is highly model specifi c.

Instead, we use a previously published hippocampal CA1 pyram-
idal cell model consisting of 600 compartments that was used in 
Migliore et al. (1999). In this work, distal dendritic compartments 
with a diameter lower than 0.5 µm or a distance larger than 500 µm 
from the soma were modeled with passive ion channels (and one 
with synapses), only. Other compartments, in contrast, are modeled 
using up to four different voltage-dependent ion channels, passive 
channels and current injections. Thereby, the overall mechanism 
complexity is distributed across the cell in a non-uniform man-
ner, allowing to evaluate the performance of the dynamic load 
balancing technique introduced before. The automatic cell splitting 
algorithm split the CA1 model into two equally large pieces. In the 
single-threaded experiments, about 95% of the runtime were spent 
on mechanism setup.

Figure 12 shows the results for the two test systems and different 
numbers of threads. In the case of the rather small CA1 model, combi-
nations of cores with rather low inter-core latency either yield slightly 
better (Intel X5355) or similar (AMD K10 2347) results; to keep 
Figure 12 simple, we only show the results obtained on the apparently 
best combination of cores for a fi xed number of threads.

The fi gure shows a red line for the linear speedup along with 
speedups obtained with two, four and eight cores. Three kinds 
of mechanism computation strategies are illustrated; splitting up 
the list of instances for each mechanism type (green) and splitting 
up the number of compartments into equally large sets without 
(blue) and with subsequent load balancing (magenta). Due to the 
increase in synchronization overhead, splitting up mechanism types 
is either as good as or worse than splitting up compartments with 
load balancing. Another advantage of the compartment level paral-
lelization method is less transmission of equations between cores 
as an equation is set up by one core, only. In contrast, for mecha-
nism type level parallelization, different cores may actually compute 
mechanisms for the same compartment if mechanism placement 
is heterogeneous, leading to additional inter-core communication. 
The third method, splitting up compartments into equally large 
sets without load balancing, is depicted to illustrate the need for 
dynamically resizing the sets of compartments due to the hetero-
geneity in mechanism placement.

The general observation regarding dynamic load balancing is 
that virtually no overhead is induced by both measuring mecha-

nism type complexities and resizing the sets of compartments. It 
is remarkable that the implementation gives proper speedups even 
for such small models when using the original model’s simulation 
time length of 90 ms – a runtime reduction from 1.55 s (1.81 s) to 
about 0.31 s (0.33 s) for eight cores is not only suffi cient for most 
users that perform simulations in an interactive manner but also 
facilitates automatic optimizations that require several subsequent 
single simulation runs with adapted parameters.

AUTOMATIC CELL SPLITTING AND DISTRIBUTION
The remaining question is how well the cell splitting algorithm 
works. Again, it was not possible to use artifi cially generated mod-
els; the distribution of cell sizes and cell geometry is highly vari-
able, and the number of compartments used for modeling a cell is 

A

B

FIGURE 12 | Simulation of a CA1 pyramidal cell with 600 compartments 

for 900 ms with a time step length of Δt = 0.025 ms (see Migliore et al., 

1999). The cell is split into two equally large pieces; distal dendritic 
compartments do not use active channels, thus giving a heterogeneous 
mechanism distribution across the cell. (A) Speedup results on the Intel test 
system (see Figure 11A). Red line: linear speedup; green: measured 
speedups of mechanism type level parallelization (Figure 5); blue: 
compartment level parallelization (Figure 7) without load-balancing for taking 
into account heterogeneous mechanism distribution across cell; magenta: 
compartment level parallelization with load-balancing. (B) Same as (A) on the 
AMD test system (Figure 11C).
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user-defi ned. For instance, the above mentioned CA1 cell could be 
split into two equally large pieces, while other cells result in three 
or more subtrees of different sizes.

To give an intuition of how the algorithm works, we will use 
a sample model of the blowfl y’s HS network, published in Borst 
and Haag (1996). The three cells (HSE, HSS and HSN) were recon-
structed from cobalt-fi lled cells; they are comprised of 11497, 10824 
and 9004 compartments, respectively. Every compartment was 
modeled with a mechanism for passive ion channels, only, and 
one current injection per cell; in the single-threaded experiments, 
about 43% of the runtime were spent on mechanism setup. Again, 
only the results for combinations of cores that gave the best results 
are shown.

Figure 13 shows performance results for the HS network and 
different numbers of cores for the cases when either (automatic) 
cell splitting is disabled (green line) or enabled (red line). In the 
case of two cells, the splitting algorithm stops after splitting only the 
largest of the three cells because a distribution of 15628 vs. 15696 
 compartments per core is achieved; in contrast, not using cell 
splitting gives a rather poor balance of 19828 vs. 11497 com-
partments, i.e. an imbalance of 29.8% of the overall number of 
compartments.

The relative effect on runtime is even more signifi cant for four 
cores when automatic cell splitting reduces imbalance from now 
36.7% to 4.4%; on eight cores, the imbalance is reduced from 36.7% 
to 9.9%.

Figure 13 refl ects the importance of cell splitting, especially for 
higher numbers of cores. The reason why the effect of cell splitting 
plays such a big role for the HS model is that it uses the computa-
tionally cheap mechanism for passive ion channels, only. Thus, the 
effect of the solver stage is much bigger than for models with more 
complex ion channel mechanisms. An additional effect of either 
not splitting cells at all, or having to few subtrees to assign to cores, 
is that an equation must be transferred from the core that sets it up 
and the core that solves it, and vice-versa once the resulting voltage 
has been computed. If these cores share a cache, or if the time spent 
on equation setup is large enough, this effect is very small, but it can 
play a role for computationally simple models or in cases where there 
are many more cores than cells/subtrees. Thus, the infl uence of cell 
splitting strongly depends on the number of cores. In general, when 
the number of cells is higher than the number of cores, whole-cell 
balancing is often suffi cient. Also, a high mechanism complexity may 
strongly reduce the portion of time spent in solving the equations 
and therefore the infl uence of cell splitting.

DISCUSSION
In this paper, we presented algorithms and an implementation 
thereof for the parallel execution of biophysically realistic neural 
simulations using multithreading. To our knowledge, this is the fi rst 
manuscript solely based on multithreading; our focus lies on both 
advantages and caveats of multi-core architectures. Our sample 
implementation is a lightweight simulator based on the numeri-
cal core of NEURON; it is freely available for studying, testing and 
extending the code. Our algorithms often scale linearly and some-
times superlinearly with the number of cores over a wide range of 
the common complexities of neuronal models.

Scalability is limited mainly in three cases. First, for smaller 
models (up to approximately 256 compartments), synchroniza-
tions between cores comprise a relatively large portion of a time 
step. The strength of this effect depends on the cache-architecture 
and the number of cores used. This observation is not specifi c to 
our algorithms or neural simulations but a general problem in 
parallel programming; rather, we would like to point out that even 
for such small models, multi-cores are able to decrease execution 
times signifi cantly.

Second, once models do not fi t into the cache any more, decreases 
in performance can be observed for both the single-threaded and 
the multi-threaded code, and speedups become sublinear to an 
extent depending on the number of threads and the architecture. 
In our measurements, this effect sets in at about 33.000/66.000 
(AMD/Intel) Hodgkin–Huxley compartments for a single thread, 
depending on the cache-size used. For eight threads, this effect 

A

B

FIGURE 13 | Simulation of the blowfl y’s HS network with automatic cell 

splitting disabled and enabled. The model was simulated for 100 ms with a 
time step length of Δt = 0.025 ms. (A) Speedup results on the Intel test 
system (see Figure 11A). Green line shows speedup measurements when 
the three cells were solved without splitting them; blue line shows results 
with cell splitting. The relative infl uence of cell splitting increases with 
increasing numbers of cores. (B) Same as (A) on the AMD test system.
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only sets in at 131.000/262.000 Hodgkin–Huxley compartments, 
an unusually big model size.

Third, our cell splitting and balancing algorithm may lead to 
increased inter-core communication if the number of cores is sig-
nifi cantly higher than the number of cells. The strength of this 
effect depends on the number of cells, the cache-architecture and 
the ratio of time spent on solving.

It is not easy to predict how well the concepts will work on 
future multi-cores comprised of 32 or more chips, because inter-
core latency already is an issue, and memory bandwidth is likely 
to become a limiting factor for bigger models if all cores use a 
common front side bus. One possible development is the shift 
towards NUMA (Non-Uniform Memory Architecture) multicore 

architectures where different memory controllers instead of one 
central memory controller are used. These architectures, already 
employed in multi-core systems with AMD processors, have the 
potential to solve the scalability issue; however, we observed rather 
high inter-core communication latencies on our AMD test system 
even for cores that have a common L3 cache.
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