
Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 09 July 2009
doi: 10.3389/neuro.11.021.2009

Neural simulations on multi-core architectures

Hubert Eichner 1*, Tobias Klug2 and Alexander Borst1

1 Max-Planck-Institute of Neurobiology, Martinsried, Germany
2 Faculty for Informatics, Technical University of Munich, Garching, Germany

Neuroscience is witnessing increasing knowledge about the anatomy and electrophysiological
properties of neurons and their connectivity, leading to an ever increasing computational
complexity of neural simulations. At the same time, a rather radical change in personal computer
technology emerges with the establishment of multi-cores: high-density, explicitly parallel
processor architectures for both high performance as well as standard desktop computers.
This work introduces strategies for the parallelization of biophysically realistic neural simulations
based on the compartmental modeling technique and results of such an implementation, with a
strong focus on multi-core architectures and automation, i.e. user-transparent load balancing.

Keywords: computer simulation, computer modeling, neuronal networks, multi-core processors, multithreading,

parallel simulation

types of transmembrane currents as well as their irregular distri-
bution across a neuron. We propose two methods dealing with
this issue. For solving, we use the comparatively simple, previously
published splitcell method (Hines et al., 2008a) for splitting neurons
into subtrees and extend the method to automatically identify a
split compartment and distribute the workload for solving of these
subtrees onto processors in a balanced way.

The next section will give a short introduction to parallel pro-
gramming, multi-core architectures and multithreading. The sec-
tion on “Compartmental Modeling” contains a summary of the
compartmental modeling technique and the splitcell method. The
section on “Details about the Sample Implementation” describes
the sample simulator software we implemented to test our algo-
rithms. The algorithms themselves are presented in detail in the
subsequent section, “Parallelized Simulations”. This part of the
manuscript also contains a subsection comparing our approaches
to previous neural simulator algorithms. The section “Results”
presents performance results obtained with our sample implemen-
tation for models of varying complexity and memory requirements,
followed by a discussion section summarizing the work and giving
a short outlook.

PARALLEL PROGRAMMING AND MULTI-CORES
In the last 40 years, processor manufacturers increased perform-
ance mainly by a) creating faster and smaller transistors and
circuits allowing for higher clock frequencies, and by b) automati-
cally exploiting parallelism inherent in the sequence of incoming
instructions using overlapping and out-of-order execution. With
the limited amount of instruction level parallelism in a sequential
program and physical restrictions on the speed of transistors and
electric signals traveling through a circuit, recent developments
focus on providing multiple, user-visible processing units (PUs,
also called cores). In the last few years, a new kind of architecture
referred to as multi-cores emerged: Decreasing transistor sizes

INTRODUCTION
With neurobiology and biochemistry advancing steadily, bio-
physically realistic modeling has become an indispensable tool for
understanding neural mechanisms such as signal propagation and
information processing in both single neurons and neural networks.
The high computational complexity of such neural simulations due
to detailed models of ion channels and synapses, combined with
high spatial resolutions of neuronal morphology, often result in
long run times or require the use of a whole network of computers
(a computer cluster).

The evolution of multi-cores, a new processor architecture in
personal computer technology where several standard processing
units are combined on one chip, providing the user with a multiple
of the previous available computational power, has the potential
to overcome these limitations. Moreover, multi-cores are likely to
replace the current single-core processors completely in the future;
as of today, most computers are available with dual-core or quad-
core processors, only.

However, exploiting the potential of multi-cores requires man-
ual adaptation of the algorithms and the source code. This, in turn,
requires thorough knowledge of the internals of these chips, careful
examination and parallelization of the algorithms used and exten-
sive measurements to ensure the applicability of the parallelized
program to a wide range of models.

This work introduces techniques for the parallelization of bio-
physically realistic neural simulations in a shared memory envi-
ronment (i.e., where the processing units access a common main
memory) using multithreading with a special focus on the char-
acteristics of multi-core architectures.

Setting up the system of equations usually takes much more
time than solving the equations, and parallel solving is algorith-
mically demanding; we therefore mainly focus on setting up the
equations in parallel. Here, care must be taken to avoid workload
imbalances due to different computational complexities of different

Edited by:

Erik De Schutter, University of
Antwerp, Belgium
Okinawa Institute of Science and
Technology, Japan

Reviewed by:

Marc-Oliver Gewaltig, Honda Research
Institute Europe GmbH, Germany
Robert C. Cannon, Textensor Limited,
UK

*Correspondence:

Hubert Eichner, Department of
Systems and Computational
Neurobiology, Max-Planck-Institute of
Neurobiology, Am Klopferspitz 18,
82152 Martinsried, Germany.
e-mail: eichner@neuro.mpg.de

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 2

Eichner et al. Neural simulations on multi-core architectures

and improving manufacturing technologies are exploited to put
multiple, full-blown PUs onto one chip. To exploit the computa-
tional capacities of this architecture, programs must be explicitly
designed to make use of the available processing resources by
fi rst analyzing their algorithms for potential parallelism, followed
by writing new or modifying existing source code that identi-
fi es workload distributions and subsequently assigns jobs to the
available cores1.

GENERAL RULES FOR PARALLELIZATION
Computer clusters and single computers with multiple processing
chips or multi-cores all require adapting the algorithms and code
to make use of the available processing resources. Parallel code
must strive to meet the following requirements:

• The time spent on sequential, i.e. non-parallel, regions of the
code must be minimized.

• The work must be distributed across the PUs in a manner as
balanced as possible.

• Overhead due to parallelization must be minimized. This
includes overhead for initialization routines and synchroniza-
tion operations.

Before continuing, two frequently used synchronization opera-
tions, mutexes and barriers, are introduced.

Mutexes (derived from mutual exclusion algorithm, also referred
to as locks) are used to prevent the concurrent execution by differ-
ent processes (running instance of a program) of specifi c parts of
the code (or, thereby, the concurrent access to common data). A
lock can be held by one process at a time only; processes trying to
acquire a lock must wait until the lock is released by the process
currently holding the lock.

In contrast, barriers are special functions that, once called, only
return when all other processes have called the function as well.
They are used to make sure all processes have reached a certain
point in the program.

Both mutexes and barriers are indispensable methods in paral-
lel programming. However, they come at the cost of inter-process
communication; depending on how big the latency of the intercon-
nection technology is, they can infl uence the runtime signifi cantly
if not used with caution. In typical message-passing environments
(see Programming Multi-Cores) where inter-process communica-
tion usually requires sending messages across a network from one
computer to another, latencies for small messages range between
about 4 µs (Infi niBand, see Liu et al., 2005) and 30 µs (Ethernet,
see Graham et al., 2005). Thus, synchronization operations quickly
become a bottleneck. It is therefore necessary to reduce such com-
munication as far as possible, i.e. let the processes compute inde-
pendently as long as possible.

In contrast, inter-core communication on multi-cores is
extremely fast (see next section) and allows for much fi ner-grained
parallelization, i.e. the effi cient parallel computation even of small
problems where synchronization operations are frequent. Still,

 synchronizations come at a certain cost and can have a signifi cant
effect on runtime if used extensively.

MULTI-CORE CHARACTERISTICS
In some architectures, different types of PUs are combined on
one chip, e.g. IBM’s Cell Broadband Engine Architecture (Johns
and Brokenshire, 2007). However, the most widespread type are
homogeneous multi-core architectures where multiple copies of
the same PU are placed on a single chip, e.g. Intel’s Core 2 Duo
processors (Intel Corp., 2006), AMD’s Opteron K10 series (AMD,
Inc., 2007a) or IBM’s POWER5 dual-cores (Sinharoy et al., 2005).
This work will focus on the latter architecture, although most
concepts derived in this work are applicable to heterogeneous
multi-core architectures as well.

Before going into further detail, a note about caches must be
made because they play a very important role in developing soft-
ware for multi-cores. In the context of processors, a cache refers to a
very fast (compared to main memory) on-chip memory where pre-
viously accessed data from main memory is temporarily stored to
reduce the latency of subsequent memory read and write accesses.
A good way to ensure cache-effi ciency is to layout data in main
memory both in a packed way and in the sequence of program
accesses. This allows the processor to perform so-called prefetching
of data when it realizes the program traverses an array.

The use of multiple caches requires a mechanism referred to as
cache-coherency protocol to ensure integrity when different cores
access the same location in main memory. Depending on what
type of cache-coherency protocol is used, communication between
cores that share a cache may be much faster than between cores that
access separate caches (explained later in this section).

Figure 1 opposes a single-core processor with memory and I/O
controllers attached via the front side bus (FSB) to two modern
quad-core processors, Intel’s Xeon X5355 and AMD’s Opteron K10
2347. Three important characteristics of homogeneous multi-core
processors and consequences arising therefrom can be observed:

• All cores are full-blown copies of a single-core’s PU; this makes
programming for multi-cores a comparatively simple task
because a single program can be used on all four cores, and
porting existing applications is simple from a programmer’s
point of view.

• All cores on a chip share external resources like main memory,
main memory bandwidth as well as processor-external hard-
ware and hardware bandwidth (network controllers, hard
disk drives etc.). While the access to shared resources simpli-
fi es programming and allows for fast interaction between the
cores, it also bounds the effi ciency of parallel programs that
require a high memory or I/O bandwidth and low latency for
every core.

• Inter-core communication is very fast compared with com-
puter clusters where latencies range between 4 and 30 µs. The
latency of inter-core communication strongly depends on
whether cores share a cache or not and the exact cache-cohe-
rency protocol used.

For instance, the inter-core latency on Intel’s Xeon X5355 can
be as low as 26 ns if two cores communicate via a shared cache
but is much higher if the two cores do not share a cache (between

1This is not necessarily the case for programs that are interpreted by another pro-
gram such as MATLAB or IDL code; here, the intermediate software layer may au-
tomatically identify workload distributions for simple operations such as matrix
multiplications and execute them in parallel transparently for the original program
(ITT Visual Information Solutions, 2007; Moler, 2007).

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 3

Eichner et al. Neural simulations on multi-core architectures

500 and 600 ns depending on whether the two cores are on the
same or on different chips) because communication is performed
by exchanging data via the comparatively slow main memory
(Intel Corp., 2007). In contrast, on AMD’s Opteron K10 2347,
the set of cores used does not infl uence the inter-core latency
signifi cantly; on our test system, we measured latencies of 240
and 260 ns for two cores sharing a cache or not, respectively.
This is because AMD processors use a different way for ensuring
cache coherency (AMD, Inc., 2007b) where cores can commu-
nicate directly without accessing main memory even if they are
located on different chips.

The main intention of this work is to evaluate, in the context
of neural simulations, how the advantages of multi-core architec-
tures can be exploited and when their limitations infl uence effi -
ciency. This requires mentioning another computer architecture
fi rst, symmetric multi-processing (SMP). Here, multiple processor
chips (possibly multi-core chips) are combined in one computer
in a manner similar to how cores are combined on a multi-core
chip. The main differences are a) that multi-cores are becoming
ubiquitous devices, while SMP systems never saw widespread use
except for some scientifi c areas and in servers, b) that cores on the
same chip can communicate much faster, and c) that the number
of processors/chips in one SMP system is low (usually two, seldom
more than four) while multi-core chips are likely to comprise up
to 32 or more cores on a chip in the near future. Therefore, albeit
there are no differences between these two architectures from a
programmer’s point of view, the higher number of cores and the
low inter-core communication latency pose new scalability require-
ments, while at the same time allowing for fi ner grained paralleliza-
tion strategies. Nevertheless, the principles derived in this work are
applicable to SMP systems as well.

PROGRAMMING MULTI-CORES
Parallel programming paradigms can be divided into two classes,
message-passing and shared memory programming. In message-
passing, every process accesses its own memory region and com-
municates with other processes by explicitly sending and receiving
messages. This is the standard programming model for all kinds
of computer clusters but is also frequently used on hybrid archi-
tectures (networks of multiprocessor systems) or even on shared
memory systems.

Shared memory programming, on the other hand, is based on
processes communicating with each other by accessing common
physical memory regions to change and read shared variables. This
model can take various forms, for instance two different programs
that share a small region of memory to exchange information.
The most common method of shared memory programming in
scientifi c computing is multithreading; here, multiple instances
of the same program, so called threads, are executed in parallel,
all residing in the same memory space (i.e. sharing all memory
regions2), although different threads may be at different points in
the program at one time.

This paper user multithreading for two reasons. First, it is a
standard method for concurrent programming on desktop com-
puters and is available on most modern operating systems without
requiring the installation of additional libraries. Second, using mul-
tithreading instead of message-passing for compartmental model
simulations is a rather novel approach that deserves exploration.
The exact method is a slight modifi cation of the Fork&Join model,
e.g. used by OpenMP (OpenMP Architecture Review Board, 2002).
The program is executed in a single-threaded manner, except for

A B

C

FIGURE 1 | (A) Processor with a single core featuring Level 1 instruction and
data caches (L1I and L1D), Level 2 cache (L2), and main memory (RAM)
accessed via the Front Side Bus (FSB); the core is equipped with subunits
for e.g. vector arithmetics, fl oating point processing, memory management

and an interrupt controller. (B) A multi-core processor with four cores
where two cores share a L2 cache, respectively. (C) A multi-core processor
where all cores have a private L2 cache but a L3 cache shared between all
four cores.

2The only exceptions are the stack and Thread Local Storage.

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 4

Eichner et al. Neural simulations on multi-core architectures

parallel regions of the code, where the fi rst thread invokes other
threads to take part in the parallel computation of this region.

The next section will introduce the mathematical and algorith-
mic basis of most types of realistic neural simulations, compart-
mental modeling.

COMPARTMENTAL MODELING
This work focuses on a popular technique in neural simulations:
compartmental modeling based on an electric equivalent circuit of
a neuron. There, a neuron’s morphology is represented by a set of
cylinders of different length and diameter, so-called compartments,
that are electrically coupled with axial conductances. The accuracy
of this spatial discretization method depends solely on the user’s
requirements; cells can be modeled with only one compartment
or in a highly detailed fashion using up to tens of thousands of
compartments; also, different regions of a cell may be modeled
with varying precision.

Figure 2A depicts the compartmental representation of a VS1
cell from the blowfl y’s visual system, reconstructed from a cobalt-
fi lled cell (Borst and Haag, 1996).

Ion channels, ion pumps, synapses and membrane capaci-
tance are all modeled with electric equivalent circuits that aim
to imitate the real behavior as good as possible or computa-
tionally feasible. Figure 2B shows how a single compartment is
represented by a circuit comprising axial currents I

axial
, capacitive

currents I
cap

, and a current I
mech

 modeling the sum of various
neural mechanisms such as ion channels and pumps, chemical
synapses and gap junctions3, and voltage or current clamps. For
every compartment i with adjacent compartments j ∈ adj

i
 and

directed currents as illustrated in Figure 2B, this results in a
current balance equation,

I I Ii i icap mech axial, , ,+ + =∑ 0

yielding

C V g V V I Vm i ij j i
j

m i
mi i

= − − ,...
∈ ∈
∑ ∑() ()

adj mechs

The set of all equations representing the compartmental model of a
neuron forms a system of coupled ordinary differential equations,
one for every compartment. Such systems are solved by apply-
ing a temporal discretization scheme, for instance forward Euler,
backward Euler or Runge–Kutta methods, to every equation. The
simulation is then carried out by starting at t = 0 and advancing
in time step by step, i.e. from time t to t + Δt to t + 2Δt and so on.
For every time step t → t + Δt, the neural simulation software sets
up all equations based on voltages V(t), rate variables etc. defi ned
at time t and solves the system for V(t + Δt).

Depending on the temporal discretization method used, solv-
ing the system for the new membrane potentials requires either a
matrix-vector multiplication and a vector-vector addition, only
(explicit methods), or a linear system of equations (LSE) must be
solved (implicit methods). This work will focus on implicit meth-
ods because parallelization is rather simple for explicit methods
and because implicit methods provide a higher degree of numerical
stability which is often crucial for neural simulations. When using
an implicit method such as the backward Euler method,

V t t
V t t V t

t
()

() ()+ Δ = + Δ −
Δ

which is also NEURON’s default method, and applying an approxi-
mation to the mechanism terms (for details, see Section 4.3 and
Appendix A in Eichner, 2007 or pp. 168–169 in Carnevale and
Hines, 2006), the equations can be rewritten in matrix-vector form
with some right-hand side term rhs as

G V rhs⋅ + Δ =()t t

Figure 3A shows a numbered graph whose circles represent com-
partments, while the lines represent electrical couplings between
the compartments. The corresponding layout of G is illustrated in
Figure 3B, where X denotes non-zero entries. G can thus be seen as
the adjacency matrix of the underlying, tree shaped neuron.

For n compartments, G ∈ ×Rn n is a sparse matrix with all ele-
ments being zero except for about 3n elements, namely diagonal
elements (i,i) and off-diagonal elements at (i,j) and (j,i) for two
axially connected compartments i and j; i.e., the matrix layout
refl ects the connectivity structure of the model. For example,
an unbranched cable yields a strictly tridiagonal matrix G.
Hines (1984) discovered that solving LSEs corresponding to tree

A B

FIGURE 2 | (A) Compartmental model of a VS1 cell from the blowfl y’s visual system. The magnifi cation inset emphasizes how cylinders are used to model the cell.
(B) Example of an electric equivalent circuit used to simulate a compartment. The circuit in the picture is the one used by NEURON.

3Electrical synapses/gap junctions can be modeled in a manner similar to the axial
terms; however, this prohibits the usage of a highly optimized Gaussian elimination
method presented in the next section. Therefore, we assume gap junctions to be
modeled as mechanisms with the respective approximation.

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 5

Eichner et al. Neural simulations on multi-core architectures

 structured grids can be performed such that the required time
is linear in the number of compartments [O(n), as opposed to
the usual complexity of O(n3)] if they are numbered in a special
way and the solver algorithm exploits the sparse structure of the
resulting matrix.

In short, the compartments are numbered increasingly using
depth-fi rst search, starting with 0 at some arbitrarily chosen root
compartment. Then, Gaussian elimination requires only O(n) non-
zero elements above the diagonal to be eliminated (fi ll-in does not
occur) instead of the usual O(n2), and the sparse structure allows
to reduce the weighted addition of two rows required for elimina-
tion to the weighted addition of only two fl oating point values.
The complexity of back-substitution, usually O(n2), can also be
reduced to O(n) because the number of left-diagonal elements in
every row is limited to one.

A closer look at the data dependencies of Gaussian elimination
reveals that there are several possibilities in what order the com-
partments may be processed (i.e., in what order above-diagonal
elements are eliminated). While one might start with compart-
ment 8, proceeding with compartment 7, 6 and so on, another
possibility is to process compartments 4, 3, 6 and 5, then proceed
with compartment 2 etc. The governing rule is that a compartment
may only be processed once all subordinate compartments in leaf
direction have been processed. The same applies, with inverse data
dependencies, to back-substitution.

This observation is visualized in Figure 4. Part A shows the
data dependency graph for Gaussian elimination, while part B
depicts the data dependency graph for the back-substitution
algorithm. Although the data-dependencies impose some restric-
tions on the order of how compartments are processed, there is
nonetheless a certain degree of freedom in choosing a sequence
of compartments during Gaussian elimination or back-substi-
tution. Again, the choice of the root compartment (and thus
the exact data dependency graph) is left to the programmer.
These observations will play an important part in parallelizing
Gaussian elimination. For a more detailed explanation of these
fi ndings, see Eichner (2007). Iterative methods for solving the
LSE such as Gauss-Seidl or conjugate gradients (Hestenes and
Stiefel, 1952) are not considered because of the superior perform-
ance of Hines method.

DETAILS ABOUT THE SAMPLE IMPLEMENTATION
We implemented our algorithms in a stand-alone application for
Linux. The source code is based on the numerical core of NEURON
(Carnevale and Hines, 1997, 2006). Specifi cally, we re-implemented
the fi xed-step backward Euler scheme and ported a set of mecha-
nisms to our application by modifying the C source code generated
by NEURON’s nrnivmodl to suit our needs. The program is miss-
ing a user interface; it runs simulations by reading in a confi guration
fi le that contains the matrix and information about what mecha-
nisms are used on what compartments and mechanism specifi c
parameters. This confi guration fi le completely describes the model
and can be generated by an arbitrary frontend. As we wanted to
simulate existing NEURON models and reproduce the results, we
patched NEURON 6.0 such that it generates the confi guration fi le
upon initializing a model; the fi le is then used by our application
to perform the simulation.

We checked the validity of our results by printing the voltage
at every time step for every 100th compartment and comparing
it to the corresponding value NEURON computes. The results
never deviate more than 1 µV from NEURON’s results for the same
model; in most cases, the deviations are smaller than 0.001 µV4.

The program uses the Native POSIX Thread Library implemen-
tation (Drepper and Molnar, 2005) of the POSIX threads stand-
ard (IEEE Portable Applications Standards Committee, The Open
Group, ISO/IEC Joint Technical Committee 1 2004) for managing
threads and synchronizations. Additional threads are created by the
fi rst thread in an initialization function and invoked when parallel
regions are encountered. Then, the threads are notifi ed of the code
and the data they must process.

One important technical aspect is how inter-core communica-
tion for notifying or waiting for other threads is implemented.
Threads can wait passively by relinquishing their processor to
the operating system, waiting to be invoked again at some later

A B

FIGURE 3 | (A) Numbered graph representing a set of connected
compartments. (B) Layout of the corresponding matrix G.

A B

FIGURE 4 | Data dependency graphs for (A) Gaussian elimination and (B)

back-substitution of an LSE with a matrix as depicted in Figure 3.

4Examining our and NEURON’s assembler code produced by the compiler for the
passive mechanism leads us to the hypothesis that a different order of fl oating point
operations generated for effectively the same computations is responsible for these
deviations.

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 6

Eichner et al. Neural simulations on multi-core architectures

point in time when a signal from another thread arrives. The other
 alternative is to wait actively by spin-waiting on some shared vari-
able to be changed by another thread. While the passive waiting
method is fairer because the processor is only utilized when any-
thing useful is computed, it bears a certain overhead due to the
invocation of the operating system. In contrast, the active waiting
method is much faster but fully occupies the processor even when
no actual computation is performed. When the relative importance
of the notifi cation method is high, i.e. for small models, the operat-
ing system visible method becomes ineffective. We implemented
and benchmarked both methods but decided to only show results
obtained with the spin-waiting method. In summary, both meth-
ods give identical performance for larger models but spin-waiting
is much more effective for smaller models. The implementation’s
source code, the confi guration fi les used in this paper, the result fi les
and corresponding documentation for building and running the
program are freely available from http://fneuron-mc.myselph.de.

PARALLELIZED SIMULATIONS
In most neural simulations, setting up the equations and computing
the actual conductances as a result of the previous voltage distribution
takes up the majority of the time. Our experience is that about 40% of
the time is spent on equation setup when only a passive mechanism
is used, while additional active membrane mechanisms increase this
value to between 80–95% or even more. Fortunately, it is rather simple
to gain proper parallel performance for mechanism setup. At the same
time, parallelizing the equation solver is diffi cult from both an algo-
rithmic and from a programmer’s point of view, while the infl uence
on the performance of the program is usually rather small.

Therefore, this work will focus on parallel equation setup fi rst
without considering solving the equations. Then, a simple but effec-
tive algorithm for parallel solving of single cells and networks of
cells is presented.

Although handling equation setup and solving as independent
tasks seems like an obvious choice, this is nonetheless one of the
main novelties presented in this paper which was not employed
by previous approaches to parallel neural simulations; it will be
compared to existing techniques in the section “Comparison to
Existing Approaches”.

PARALLEL EQUATION SETUP
While the setup of an equation consists of computing capacitive and
axial terms as well, it is the calculation of transmembrane currents of
all kinds modeled by mechanisms that is responsible for the majority
of the runtime spent on this compartment. To simplify the follow-
ing considerations, two terms must be introduced. A mechanism
or mechanism type comprises the code used for computation of the
transmembrane current contributions of this mechanism. A mecha-
nism instance is the result of an instantiation of a mechanism type
for a specifi c compartment, encapsulating the data this mechanism
needs to compute its current contribution to this compartment.

The transmembrane current for compartment i is a combination
of the capacitive current C

m
V

i
 and the contribution of all mecha-

nism instances mechs
i
 on this compartment:

I I Vi m i
m i

mech
mechs

,
∈

= ,...∑ ()

Mechanism types range from fairly simple mechanisms like the
linear model for passive ion channels to complex and therefore
computationally intensive mechanism types for ionic currents
with the conductance governed by voltage- or ion-concentration
dependent fi rst-order kinetics, or models for synaptic mechanisms
with highly detailed models of both transmitter release and postsy-
naptic ion channel kinetics. In particular, the kind and the location
of mechanisms used in a model depend on the user’s requirements
of accuracy as well as the knowledge about the modeled cell’s elec-
trophysiological properties.

The number and the complexity of mechanisms used on a specifi c
compartment are model-specifi c; while the blowfl y’s HS network
simulated in the section “Automatic Cell Splitting and Distribution”
uses passive ion channels only, the more elaborate CA1 pyrami-
dal cell model in the section “Mechanism Computation” uses up
to six mechanism types per compartment for different kinds of
ion channels. Whether parallel execution is worthwhile depends
on several parameters such as the number of compartments, the
number and the complexity of the involved mechanisms, and the
number of threads and cache architecture used. We will approach
this question in the “Results” section.

This work is based on the assumption that there are neither
inter-compartmental nor intra-compartmental dependencies
imposed upon mechanism computation, i.e. the order in which
different mechanism instances on the same compartment or on
different compartments are computed does not affect the result5. In
other words, the contribution of a mechanism to a compartment’s
transmembrane current may be computed in parallel to other
mechanism currents on this or other compartments. Care must
be taken when two mechanism instances on the same compartment
are computed by different cores, however. While the computation
itself can be performed in parallel, synchronizations must be used
at some point to prevent the concurrent modifi cation of the equa-
tion by these cores.

This leaves many possibilities for distributing mechanism
instance computation onto the available cores; however, several
constraints must be taken into account:

(1) Different mechanisms are often used on different sets of
compartments, e.g. passive ion channels and synaptic mecha-
nisms on dendritic compartments, active ion channels on
somatic and axonal compartments.

(2) Different mechanism types have different computational
requirements. Taking into account the fi rst point as well,
this means simply splitting up the set of compartments into
equally large subsets for every core does not necessarily give
a proper load balance.

(3) The overhead spent on synchronizations between cores for
ensuring no equation is accessed concurrently by different
cores must be minimized. Although inter-core commu-
nication as required for synchronizations is very fast on
multi-cores, it can still lead to problems if used extensi-
vely. For instance, it is not feasible to use lock and unlock

5Mechanism currents at the next time step are estimated based on known values
from the current time step. This approximation, which is specifi c to implicit metho-
ds, is explained in Sections 4.3 and Appendix A in Eichner (2007) and pp. 168–169
in Carnevale and Hines (2006).

http://fneuron-mc.myselph.de

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 7

Eichner et al. Neural simulations on multi-core architectures

 operations around every single write access of a mechanism
to an equation.

(4) To avoid equation variables being transferred between diffe-
rent core’s caches, a compartment should be processed (i.e.
computing its mechanism instances and solving its equation)
by as few cores as possible (also, this reduces the amount of
synchronizations).

Several techniques were evaluated and compared; the follow-
ing two methods were found to account best for the mentioned
restrictions.

Splitting up Mechanism Types
A very simple method that guarantees load balance is to split up the
set of mechanism instances of every mechanism into ncores subsets
that contain the same amount of compartments. Every core then
computes its part of every mechanism instance set.

Two mechanism instance sets assigned to different cores may
affect in part the same compartments; in particular, this results
in the equations of some compartments being modifi ed by two
different cores, a possible source of concurrent write accesses.
This problem is illustrated in Figure 5. Here, some distribution
of mechanism instances for different mechanism types across a
compartmental model is shown. The hatching indicates to which
of two cores the subset is assigned. For some compartments, the
mechanism instances are computed by more than one core, e.g.

some of the axonal compartments are processed by both the second
and the fi rst core. If the fi rst core is ahead of the second core (e.g.
because other running programs or hardware events interrupted
the second core for some time), a situation may occur where the
fi rst core accesses an axonal compartment during the passive
mechanism computation which is at the same time accessed by the
second core computing this compartment’s Active K instance.
Similar confl icts could occur for the synaptic current computation
in dendritic compartments.

The simplest way to prevent such accesses is to perform a barrier
operation after every mechanism type computation, illustrated in
the pseudo code listing in Figure 6. As the instances of a specifi c
mechanism are distributed across the cores in a balanced manner,
the time spent on waiting in the barrier function for other cores is
usually very low. However, this overhead may still pose a problem
when the model complexity per time step is rather low relative to
the time spent on inter-core communication. This is the case for
rather small models or models with a high amount of different
mechanisms with only few instances each. The synchronization
overhead could be mitigated by determining where confl icts can
actually occur and only use barrier functions there (in Figure 5:
only after Active K and Passive), but many models still require
a high amount of synchronizations.

A second possibility is to let the mechanisms store their com-
puted values in extra arrays instead of adding them to the equa-
tions. Then, no synchronizations are needed between mechanism
types, and the values are collected and added to the equations after
all mechanism types have been computed. We implemented this
method but found it to be inferior to the default method in the cases
we tested, possibly due to the increased memory requirements.

Splitting up the Set of Compartments with Dynamic Load Balancing
Using synchronizations can be avoided in the fi rst place if a com-
partment’s mechanism instances are all computed by one core
only, i.e. the set of compartments is split up into ncores sets, and
every core processes all mechanism instances on compartments in
its set. The heterogeneity of mechanism complexity and mecha-
nism distribution does not allow for simply splitting up the set of
compartments into equally large consecutive subsets for each core,
as one core might be assigned a computationally more demanding
part of the cell than another core. Using non-consecutive subsets,
e.g. distributing small subsets in a striped manner, would lead to
cache-effi ciency problems. The set of equations a core accesses
during solving would be largely different from the set it accesses

FIGURE 5 | Mechanism type level parallelization. Height of mechanism
type bars indicates per-compartment complexity. Distribution of different
mechanisms (height indicates complexity) across the cell is often spatially
inhomogeneous. Here, computation of the mechanism instances on one
specifi c compartment is often performed by different cores and requires
synchronizations after each mechanism type.

for (i=0; i<number_mechs; i++) {
 barrier();
 for (t=1; t<number_threads; t++) {
 send_job_to_thread(t, mech[i].function,
 mech[i].start[t], mech[i].end[t]);
 mech[i].function(mech[i].start[0], mech[i].end[0]);
 }
}

FIGURE 6 | Pseudo-code listing for mechanism type level parallelization. The fi rst thread waits for the other threads to be ready, then assigns them jobs in the
form of a mechanism function and parameters that defi ne the fi rst and the last mechanism instance this thread must compute. Finally, the fi rst thread calls the
mechanism function itself.

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 8

Eichner et al. Neural simulations on multi-core architectures

during equation setup, leading to a high amount of inter-core
communication between the stages of setting up an equation and
solving it, and vice-versa. What is needed is some estimate of the
complexity of a compartment, so a distribution algorithm can
calculate the size of consecutive compartment subsets assigned
to a core.

Figure 7 shows how a balanced assignment of compartments to
cores might look like. Although the set of compartments assigned to
the fi rst core is much smaller, the distribution of mechanisms across
the cell makes this assignment the fairest in terms of mechanism
complexity balance. No synchronizations are required because an
equation is accessed by one core, only. The main question is how
to identify these sets because the complexity of a mechanism is
not known in advance.

Hines et al. (2008a) estimated a per-mechanism-type complexity
before the actual simulation by performing a dummy simulation
with 100 compartments for every mechanism type; mechanism
complexity and mechanism distribution were then taken into
account when distributing parts of cells onto nodes in a computer
cluster. This requires additional simulations before the actual simu-
lation and is only worth the overhead for longer simulations.

This work proposes a dynamic load balancing technique where
the sets of compartments assigned to cores are resized during
runtime to gain the best possible workload balance. After a fi xed
number of time steps, e.g. nsteps = 20, a per-mechanism-instance
complexity mc

m
 is estimated for every mechanism type m based on

the accumulated time spent on this mechanism type on every core
c, t

m,c
 in the last nsteps timesteps and the number of mechanism

instances of mechanism type m, | |Mm :

mc

t

nsteps Mm

m c
c

ncores

m

=
× | |

,
=

∑
1

Following this, a per-compartment complexity co
i
 is calculated

for every compartment i based on the mechanism types mechs
i

used on this compartment:

co mci m
m i

=
∈
∑
mechs

When assigning only consecutively numbered compartments
to a core, the fi rst set of a out of ncomp compartments may then
be determined by the following formula:

co
ncores

coi
i

a

i
i

ncomp

= =
∑ ∑≈

1 1

1

This technique has proven slightly superior to splitting up mech-
anism types (because of the missing synchronization operations)
and signifi cantly superior to simply splitting up the set of com-
partments without subsequent load-balancing (see Results). The
technique is multithreading specifi c, i.e. it is not easily applicable to
message-passing architectures such as computer clusters. Resizing
sets during runtime is simple when the PUs share main memory
because only loop indices must be changed; in message-passing
environments, each PU has its own main memory, and resizing
working sets requires parts of cells being loaded/unloaded during
simulation and data such as voltages or rate variables must be sent
to other PUs. This is possible in principle but diffi cult to implement,
even more on top of an existing simulation program.

PARALLEL EQUATION SOLVING
Although equation solving usually represents only a small part
of the overall runtime, it is nonetheless necessary to evaluate and
exploit its parallel potential. First, there exist a signifi cant number
of models where compartments only with (computationally cheap)
passive ion channels comprise the majority of the cell or even the
whole model. Then, solving becomes a signifi cant portion of the
execution time. Second and more importantly, with the very good
parallel performance of mechanism computation, equation solv-
ing would quickly become the time-limiting factor, especially for
higher numbers of cores.

The following two sections will treat two ways of parallel solv-
ing, fi rst how whole cells in a network of neurons, then how single
cells may be solved in parallel. Finally, these two approaches will be
combined in a simple algorithm which was found to deliver proper
results in all models tested for this paper.

Whole Cell Balancing
In the section “Compartmental Modeling”, it was shown how the
combination of equations for all compartments in a cell results in
a system of coupled equations for every time step. Different cells
may be seen as independent, i.e. not coupled, systems of equations.
Although cells may be semantically connected by chemical synapses
or gap junctions, these connections are modeled using mechanisms
instead of off-diagonal elements in the connectivity matrix6. Thus,
current fl owing between two cells is accounted for during equation
setup; solving the system of equations for different cells may be
performed independently.

The complexity of solving the system of equations for a cell is
linear in its number of compartments. Therefore, the resulting

FIGURE 7 | Compartment level parallelization. Solid line separates the two
sets of compartments assigned to different cores. This boundary is chosen
such that the overall complexity per core is very close to the average.

6Representing connections between cells with off-diagonal elements works only
for currents linear in the voltage difference, i.e. I g V Vij j i= −() . This holds true for
axial resistances and could be used for gap junctions as well but does not work for
chemical synapses. Modeling gap junctions with off-diagonal entries prohibits the
usage of the effi cient solver algorithm presented in the section “Compartmental
Modeling”, however, while not increasing accuracy signifi cantly.

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 9

Eichner et al. Neural simulations on multi-core architectures

problem is to distribute the computation of solutions for n cells
with different numbers of compartments onto ncores processing
units such that the imbalance between cores is minimized; here,
imbalance is defi ned as the difference between the two process-
ing units with the highest and the lowest load. Although this
appears to be a rather simple task at fi rst glance, it is an NP-com-
plete problem known as Number Partitioning Problem (Hayes,
2002). This means that fi nding the solution requires checking an
amount of cells-to-cores assignments increasing exponentially
with the number of cells [O(ncoresn)]. Fortunately, heuristic algo-
rithms with a much lower complexity exist that give reasonably
good solutions.

The distribution algorithm used in this paper is very simple – the
cells are fi rst sorted in decreasing order according to their size (in
compartments), then they are subsequently assigned to the core
with the so far lowest number of compartments. Sophisticated algo-
rithms like Karmarkar–Karp (Karmarkar and Karp, 1982; Korf,
1997) exist as well but were not tried because the performance
reached by the above mentioned algorithm was found to deliver
satisfactory load balance.

Whole-cell balancing has been employed frequently in paral-
lel neural simulations, although not independently from equa-
tion setup (see “Comparison to Existing Approaches” for details).
A much more interesting and challenging problem is to solve a
single cell in parallel which is the focus of the next section.

Cell Splitting
It is important to once again emphasize that this work concentrates
on the rather complex problem of parallelizing the process of solv-
ing LSEs. When explicit integration methods are used (which is the
case for many simulators, e.g. the default in GENESIS), the system
of equations may be solved by simply performing a matrix-vector
multiplication, followed by a vector-vector addition, both tasks
that are very effi cient in parallel.

Implicit methods result in an LSE; solving LSEs in parallel has
been a hot topic in research for a long time. In the special case of
sparse matrices representing a tree-shaped connectivity structure, a
method developed by Hines et al. (2008a) allows for parallel solving
of a cell by two PUs. This paper uses a similar, slightly enhanced
version of this algorithm which is based on the following two facts.
First, an arbitrary compartment may be chosen as the root compart-
ment (see Compartmental Modeling). Second, subtrees of the root
compartment may be solved in parallel, besides a synchronization
operation between Gaussian elimination and back-substitution
(see Figure 4).

The main question is how to choose a root compartment given
a specifi c neuron because this choice governs the number and size
of the subtrees and thus the load balance achieved by splitting
a cell. Most importantly, load balancing, including cell splitting,
should be automated, i.e. require no user-interaction. The following
algorithm is designed for the special case when only one cell is
simulated; the case of parallel solving in networks of neurons is
dealt with in the next section.

For single-cell simulations, the size of the largest subtree of the
root compartment usually governs the load balance after distrib-
uting the single subtrees onto cores. Therefore, an algorithm that
identifi es the root compartment whose largest subtree is minimal

among all possible root compartments seems to be a good solution.
The algorithm presented here starts at an arbitrary compartment
and traverses the tree by descending into the largest subtree of each
visited compartment. It stops when the size of the largest subtree
of the current compartment is lower than or equal to half of the
overall number of compartments. This is the compartment whose
largest subtree is smaller than or equal to all other compartments’
largest subtrees (a proof is given in Eichner, 2007).

Figure 8 illustrates how an unnumbered graph (A) represent-
ing a neuron may be numbered such that the size of the largest
subtree is minimal (B). The resulting subtrees (colored, part
C) are then distributed onto the available cores with the same
heuristic method that was introduced in the previous section
for whole cell balancing. While Gaussian elimination may pro-
ceed simultaneously in the subtrees, all threads (at most three)
must access the variables representing the root compartment’s
equation, which is therefore not assigned to any core and not
colored. This requires using mutexes for preventing concurrent
write accesses to the root compartment’s equation and a barrier
function to ensure every core has seen the changes of all other
cores to that equation before using its values to continue with
back-substitution.

Combining Cell Splitting and Whole Cell Balancing
A more common scenario is simulating more than just one cell.
Trying to decide what cells to split and with what root compart-
ment, i.e. sizes of subtrees, reveals several obstacles.

First, choosing a root compartment such that single cell
Gaussian elimination is as effi cient as possible may not be the best
global choice, i.e. when taking all other cells and subsequent load
balancing of whole cells and subtrees into account. Second, trees
cannot simply be split such that the number of subtrees and the
subtree sizes connected to the root compartment fulfi ll a certain
requirement – even the rather simple constraint of choosing a root
compartment such that its subtrees may be partitioned into two
equally large sets often cannot be met as Figure 9 shows. Third,
whole-cell balancing alone is NP-complete, so balancing subtrees
and non-split whole cells is NP-complete as well.

A B C

FIGURE 8 | (A) Yet unnumbered tree-shaped graph representing the
connectivity of some neuron. (B) Same graph, numbered such that the largest
subtree connected to the root compartment (compartment 0) is as small as
possible. (C) Same graph and numbering as for the middle graph, but
restructured and colored to emphasize the distinct subtrees that may be
solved in parallel.

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 10

Eichner et al. Neural simulations on multi-core architectures

A heuristic approach seems reasonable that combines cell
splitting and whole-cell balancing. The technique presented in
this section is a combination of splitting neurons and distributing
a number of neurons onto a set of processors. First, all cells are
ordered according to their sizes. Then, the cells are split one after
another, largest cell fi rst, until the imbalance resulting from whole
cell balancing of the subtrees of split cells and whole cells left is
low enough, i.e. below a certain threshold. In our implementa-
tion, we use a maximal imbalance of 2% of the overall number of
compartments. This method makes sure that unnecessary split-
ting of cells is avoided because every split cell results in additional
synchronization overhead.

A more sophisticated method presented in Hines et al. (2008a)
computed a large set of possible root compartments for every cell
along with the sizes of the connected subtrees and an estimate
of their mechanism-dependent complexity in advance and made
use of this information to split and distribute subtrees to PUs.
This method requires considerable overhead as well as a mecha-
nism-complexity estimate before the actual simulation is started.
Most importantly, this method is designed for message-passing

architectures where both dynamic load balancing is very diffi cult
and the load balance achieved plays a much more important role
as the net section will show.

The basic anatomy of a time step using compartment level paral-
lelization and cell splitting is illustrated in Figure 10. When mecha-
nism type level parallelization is used instead, the equation setup
stage is divided into several parallel regions separated by barriers,
one for reseting the equation variables, one for every mechanism
type used. Similarly, the last step, update mechanism variables, where
voltage dependent variables of mechanisms (e.g. gating variables
for ion channels) are computed, then requires one barrier for each
mechanism type.

COMPARISON TO EXISTING APPROACHES
Previous attempts for parallel neural simulations were, to the
authors’ best knowledge, mostly based on the message-pass-
ing paradigm (Bower and Beeman, 1998; Hines et al., 2008a,b;
Migliore et al., 2006). A notable exception is NEST (Gewaltig and
Diesmann, 2007); this neural simulation software supports mul-
tithreading. However, its main application area are large networks
of simple neurons each modeled with one or few compartments
of the Integrate&Fire or Hodgkin–Huxley type, only, instead of
anatomically and electrophysiologically detailed models.

In contrast, this work is based on biophysically detailed simula-
tions with multithreading. The former restriction to message-passing
environments lead to the far-reaching decision to not treat paral-
lelization of equation setup and solving as independent tasks for
several reasons:

• The simplest way to enhance an existing non-parallel neural
simulator for message-passing environments is to support
inter-cell-communication, i.e. sending and receiving synap-
tic currents, via messages as well. Also, this delivers good load
balance for larger models and/or smaller clusters.

• For higher numbers of processors and/or lower numbers of
cells, the most straightforward way to enhance the imple-
mentation is to support some kind of cell splitting and only
transfer a set of split-compartment specifi c values between
Gaussian elimination and back-substitution (see Hines et al.,
2008a). Thus, both equation setup and solving for a specifi c
compartment are performed on the same PU.

• One of the main limiting factors in message-passing environ-
ments is communication latency; therefore, keeping the num-
ber of messages at a minimal level like the above mentioned
techniques is crucial.

FIGURE 9 | A VS2 cell’s compartmental model from the blowfl y’s visual

system (Borst and Haag, 1996) split such that the largest subtree is

minimized. Red indicates location of the root compartment. This cell cannot
be split in a manner such that its subtrees can be partitioned into two equally
large sets.

FIGURE 10 | Flowchart illustrating how a time step is performed with multiple threads. While several barriers must be used to separate confl icting parts of the
program, mutexes are used during triangularization when two threads access the same root compartment of a split cell.

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 11

Eichner et al. Neural simulations on multi-core architectures

large models with thousands or tens of thousands of compart-
ments, not a very common case in every-day neural modeling.
The main reason is that communication overhead for synchroniza-
tion and data exchange quickly becomes the limiting factor when
model size decreases. Multi-cores are fundamentally different in
that inter-core communication only becomes a limiting factor
once the model is so small that parallel simulation is not going
to be of much use, anyway, because simulation times are short
enough in the fi rst place.

RESULTS
All measurements were performed on two systems running Ubuntu
Linux 7.04, one equipped with two Xeon X5355 quad-cores, the
other one with two Opteron K10 2347 quad-cores. They are
 illustrated in Figure 11 along with some benchmark results that
are the topic of the next section.

INFLUENCE OF CACHE ARCHITECTURE AND MODEL COMPLEXITY
The performance of algorithms and their implementations
depends on many variables of both the input problem (the
model) and the underlying architecture. To evaluate the infl u-
ence of these parameters, we generated artifi cial models, each
consisting of eight equally large neurons, each in turn modeled
as eight connected cables, with a Hodgkin–Huxley mechanism
on every compartment and one current injection mechanism
per cell. This prevents cell splitting to infl uence the runtime.
Between models, we varied the number of compartments and
the number of simulated time steps while keeping the product
of these two terms (and, thus, the computational work) at a
constant value of 5 × 223. This allows us to emphasize the relative
infl uence of architectural characteristics such as cache size and
interconnection latency.

Panels A and C in Figure 11 depict the results obtained on our
two test architectures; their structure, i.e. cores, caches and memory
connection, are shown right to the results in Panels B and D. The
model size, and thus the memory requirements, increase from left
to right; the specifi c values for the number of compartments and
the number of time steps are shown on the abscissa. For every
model size, a number of bars are illustrated, each indicating the
simulation runtime for a specifi c number of threads and what cores
these threads were assigned to (i.e. cores with shared or separate
caches, cores on the same or different chips etc.). Our aim is to
show how runtime decreases with the number of threads and how
this decrease depends on model size, cache size, cache architecture
and memory requirements.

For the small 128-compartment model, the infl uence of
inter-core communication for synchronizations is rather strong.
Detailed benchmarks (not shown) indicate that when using two
cores with separate caches on the Intel system, the two threads
spend a total of about 20% of the overall runtime on waiting for
other threads; on the AMD system, the cumulative synchroniza-
tion time for two threads can be up to 40%. The reason for this big
infl uence of synchronizations on the runtime is that their amount
is proportional to the number of time steps and the number of
cores. Accordingly, the cumulative time spent on synchronizations
for the model with 512 compartments is approximately halved,
thus having a much lower infl uence on the runtime. Even for 128

Message-passing programming can be diffi cult when existing
programs are enhanced that were not designed with message-
 passing in mind from the beginning on. For instance, allowing
equation setup and solving for a specifi c compartment to take place
on different PUs as employed by the techniques introduced in this
paper is rather diffi cult in message-passing environments. There,
parts of the equations must be transferred between setup PU and
solving PU before solving, and parts of the solution vector again
must be transferred from the solving PU to the PU that sets up the
equation again for the next time step.

In addition to programming issues, such an approach is not
guaranteed to deliver proper performance because of both com-
munication latency and bandwidth; overhead for message- passing
might very well ruin what is gained by a better load balance dur-
ing the equation setup stage. However, this depends on various
parameters such as the model size, the number of PUs, the per-
formance of cell splitting and the interconnection technology. Such
an approach has not been implemented or tested and is a topic of
further research.

The choice made thus far to bind equation setup and solving
for a compartment to a specifi c PU results in a major limitation.
Because the distribution of compartments onto PUs is governed
by the dependencies of Gaussian elimination and back-substitu-
tion, load balancing problems in the solver stage are very severe
because they apply to the much more time intensive mechanism
computation stage as well. Proper balance in the solver stage is
therefore of much more interest in message-passing based imple-
mentations and lead to techniques like splitcell and the sophisticated
but complex multisplit method (Hines et al., 2008b). This reveals
why decoupling equation setup and solving is such an important
concept in this work.

Another advantage of multithreaded programming can be
observed when recalling the dynamic load balancing technique.
It would be very hard to implement such a technique in a mes-
sage-passing environment because not only would cells or parts of
cells have to be loaded/unloaded during the simulation, but also
would it be necessary to transmit data such as ion channel states
or ion concentrations from the originally responsible process to
the one taking over computation of these mechanism instances. In
a multithreaded environment, however, dynamic load balancing
reduces to simply changing thread specifi c start and stop indices
of a loop over compartments.

There are more advantages to using a shared memory sys-
tem. The simplicity of programming these systems, e.g. by using
OpenMP to enhance existing C/C++/Fortran source code, com-
bined with the intentional simplicity of the algorithms presented
in here, makes these concepts applicable to custom simulation
software. This is supported by the fact that virtually every mod-
ern operating system supports multithreading, while message-
passing requires the installation of additional libraries and a
comparatively complex run-time environment (regardless of
the necessity to accommodate and administrate a computer
cluster).

The most important novelty is the support for small models,
however. The effi ciency of simulating models in a parallel way
directly depends on model size and inter-process communication
latency. In general, computer clusters can only be used for rather

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 12

Eichner et al. Neural simulations on multi-core architectures

 compartments, however, using two cores that share a cache on the
Intel system gives a nearly linear speedup because of the low inter-
core latency (the cumulative synchronization time is only 10% of
the overall runtime).

We did not observe a similar effect on the AMD system; instead,
we were surprised to see that using two cores with a shared L3 cache
even leads to a lower runtime than using two cores with separate
L3 caches on different chips, although in theory, communication
should be slightly slower in the latter case. On the other hand, the
AMD system exhibits better scaling for higher numbers of cores,
even allowing for a speedup of 3.2; this means simulating 1 s of
the 128 Hodgkin–Huxley compartments at a reasonable time step
of 0.025 ms takes only about half a second.

For a wide range of model sizes, that is, from above 512 up to
about 65.536 compartments (data for the latter not shown), we
observe nearly linear and sometimes even superlinear speedups
for two, four and eight threads. For this region of model sizes, the
data fi ts largely into the cache(s) of the processor(s). The effect of
the limited cache capacity can be seen clearly in the single-threaded

case, where performance results are nearly constant up to a specifi c
model size [16.384 (not shown) for the AMD, 32.768 for the Intel
processor], refl ecting the constant overall complexity. However,
for larger models, the memory requirements signifi cantly exceed
the capacity of the core’s cache as estimated from the memory
requirements per compartment (below 100 bytes). Thus, more data
must be fetched from main memory, leading to a lower perform-
ance of the program. The same effect can be observed for two or
more cores on the Intel system, depending on the cumulative cache
size available to these cores – if two cores with their own caches are
used, the cache size is effectively doubled, leading to a slightly better
performance for these core combinations. This can be observed in
Figure 11 for 131.072 compartments simulated on the Intel system;
the effect is much less visible on the AMD system.

Another interesting observation is that on the Intel system, the
bandwidth of the internal on-chip bus may be a limiting factor
for large models. For the two largest models shown with 131.072
and 524.288 compartments, using combinations of two or four
cores that lie on two chips gives better results than using the same

A B

C D

FIGURE 11 | Results for simulations (A,C) on two test systems (B,D) of

artifi cially generated models where computational complexity is held

constant by varying both model size and number of time steps

simultaneously, thus emphasizing the infl uence of inter-core

communication and memory bandwidth. Legend right to the diagrams

indicates number of threads, cache organization (number of L2 caches for Intel
processor/number of L3 caches for the AMD processor) and whether the cores
used are located on one or two chips. The connection between two chips on the
AMD system (D) is illustrated by a thick line modeling the HyperTransport
interconnect (HyperTransport Consortium, 2007).

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 13

Eichner et al. Neural simulations on multi-core architectures

number of cores located on one chip only, even if the cache size
is the same.

The above results must be interpreted with the fact in mind
that to rule out the effect of cell splitting, we used eight cells, thus
avoiding the otherwise involved synchronization overhead. Also,
the Hodgkin–Huxley mechanism was distributed homogeneously
across the cell. In the next two sections, we will look at the infl uence
of more heterogeneous mechanism placement and how iterative
cell splitting helps for models with fewer cells.

MECHANISM COMPUTATION
The measurements in Figure 11 did not take into account cell split-
ting nor multiple mechanisms and their heterogeneous distribu-
tion across a cell. Using artifi cial models again to test how well
our sample implementation handles these challenges was not an
option because the distribution of mechanism type complexities
and mechanism instances is highly model specifi c.

Instead, we use a previously published hippocampal CA1 pyram-
idal cell model consisting of 600 compartments that was used in
Migliore et al. (1999). In this work, distal dendritic compartments
with a diameter lower than 0.5 µm or a distance larger than 500 µm
from the soma were modeled with passive ion channels (and one
with synapses), only. Other compartments, in contrast, are modeled
using up to four different voltage-dependent ion channels, passive
channels and current injections. Thereby, the overall mechanism
complexity is distributed across the cell in a non-uniform man-
ner, allowing to evaluate the performance of the dynamic load
balancing technique introduced before. The automatic cell splitting
algorithm split the CA1 model into two equally large pieces. In the
single-threaded experiments, about 95% of the runtime were spent
on mechanism setup.

Figure 12 shows the results for the two test systems and different
numbers of threads. In the case of the rather small CA1 model, combi-
nations of cores with rather low inter-core latency either yield slightly
better (Intel X5355) or similar (AMD K10 2347) results; to keep
Figure 12 simple, we only show the results obtained on the apparently
best combination of cores for a fi xed number of threads.

The fi gure shows a red line for the linear speedup along with
speedups obtained with two, four and eight cores. Three kinds
of mechanism computation strategies are illustrated; splitting up
the list of instances for each mechanism type (green) and splitting
up the number of compartments into equally large sets without
(blue) and with subsequent load balancing (magenta). Due to the
increase in synchronization overhead, splitting up mechanism types
is either as good as or worse than splitting up compartments with
load balancing. Another advantage of the compartment level paral-
lelization method is less transmission of equations between cores
as an equation is set up by one core, only. In contrast, for mecha-
nism type level parallelization, different cores may actually compute
mechanisms for the same compartment if mechanism placement
is heterogeneous, leading to additional inter-core communication.
The third method, splitting up compartments into equally large
sets without load balancing, is depicted to illustrate the need for
dynamically resizing the sets of compartments due to the hetero-
geneity in mechanism placement.

The general observation regarding dynamic load balancing is
that virtually no overhead is induced by both measuring mecha-

nism type complexities and resizing the sets of compartments. It
is remarkable that the implementation gives proper speedups even
for such small models when using the original model’s simulation
time length of 90 ms – a runtime reduction from 1.55 s (1.81 s) to
about 0.31 s (0.33 s) for eight cores is not only suffi cient for most
users that perform simulations in an interactive manner but also
facilitates automatic optimizations that require several subsequent
single simulation runs with adapted parameters.

AUTOMATIC CELL SPLITTING AND DISTRIBUTION
The remaining question is how well the cell splitting algorithm
works. Again, it was not possible to use artifi cially generated mod-
els; the distribution of cell sizes and cell geometry is highly vari-
able, and the number of compartments used for modeling a cell is

A

B

FIGURE 12 | Simulation of a CA1 pyramidal cell with 600 compartments

for 900 ms with a time step length of Δt = 0.025 ms (see Migliore et al.,

1999). The cell is split into two equally large pieces; distal dendritic
compartments do not use active channels, thus giving a heterogeneous
mechanism distribution across the cell. (A) Speedup results on the Intel test
system (see Figure 11A). Red line: linear speedup; green: measured
speedups of mechanism type level parallelization (Figure 5); blue:
compartment level parallelization (Figure 7) without load-balancing for taking
into account heterogeneous mechanism distribution across cell; magenta:
compartment level parallelization with load-balancing. (B) Same as (A) on the
AMD test system (Figure 11C).

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 14

Eichner et al. Neural simulations on multi-core architectures

user-defi ned. For instance, the above mentioned CA1 cell could be
split into two equally large pieces, while other cells result in three
or more subtrees of different sizes.

To give an intuition of how the algorithm works, we will use
a sample model of the blowfl y’s HS network, published in Borst
and Haag (1996). The three cells (HSE, HSS and HSN) were recon-
structed from cobalt-fi lled cells; they are comprised of 11497, 10824
and 9004 compartments, respectively. Every compartment was
modeled with a mechanism for passive ion channels, only, and
one current injection per cell; in the single-threaded experiments,
about 43% of the runtime were spent on mechanism setup. Again,
only the results for combinations of cores that gave the best results
are shown.

Figure 13 shows performance results for the HS network and
different numbers of cores for the cases when either (automatic)
cell splitting is disabled (green line) or enabled (red line). In the
case of two cells, the splitting algorithm stops after splitting only the
largest of the three cells because a distribution of 15628 vs. 15696
 compartments per core is achieved; in contrast, not using cell
splitting gives a rather poor balance of 19828 vs. 11497 com-
partments, i.e. an imbalance of 29.8% of the overall number of
compartments.

The relative effect on runtime is even more signifi cant for four
cores when automatic cell splitting reduces imbalance from now
36.7% to 4.4%; on eight cores, the imbalance is reduced from 36.7%
to 9.9%.

Figure 13 refl ects the importance of cell splitting, especially for
higher numbers of cores. The reason why the effect of cell splitting
plays such a big role for the HS model is that it uses the computa-
tionally cheap mechanism for passive ion channels, only. Thus, the
effect of the solver stage is much bigger than for models with more
complex ion channel mechanisms. An additional effect of either
not splitting cells at all, or having to few subtrees to assign to cores,
is that an equation must be transferred from the core that sets it up
and the core that solves it, and vice-versa once the resulting voltage
has been computed. If these cores share a cache, or if the time spent
on equation setup is large enough, this effect is very small, but it can
play a role for computationally simple models or in cases where there
are many more cores than cells/subtrees. Thus, the infl uence of cell
splitting strongly depends on the number of cores. In general, when
the number of cells is higher than the number of cores, whole-cell
balancing is often suffi cient. Also, a high mechanism complexity may
strongly reduce the portion of time spent in solving the equations
and therefore the infl uence of cell splitting.

DISCUSSION
In this paper, we presented algorithms and an implementation
thereof for the parallel execution of biophysically realistic neural
simulations using multithreading. To our knowledge, this is the fi rst
manuscript solely based on multithreading; our focus lies on both
advantages and caveats of multi-core architectures. Our sample
implementation is a lightweight simulator based on the numeri-
cal core of NEURON; it is freely available for studying, testing and
extending the code. Our algorithms often scale linearly and some-
times superlinearly with the number of cores over a wide range of
the common complexities of neuronal models.

Scalability is limited mainly in three cases. First, for smaller
models (up to approximately 256 compartments), synchroniza-
tions between cores comprise a relatively large portion of a time
step. The strength of this effect depends on the cache-architecture
and the number of cores used. This observation is not specifi c to
our algorithms or neural simulations but a general problem in
parallel programming; rather, we would like to point out that even
for such small models, multi-cores are able to decrease execution
times signifi cantly.

Second, once models do not fi t into the cache any more, decreases
in performance can be observed for both the single-threaded and
the multi-threaded code, and speedups become sublinear to an
extent depending on the number of threads and the architecture.
In our measurements, this effect sets in at about 33.000/66.000
(AMD/Intel) Hodgkin–Huxley compartments for a single thread,
depending on the cache-size used. For eight threads, this effect

A

B

FIGURE 13 | Simulation of the blowfl y’s HS network with automatic cell

splitting disabled and enabled. The model was simulated for 100 ms with a
time step length of Δt = 0.025 ms. (A) Speedup results on the Intel test
system (see Figure 11A). Green line shows speedup measurements when
the three cells were solved without splitting them; blue line shows results
with cell splitting. The relative infl uence of cell splitting increases with
increasing numbers of cores. (B) Same as (A) on the AMD test system.

Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 15

Eichner et al. Neural simulations on multi-core architectures

dendrites of hippocampal pyramidal
neurons. J. Comput. Neurosci. 7,
5–15.

Moler, C. (2007). Parallel MATLAB®:
Multiple Processors and Multiple
Cores. The MathWorks News &
Notes.

OpenMP Architecture Review Board
(2002). OpenMP C and C++
Application Program Interface
Version 2.0.

Sinharoy, B., Kalla, R. N., Tendler, J. M.,
Eickemeyer, R. J., and Joyner, J. B. (2005).
Power5 system micro architecture.
IBM. J. Res. Dev. 49, 503–522.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 20 January 2009; paper pending
published: 02 March 2009; accepted: 24
June 2009; published online: 09 July 2009.
Citation: Eichner H, Klug T and
Borst A (2009) Neural simulations
on multi-core architectures. Front.
Neuroinform. (2009) 3:21. doi: 10.3389/
neuro.11.021.2009
Copyright © 2009 Eichner, Klug and
Borst. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

Intel Corp. (2006). Intel Core
Microarchitecture. Available at: http://
www.intel.com/technology/architec-
ture-silicon/core/.

Intel Corp. (2007). Intel 64 and IA-32
Architectures Software Developer’s
Manual, Volume 3A: System
Programming Guide, Part 1, pp.
10–11, 10–12.

ITT Visual Information Solutions (2007).
Multi-Threading in IDL. Available at:
http://www.ittvis.com/idl/pdfs/IDL_
MultiThread.pdf.

Johns, C. R., and Brokenshire, D. A. (2007).
Introduction to the Cell Broadband
Engine Architecture. IBM. J. Res. Dev.
51, 503–520.

Karmarkar, N., Karp, R. M. (1982). The dif-
ferencing method of set partitioning.
Technical Report UCB/CSD 82/113,
University of California, Berkeley.

Korf, R. E. (1997). A Complete Anytime
Algorithm for Number Partitioning.
Available at: http://web.cecs.pdx.edu/
bart/cs510cs/papers/korf-ckk.pdf, sec-
tion 2.5.

Liu, J., Mamidala, A., Vishnu, A., and
Panda, D. K. (2005). Evaluating
InfiniBand performance with PCI
express. IEEE Micro 25, 20–29.

Migliore, M., Cannia, C., Lytton, W. W.,
Markram, H., and Hines, M. L. (2006).
Parallel network simulations with
NEURON. J. Comput. Neurosci. 21,
119–129.

Migliore, M., Hoffman, D. A., Magee, J. C.,
and Johnston, D. (1999). Role of an
A-Type K+ conductance in the back-
propagation of action potentials in the

only sets in at 131.000/262.000 Hodgkin–Huxley compartments,
an unusually big model size.

Third, our cell splitting and balancing algorithm may lead to
increased inter-core communication if the number of cores is sig-
nifi cantly higher than the number of cells. The strength of this
effect depends on the number of cells, the cache-architecture and
the ratio of time spent on solving.

It is not easy to predict how well the concepts will work on
future multi-cores comprised of 32 or more chips, because inter-
core latency already is an issue, and memory bandwidth is likely
to become a limiting factor for bigger models if all cores use a
common front side bus. One possible development is the shift
towards NUMA (Non-Uniform Memory Architecture) multicore

architectures where different memory controllers instead of one
central memory controller are used. These architectures, already
employed in multi-core systems with AMD processors, have the
potential to solve the scalability issue; however, we observed rather
high inter-core communication latencies on our AMD test system
even for cores that have a common L3 cache.

ACKNOWLEDGMENTS
This work was supported by the Max-Planck-Society. The authors
would like to thank Michael Hines for fruitful discussions and
comments on the paper and the LRR department at Technical
University of Munich for providing us with the necessary com-
puter systems.

REFERENCES
AMD, Inc. (2007b). AMD Opteron

Processor Family. Available at: http://
www.amd.com/opteron.

AMD, Inc. (2007a). AMD64 Architecture
Programmer’s Manual – Volume 2:
System Programming, Rev. 3.14,
p. 168.

Borst, A., and Haag, J. (1996). The intrinsic
electrophysiological characteristics of
fl y lobula plate tangential cells: i. pas-
sive membrane properties. J. Comput.
Neurosci. 3, 313–336.

Bower, J. M., and Beeman, D. (1998).
The Book of GENESIS: Exploring
Realistic Neural Models with
the GEneral NEural SImulation
System, 2nd Edn., Springer-Verlag,
New York.

Carnevale, T., and Hines, M. (1997). The
NEURON simulation environment.
Neural Comput. 9, 1179–1209.

Carnevale, T., and Hines, M. (2006).
The NEURON Book. Cambridge,
Cambridge University Press.

Drepper, U., and Molnar, I. (2005).
The Native POSIX Thread Library
for Linux. Available at: http:// people.
redhat.com/drepper/nptl-design
pdf.

Eichner, H. (2007). Biophysically
Realistic Simulations on Multi-Core
Architectures. Available at: http://
www.neuro.mpg.de/english/rd/scn/
research/ModelFly_Project/down-
loads/Eichner_thesis.pdf.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (Neural Simulation
Tool). Scholarpedia 2, 1430.

Graham, R. L., Woodall, T. S., and
Squyres, J. M. (2005). Open MPI:
A fl exible high performance MPI. In
Proceedings, 6th Annual International
Conference on Parallel Processing
and Applied Mathematics. Poznan,
Poland.

Hayes, B. (2002). The easiest hard prob-
lem. Am. Sci. 90, 113–117.

Hestenes, M. R., and Stiefel, E.
(1 9 5 2) . Me t h o d s o f co n j u -
gate gradients for solving linear
systems. J. Res. Natl. Bur. Stand. 49,
409–436.

Hines, M. (1984). Effi cient computation
of branched nerve equations. Int.
J. Biomed. Comput. 15, 69–76.

Hines, M., Eichner, H., and Schürmann, F.
(2008a). Neuron splitting in compute-
bound parallel network simulations
enables runtime scaling with twice as
many processors. J. Comput. Neurosci.
25, 203–210.

Hines , M. , Markram, H. , and
Schürmann, F. (2008b). Fully
implicit parallel simulation of sin-
gle neurons. J. Comput. Neurosci. 25,
439–448.

HyperTransport Consortium (2007).
HyperTransport I/O Link Specifi cation
3.00c.

IEEE Portable Applications Standards
Committee, The Open Group, ISO/
IEC Joint Technical Committee 1
(2004). IEEE Std 1003.1, 2004
Edition – Standard for Information
Technology – Portable Operating
System Interface (POSIX) – System
Interfaces.

http://www.intel.com/technology/architecturesilicon/core/
http://www.ittvis.com/idl/pdfs/IDL_MultiThread.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

