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This work reports a digital signal processing approach to representing and modeling transmission 
and combination of signals in cortical networks. The signal dynamics is modeled in terms of 
diffusion, which allows the information processing undergone between any pair of nodes to be 
fully characterized in terms of a fi nite impulse response (FIR) fi lter. Diffusion without and with 
time decay are investigated. All fi lters underlying the cat and macaque cortical organization are 
found to be of low-pass nature, allowing the cortical signal processing to be summarized in 
terms of the respective cutoff frequencies (a high cutoff frequency meaning little alteration of 
signals through their intermixing). Several fi ndings are reported and discussed, including the 
fact that the incorporation of temporal activity decay tends to provide more diversifi ed cutoff 
frequencies. Different fi ltering intensity is observed for each community in those networks. 
In addition, the brain regions involved in object recognition tend to present the highest cutoff 
frequencies for both the cat and macaque networks.
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Several linear approximations to non-linear problems have been 
reported in the literature, most of which related to linear synchroniza-
tion dynamics (e.g. Zemanova et al., 2008; Zhou et al., 2006, 2007) and 
active media (e.g. Biktasheva et al., 2009; Ermentrout and Edelstein-
Keshet, 1993; Hramov et al., 2005), yielding valuable insights about 
information transmission and processing. One element of particu-
lar importance in such investigations regards the interplay between 
structure and function. For instance, it has been established that the 
neural systems seem to form networks whose structures lie at the criti-
cal regime between local and global synchrony (Percha et al., 2005). 
In this way, the appearance of connections in damaged regions may 
lead to the onset of epileptic seizures (Nadkarni and Jung, 2003). It 
should be also observed that, as in the present work, linear approaches 
can be applied to model the collective dynamics of whole cortical 
regions, defi ning a more macroscopic investigation. In such cases, 
the explicit non-linearity of individual neuronal fi ring are averaged 
among several cells, yielding signals which are more graded and more 
propitious to being represented by linear approximations, especially 
during short periods of time. This property is ultimately one of the 
main justifi cations for the relatively large number of works in the 
literature in which brain activity is approached in terms of linear 
synchronization. It is also possible that the macroscopic propagation 
of cortical activation amongst different cortical regions could exhibit 
dynamics similar to traditional diffusion. Nevertheless, it should 
always be borne in mind that linear models of cortical activations 
may not refl ect all the important dynamical features, especially those 
involving longer time intervals.

While synchronization is inherently important in the sense of 
being related to the brain workings, other linear approaches can 
be equally applied in order to reveal complementary aspects of 
the relationship between structure and function in the brain. One 

INTRODUCTION
Brains are modular, interconnected structures optimized for trans-
mission and processing of information at a level compatible with the 
survival and reproduction of each particular species (Hilgetag and 
Kaiser, 2004; Koch and Laurent, 1999; Sporns, 2002; Sporns et al., 
2004). Information is progressively altered as it fl ows through the 
brain as a consequence of: (i) the processing performed by each indi-
vidual neuron; (ii) the interconnection between the neurons along 
the path of the information fl ow, which implements the mixture of 
different signals; and (iii) interferences at the neurons or intercon-
nection links (e.g. noise and cross-talk). While great attention has 
been focused on information processing in the brain, specially at 
the neuronal level, relatively fewer investigations have addressed 
the equally important issue of how signals are disseminated, while 
being integrated, through the several brain areas. Indeed, a great 
deal of the brain hardware (Sporns and Kötter, 2004), especially the 
white matter, is responsible for conveying signals along considerable 
distances from their origin, typically to several destinations, where 
they are modifi ed, blended, and transmitted further.

Brain connectivity can be effectively represented, modeled and 
simulated in terms of graphs (e.g. Barabási and Albert, 2002). 
More specifi cally, each neuron or cortical region can be mapped 
as a node of a graph, while the synaptic or inter-regional connec-
tions are represented as directed links. Though a more complete 
understanding of information processing in the brain ultimately 
requires the integration of the non-linear processing taking place 
at each neuron, valuable insights can be nevertheless obtained by 
adopting some simpler (e.g. linear) dynamics and focusing on the 
interconnectivity and signal modifi cation between neurons or 
cortical areas, as represented by graphs and networks (Watts and 
Strogatz, 1998).
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 particularly interesting possibility which has been mostly over-
looked is the investigation of signal transmission and processing 
in terms of signal processing approaches. Founded on a well-
 established, sound mathematical framework, signal processing 
research (e.g. McClellan et al., 2002; Proakis and Manolakis, 2006) 
focuses on the representation and analysis of signals and systems in 
terms of frequencies and fi lters. The generality of such an approach 
stems from the fact that any real-world signal can be represented in 
terms of its respective Fourier series, namely a linear combination 
of basic harmonic components (sines and cosines) with different, 
well-defi ned frequencies. Linear systems typically modify such sig-
nals by changing the intensity of each component, such as in fi lters. 
For instance, a low-pass fi lter will attenuate the high- frequency 
harmonic components, while allowing the lower frequency compo-
nents to pass with little or no alteration. The application of such an 
approach to signal transmission and processing in the brain paves 
the way to a series of promising possibilities. For instance, the altera-
tions undergone by information as it proceeds from a specifi c origin 
neuron or cortical region to a specifi c target can be approximated 
as a kind of fi lter. Provided the properties of such a fi lter can be 
obtained, this approach allows modeling of the alterations under-
gone by the information while going from origin to destination. In 
other words, such a fi lter would replicate the functionality of the 
whole portion of brain hardware comprised between the origin 
and destination. In addition to its simplicity and elegance, such a 
fi lter modeling approach would also clearly characterize the way 
in which the information is altered in an intuitive and meaningful 
way, i.e. in terms of the alterations of the magnitudes of specifi c 
harmonic components. For instance, in case a specifi c portion of 
the brain is found to correspond to a low-pass fi lter, it becomes 
immediately clear that the high-frequency content of the signal 
is being attenuated, which corresponds to a smoothing operation 
implying loss of its details, therefore suggesting that that particular 
processing is focusing on the slower variations of the signal. In 
addition, low-pass fi lters are immediately related to the operation 
of integrating signals along time. In this respect, the smoothing 
could be a consequence of too intense mixing of several delayed 
versions of the signal, therefore providing valuable information 
about the level of blending of the signals as they passed through the 
network topology. Interestingly, the dynamical effect of low- and 
high-pass fi lters can be to a large extent summarized in terms of 
their respective cutoff frequency, namely the frequency where the 
attenuation reaches 1 2/  of the amplitude of the largest harmonic 
component. Such an approach allows the function of the whole 
portion of brain in question to be effectively summarized in terms 
of a single real value. In the case of a low-pass fi lter, the higher 
the cutoff frequency, the smaller the alteration and intermixing 
undergone by the signal.

The current work describes a signal processing approach to the 
integration of brain structure and functionality which relies on 
the adoption of linear dynamics, namely diffusion. This type of 
dynamics underlies several natural systems and also participates 
in a large variety of non-linear dynamics (e.g. reaction-diffusion 
Giordano and Nakanishi, 2005). More specifi cally, at each time step, 
the signals arriving at each cortical region are added and redistrib-
uted among the respective outgoing links. The specifi c way in which 
such alterations take place are intrinsically related to the specifi c 

topology of the portion of the network comprised between the 
origin and destination nodes. In this way, the signals are blended 
as they are propagated along the brain in a way that is analogue 
to several sources of sound going through an environment as the 
sound signals reverberate and intermix, giving rise to construc-
tive and destructive interferences. As such, this approach provides 
a nice complementation of other linear approximations to brain 
functionality, such as synchronization, by emphasizing the inter-
mixing of signals as they progress through specifi c pathways along 
the intricate brain topology. Though we focus on cortical networks, 
this approach is immediately extensible to neuronal networks.

As reported recently (Rodrigues and da Fontoura Costa, 2009), 
non-conservative diffusion dynamics, more specifi cally the situa-
tion where each outgoing edge produces unit activation, in cortical 
networks can be effectively modeled in terms of fi nite impulse 
response digital fi lters (FIR). Interestingly, the coeffi cients of the 
FIR associated to a given network undergoing that type of dynamics 
are completely defi ned by the number of walks between the origin 
and destination areas, therefore establishing a clear-cut relation-
ship between network structure and dynamics. The present work 
extends and explores these possibilities much further by assuming 
conservative diffusion with and without time decay in the cat and 
macaque cortical networks.

The manuscript starts by presenting the concepts of complex 
networks and digital signal processing, as well as the adopted cor-
tical databases. Next, results obtained with respect to macaque 
and cat cortical networks are presented and discussed. The text 
concludes by reviewing the main contributions and identifying 
possibilities for further investigations.

CONCEPTS AND METHODS
NETWORKS AND DIFFUSION
A directed complex network, composed by a set of N nodes con-
nected by E edges, can be represented by its adjacency matrix A, 
whose elements a

ij
 are equal to unity if the node j sends a con-

nection to node i, and equal to zero otherwise. Two nodes i and 
j are said to be adjacent or neighbors if aij ≠ 0. Two non-adjacent 
nodes i and j can be connected through a sequence of m edges 
( ) ( ) ( ).i n n n n jm, , , , , ,−1 1 2 1…  Such a set of edges between i and j is called 
a walk of length m. The special case of a walk where no nodes are 
repeated is called a path.

A particular property of most complex networks is their com-
munity or modular structure. Communities are modules of densely 
interconnected nodes (Girvan and Newman, 2002). There are many 
methods for community identifi cation and their choice depends 
on specifi c needs, e.g. accuracy against fast execution (da Fontoura 
Costa et al., 2007). In the current work, we considered the method 
based in random walks called Walktrap (Pons and Latapy, 2005), 
because such approach is intrinsically related to diffusion dynamics, 
which also underlies our modeling approach.

The characterization of the properties of a given network can 
be performed in terms of structural (e.g. da Fontoura Costa et al., 
2007) and dynamical measurements (e.g. da Fontoura Costa and 
Rodrigues, 2008). Structural measurements includes, for instance, 
the node degree, clustering coeffi cient, average shortest path length 
and assortativity coeffi cient (da Fontoura Costa et al., 2007). On 
the other hand, dynamical measurements depend on the specifi c 
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dynamic process that is being executed in the network, such as 
synchronization (e.g. Pikovsky et al., 2002), random walks (e.g da 
Fontoura Costa and Sporns, 2006; da Fontoura Costa and Travieso, 
2003), opinion formation (e.g Rodrigues and da Fontoura Costa, 
2005) and epidemic spreading (e.g Newman, 2002). The structure 
and dynamics of complex networks are intrinsically inter-related 
(Boccaletti et al., 2006).

As shown in the current work, the relationship between structure 
and function of networks can also be addressed by using signal 
processing approaches. Signals are assumed to spread throughout 
the network by random walks initiating from a given source node 
(e.g. Barber and Ninham, 1970; Giordano and Nakanishi, 2005). 
Such a dynamical process, which is inherently related to diffusion 
(Barber and Ninham, 1970), involves the progressive dissemina-
tion and intermixing of the signals along time and network space, 
closely refl ecting the specifi c topology of the network. Therefore, 
the signal arriving at a given destination node depends strongly on 
the structure of the portion of the network comprised between the 
source and destination nodes (da Fontoura Costa and Rodrigues, 
2008). It has been shown recently (Rodrigues and da Fontoura 
Costa, 2009), with respect to a specifi c non-conservative diffusion 
dynamics, that such a strong interplay between network structure 
and dynamics can be fully modeled in terms of fi nite impulse 
response fi lters (FIRs). More specifi cally, the coeffi cients of such 
digital fi lters are given by the number of walks between the source 
and destination nodes.

The diffusion of activations in complex networks can be obtained 
by considering the transition matrix S, which can be calculated from 
the adjacency matrix A as

S i j
A i j

A i j
j

N( )
( )

( )
, = ,

,
=∑ 1

 (1)

Each element S(i,j) gives the probability of moving from the 
node i to node j. In this way, if a given signal is injected into a 
network, we can determine its diffusive propagation by repeatedly 
applying the transition matrix. More specifi cally, the probability 
of transition between the source and a destination at n edges of 
distance can be immediately obtained from the matrix

H Sn
n=  (2)

Similarly, the number of walks of length n between two nodes 
can be determined by the elements of the matrix D An

n= . The above 
dynamics is conservative, as there is no loss in the activations (all 
signals in the present work are formed by zeroes and ones). On 
the other hand, it is also possible to adopt a decay parameter that 
reduces the amplitude of the received activation along time. In 
this case, the matrix H

n
, which gives the probability of transition 

between the source and destination nodes separated by walks of 
length n, is given as

H n Sn
n= +ε( )1  (3)

where ε α ε( ) ( ) ( )n n+ = −1 1 , ε( )1 1=  and 0 1≤ ≤α . The coeffi cient 
α can be understood as the rate of decay according to the distance 
from the source of signal propagation. Such a dynamics, which is no 
longer conservative, has biological backing in the sense that sensory 

brain activations tend to diminish with time. In the current work, 
we show that the FIR approach to modeling the cortical networks 
can easily incorporate time decay, allowing the investigation of the 
diffusion dynamics without and with decay.

DISCRETE SIGNALS AND THEIR PROCESSING
A discrete-time signal is a time series consisting of a sequence of 
discrete values. The process of converting a continuous-valued 
discrete-time signal into a digital (discrete-valued discrete-time) 
signal is known as quantization (Orfanidis, 1996). A time-invariant 
system is a system that remains unchanged along time. This implies 
that if a given input is inserted into the system and causes a defi nite 
output, if we repeat the same process at another time, an equally 
delayed version of the previous output will be obtained. A linear, 
time-invariant system (LTI) can be fully classifi ed in terms of its 
fi nite impulse response (FIR) and infi nite impulse response (IIR), 
depending on whether the inserting signal has fi nite or infi nite 
duration. More specifi cally, given the impulse response, the out-
put produce for any input signal can be immediately calculated in 
terms of the convolution between the input signal and the impulse 
response.

A fi lter can be defi ned as any medium that can modify the signal 
in some way (Smith, 2007). A digital fi lter operates on discrete-
time signals by taking a sequence of values (the input signal) and 
producing a new discrete-time signal (the fi ltered output signal). 
The main objective underlying the current work is to model the 
dynamics of signal transmission and integration between pairs of 
nodes in terms of digital signal processing concepts (McClellan 
et al., 2002; Orfanidis, 1996; Proakis and Manolakis, 2006). More 
specifi cally, the signal processing between pairs of nodes (source 
and destination of signal) is modeled as a FIR digital fi lter structure 
whose coeffi cients correspond to the total probability of transition 
of walks of different lengths between the source and destination 
(see Figure 1). This approach extends and complements a prelimi-
nary investigation assuming non-conservative diffusion dynamics, 
where the signals were propagated by using the adjacency, instead 
of transition, matrix (Rodrigues and da Fontoura Costa, 2009).

If a signal is injected into a network from a given source node 
i, the activation of each node at time t implied by the diffusion 
dynamics can be represented in terms of the system state vector 
(da Fontoura Costa, 2008)

G
y t y t y t y tN( ) ( ( ) ( ) ( ))= , , ,1 2 …  (4)

where y
j
(t) represents the state of the node j at the time t. Given 

the state of a network at time t, the subsequent state can be cal-
culated by

G G G
y t Sy t s t( ) ( ) ( )+ = +1  (5)

where 
G
s t s t s t s tN( ) ( ( ) ( ) ( ))= , , ,1 2 …  is the vector representing the 

forcing signal injected at each node i. Note that in the case where 
only one node i receives activation at each time t, we have s ti ( ) ,= 1  
while all the other elements of 

G
s  are equal to zero. The forcing 

signal 
G
x injected into the network is assumed to have length L and 

be composed of elements which are equal to zero or one. At each 
time step, one element of this vector is injected into the source 
node i, i.e. s t x ti( ) ( )= . Thus, by considering this dynamics, signals 
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are diffused, distributed and intermixed along the network. More 
specifi cally, the signal arriving at a node j after t time steps is a 
linear combination of the original signal values after undergoing 
all possible delays (smaller or equal to t) and combinations along 
the portion of the network comprised between the source and des-
tination nodes, i.e.

y t h x t h x t h t xj ( ) ( ) ( ) ( ) ( ) ( ) ( )= + − + +0 1 1 0…  (6)

where y
j
(t) is the activation of the node j at the time t and the 

elements h(n) represent the probability of transition between the 
source i and the destination j, considering all random walks of 
length t between the source and destination.

It can be easily verifi ed that Eq. 6 corresponds to a FIR fi lter-
ing structure, such as that illustrated in Figure 1. Indeed, this 
equation is equivalent to the convolution between the injected 
signal and the fi nite impulse response sequence 

G
h of a digital 

fi lter considering some initial period of time. Therefore, the 
dynamic of signal transmission between each pair of nodes i 
and j is effectively summarized, for a given fi nite period of time, 
by the respective FIR structure, which is completely specifi ed in 
terms of the coeffi cients of 

G
h, respectively given by Eq. 2. Thus, 

the coeffi cients defi ning the FIR structure are fully specifi ed by 
the transition matrix describing the diffusion dynamics for each 
specifi c network topology.

The convolution above can be conveniently evaluated in terms of 
the z-transform. The z-transform converts a discrete time-domain 
signal, which is a sequence of real or complex numbers, into a com-
plex domain representation. The z-transform is closely related to 
the Laplace transform, from which it can be obtained through the 
variable change z est=  (McClellan et al., 2002). As a consequence, 
the z-transform is also related to the Fourier transform. Given a 

discrete time signal 
G
x t( ), its z-transform is defi ned as corresponding 

to the following series (Sirovich, 1988),

X z x n z n

n

L

( ) ( )= −

=
∑

0

 (7)

We can recover 
G
x t( ) from X(z) by extracting the coeffi cient of 

the n-th power of z−1 and placing that coeffi cient in the t-th posi-
tion in the sequence x(t). Note that the inverse z-transform may 
not be unique unless its region of convergence is specifi ed. The 
inverse z-transform can be computed using the contour integral 
(McClellan et al., 2002)

x n
j

X z z zn

C

( ) ( )= −∫
1

2
1

π
dv  (8)

Among the main features of the z-transform that facilitate the 
analysis of linear systems we have: (i) linearity, (ii) delay repre-
sentation, and (iii) the convolution property. In the case of the 
cortical networks, the FIR representation makes it clear how the 
existence of several paths of different lengths between the source 
and destination nodes, by defi ning distinct transition probabilities, 
completely specifi es the functionality of the FIR as well as of the 
respective cortical network (Rodrigues and da Fontoura Costa, 
2009). The convolution property is fundamental in FIR analysis, 
since it can be easily calculated by a simple multiplication in the 
transformed space, i.e.

y t h t x t Y z H z X z( ) ( ) ( ) ( ) ( ) ( )= ⇒ =∗  (9)

where h(t) is the impulse response sequence of a digital fi lter.
As the z-transform of a time-delay function δ(t − p) is known to 

be z−p, we have that the system function H(z) (i.e. the z-transform 
of the fi nite impulse response) for the network modeled as a FIR 
structure is given as

H z h n z n

n

( ) ( )= −

=
∑

0

Γ

 (10)

where Γ is the FIR size and h(n) represents the probability of transi-
tion between the source and the destination for walks of length n, 
i.e. the elements of H Sn

n= . Figure 2 illustrates the dynamics in a 
network as modeled by the FIR approach.

Mathematically, the numerator of H(z) has M roots (corre-
sponding to the zeros of H) and the denominator has Q roots 
(corresponding to poles). The roots and poles of the system func-
tion H(z) determine it to within a constant. In particular, as the 
FIR always have multiple poles at zero, the system is always stable 
(McClellan et al., 2002). The poles are the values of z at which 
H(z) is undefi ned (infi nite). The transfer function can be written 
in terms of poles and zeros

H z
q z q z q z

p z p z p z
M

Q

( )
( )( ) ( )

( )( ) (
= − − −

− − −

− − −

− −

1 1 1

1 1 1
1

1
2

1 1

1
1

2
1

"
" −−1)

 (11)

where q
n
 is the n-th zero and p

n
 is the n-th pole. The zeros and poles 

are commonly complex and, when plotted on the complex plane 
(z-plane), they defi ne the so-called pole-zero plot (see Figure 5, 
for instance).

probability of
transition for

walks of length 0

probability of
transition for

walks of length 1

probability of
transition for

walks of length 2

h1

h2

+

X(n-2)

y(3)

t=3

x(n-1)

x(n-3)

x(n)

h3

h0

probability of
transition for

walks of length 3

FIGURE 1 | The FIR model of the dynamics between a pair of nodes in a 

given network. The signal 
G
x t( ) is injected into the network until t = 3. The 

signal at each time instant in the destination 
G
y t( ) corresponds to a linear 

combination of the input signal and the coeffi cients h(n) given by the 
probability of transition for walks of varying lengths between the source and 
destination.
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It follows from the above results that all the intricacies of the 
diffuse dynamics in complex networks can be summarized in terms 
of the respective poles and zeroes of the system function. Moreover, 
the frequency response of the system, as well as the respective cut-
off frequencies, can be immediately obtained from the pole-zero 
representation. The cutoff frequency, summarizes to a great extent 
the overall function of the respective low- or high-pass fi lter. The 
frequency response is highly dependent of the network structure, 
as shown in Figure 3. Indeed, the mixture of signals tends to reduce 
the amplitude of the frequency response and therefore the cut-
off frequency. The frequency response is defi ned as the spectrum 
of the output signal divided by the spectrum of the input signal 
(Orfanidis, 1996; Smith, 2007). Observe that such formulations 
refer to the stationary state of the system, which is henceforth 
approximated by using several periods of a given input signal. The 
frequency response is typically characterized by the magnitude and 
phase of the system’s response in terms of frequency. The frequency 
response magnitude is given by the transfer function H(z) evaluated 
along the unit circle in the z-plane. In other words, the frequency 
response of a linear time-invariant system is equal to the Fourier 
transform of the impulse response (Smith, 2007).

CORTICAL NETWORKS
We investigate the cortical networks of macaque and cat, which con-
tain predominantly isocortical brain regions (Sporns et al., 2007). 
All data sets consist of binary matrices describing the interconnec-
tivity between the brain regions given by inter-regional pathways. 
The macaque network, including 47 nodes connected by 505 links, 
incorporates the visual, somatosensory and motor cortical regions 
(Felleman and Van Essen, 1991). The cat cortical network is derived 
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FIGURE 2 | Example of FIR modeling of the dynamics between a pair of 

nodes in the network (A). The signal 
G
x = , , ,( )1 0 1 0  is injected into the red node 

and the output is observed at the yellow node along the fi rst 8 time steps. The 
output, 

G
y = , , . , . , . , . , . ,( )0 0 0 111 0 166 0 216 0 166 0 104 0 , can be obtained by 

considering the FIR structure, as illustrated in (B).
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FIGURE 3 | Two different topologies that result in specifi c frequency 

responses. The input and output nodes are represented in red and yellow, 
respectively. In case (A), the sequence of nodes defi ning a chain present a 
low-pass fi lter with cutoff frequency value equal to fc = .0 18. In the case (B), 
the low-pass fi lter presents fc = .0 13. Therefore, the fi rst case leads to less 
intermixing of differently delayed versions of the signal, and consequently a 
less intense alteration of the original signal.
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from the matrix published by Scannell et al. (1999), and excludes 
the hippocampus, all thalamic regions and the thalamo-cortical 
pathways (Sporns et al., 2007). This network contains 52 nodes and 
818 links. All connections in these networks are directed.

The communities were identifi ed by using the Walktrap method 
(Pons and Latapy, 2005), which is founded on random walk dynam-
ics. Both cat and macaque cortical networks were split into four 
communities characterized by modularity (e.g Newman and 
Girvan, 2004) equal to Q = 0.25 for the cat, and Q = 0.28 for the 
macaque. The adjacency matrices of cat and macaque with the 
highlighted community connections are shown in Figure 4. We 
named the communities in terms of their main functions. In the 
case of the cat, the identifi ed communities are formed by the fol-
lowing cortical regions:

• Cognitive: area 20b, area 7, anterior ectosylvian sulcus, poste-
rior part of the posterior ectosylvian gyrus, medial area 6, 

 lateral area 5B, infralimbic medial prefrontal cortex, dorsal 
medial prefrontal cortex, lateral prefrontal cortex, agranular 
insula, granular insula, anterior cingulate cortex, posterior 
cingulate cortex, retrosplenial cortex, area 35 of the perirhinal 
cortex, area 36 of the perirhinal cortex, presubiculum, parasu-
biculum and postsubicular cortex, subiculum, and entorhinal 
cortex;

• Visual: area 17, area 18, area 19, posterolateral lateral suprasyl-
vian area, posteromedial lateral suprasylvian area, anterome-
dial lateral, surpasylvian area, anterolateral lateral suprasylvian 
area, ventrolateral suprasylvian area, dorsolateral suprasylvian 
area, area 21a, area 21b, area 20a, and posterior suprasylvian 
area;

• Auditory: primary auditory fi eld, secondary auditory fi eld, 
anterior auditory fi eld, posterior auditory fi eld, ventroposte-
rior auditory fi eld, and temporal auditory fi eld;

• Sensory system: area 3a, area 3b, area 1, area 2, second somato-
sensory area, fourth somatosensory area, area 4γ, areas 4f, 4sf 
and 4d; lateral area 6, medial area 5A, lateral area 5A, medial 
area 5B, inner (deep) suprasylvian sulcal region of area 5, outer 
suprasylvian sulcal region of area 5.

The communities identifi ed in the macaque cortical network 
are:

• Memory: area 35, area 36, area 46, area 5, insular cortex, area 6, 
area 7a, area 7b, anterior inferotemporal (dorsal), frontal eye 
fi eld, insular cortex (granular), medial dorsal parietal, medial 
intraparietal, retroinsular cortex, superior temporal polysen-
sory (anterior), superior temporal polysensory (posterior), TF, 
and TH;

• Visual: anterior inferotemporal (ventral), central inferotem-
poral (dorsal), central inferotemporal (ventral), posterior infe-
rotemporal (dorsal), posterior inferotemporal (ventral), visual 
area 4, and ventral occipitotemporal;

• Motor: area 1, area 2, area 3a, area 3b, area 4, secondary soma-
tosensory area, and supplemental motor area;

• Detection of movement: dorsal preluneate, fl oor of superior 
temporal, lateral intraparietal, medial superior temporal (dor-
sal), medial superior temporal (lateral), middle temporal, 
posterior intraparietal, parieto-occipital, visual area 1, visual 
area 2, visual area 3, visual area V3A, v4 transitional, and ven-
tral intraparietal.

RESULTS AND DISCUSSION
We start by illustrating the several concepts of the digital signal 
processing approach to the cortical networks. A signal of length 
20 was injected into the largest hub of the cat (posterior cingulate 
cortex, CGp) and macaque (Visual area 4, V4) networks. Such hubs 
were chosen for this fi rst experiment because they tend to act as 
connectors between different cortical regions (Sporns et al., 2007). 
The length of the signal was chosen so as to be larger than the 
diameter of the cortical networks, which is equal to four in both 
cat and macaque. Figure 5 presents the zeros and poles obtained 
with respect to having the destination at each of the nodes in the cat 
and macaque, given this specifi c signal length, without time decay. 
The nodes in Figure 5 are color-coded according to the respective 
community to which they belong. Recall that the values of the zeros 

FIGURE 4 | The adjacency matrix of (A) cat and (B) macaque. For the cat 
cortical network, the colors represent the following communities: (i) black: 
cognitive, (ii) blue: visual, (iii) green: auditory, and (iv) red: sensory system. 
For the macaque, (i) black: memory, (ii) blue: visual, (iii) green: motor, and 
(iv) red: detection of movement. Connections between communities are 
shown in gray.
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and poles depend only of the FIR size and the network topology 
between the source and destination, and not of the specifi c con-
tent of the injected signal. Though the positions of the zeroes are 
similar in both cat and macaque, a wider dispersion is observed for 
the latter case. Interestingly, the zeroes found for each community 
tend to have similar positions in the complex plan, implying that 
those regions receive versions of the original signal modifi ed in 
similar ways.

Figure 6 shows the frequency response curve (magnitude) 
obtained for one of the pairs of nodes of the macaque network, 
together with the respective zeroes, which are internal to the unit 
radius circle. The fact that such curves are determined by the zeroes 

and poles is clear from this fi gure, where each low valley along the 
frequency response is associated to a respective zero in the complex 
plan (Im, Re). After all, by defi nition the zeroes are the values of z 
for which the system function H(z) becomes zero. The maximum 
magnitude along the unit circle is obtained between the two most 
spatially separated zeroes, at the lowest frequencies.

Figure 7 shows the frequency response curves (magnitude) 
obtained for the previous confi guration, i.e. with the signal injected 
at the largest hubs of each network. The frequency responses 
obtained for the cat (Figure 7A) are remarkably similar to one 
another. This is to a great extent a consequence of the intense 
uniformity and high density of the connections characterizing this 
specifi c network. A much more varied set of curves is observed for 
the macaque (Figure 7B), suggesting a greater diversity of corti-
cal organization and functioning. The curves obtained for each 
community tend to appear clustered, refl ecting their similar zeroes 
positions. Both networks are characterized by intense low-pass 
fi ltering, revealing strong smoothing and mixing of the original 
signal.

In order to analyze a more realistic situation, we considered a 
decay parameter that reduces the amplitude of the system state 
along time. In this case, the matrix H

n
, which gives the probability of 

transition between the source and destination separated by walks of 
length n, and therefore defi nes the coeffi cient of the system function 
H(z), is given by Eq. 3. The parameter α specifi es the intensity of the 
decay. It is henceforth adopted that α = 0.25. Figure 8 presents the 
zeroes and poles obtained for the cat and macaque after injecting a 
signal of length 20 into the CGp and V4 regions of cat and macaque, 
respectively. Observe that this corresponds to the same situation as 
above, but now with time decay. The obtained results are similar 
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to those obtained previously (e.g. Figure 5), except that the zeroes 
were displaced towards the center of the complex plan. Figure 9 
shows the obtained frequency response curves (magnitude) for the 
cat and macaque cortical networks. It is clear from these curves 
that the time decay promotes diversity of fi lter action, as revealed 
by the more diverse curve shapes. Note that the time decay makes 
the zeroes to move away from the unit circle towards the origin in 
the zero-pole plot (compare Figures 5 and 8), therefore changing 
the respective gain magnitude.

The outlier in Figure 9B, which presents the highest magnitudes, 
corresponds to the central inferotemporal (dorsal) region, which 
happens to be connected to the input region (v4) and two other 
hubs, i.e. posterior inferotemporal (ventral) and anterior infero-
temporal (dorsal).

From each of the frequency response (magnitude) curves, we can 
determine the respective cutoff frequency. For generality’s sake, we 

assume signals being injected from all vertices of the networks (one 
at each simulation), instead of only from the largest hubs. Figures 10 
and 11 present the distribution of the cutoff frequencies without 
and with decay, respectively. The cutoff frequencies obtained for 
both the cat and macaque networks without decay are rather simi-
lar, agreeing with the similar zeroes positions identifi ed previously. 
However, the cutoff frequencies obtained in presence of time decay 
exhibit greater diversity, which is a consequence of the displace-
ment of the zeros inwards the unit circle. As shown in the insets of 
Figure 11, although the shape of the cutoff distributions obtained 
for the cat and macaque are visually similar, only a clear power-law 
degree distribution has been verifi ed only for the cat. This result 
was obtained by applying the method proposed by Clauset et al. 

–4 –3 –2 –1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ag

ni
tu

de

Frequency (rad/s)

–4 –3 –2 –1 0 1 2 3 4

Frequency (rad/s)

Cognitive
Visual
Auditory
Sensory system

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
ag

ni
tu

de

Memory
Visual
Motor
Det. Movement

A

B

FIGURE 7 | The frequency response without cutoff for the cat (A) and 

macaque (B). Each line represents the frequency response of a destination 
node, and each color represents a different community.

–1.0 –0.5 0.0 0.5 1.0

–1.0

–0.5

0.0

0.5

1.0

Im

Re

Cognitive
Visual
Auditory
Sensory system

Memory
Visual
Motor
Det. Movement

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

Im

Re

A

B

FIGURE 8 | The zeroes and poles obtained for the cat (A) and macaque 

(B) cortical networks considering time decay α = 0.25. The communities 
are identifi ed by different colors.



Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 24 | 9

Rodrigues and da Fontoura Costa Signal propagation in cortical networks

(2009), which combines maximum-likelihood fi tting methods with 
goodness-of-fi t tests based on the Kolmogorov–Smirnov statistic 
and likelihood ratios. In this way, we used a maximum likelihood 
estimators for fi tting the power-law distribution of the cutoff fre-
quencies obtained for the cat and macaque networks and calculated 
the p-value through the Kolmogorov–Smirnov test. The obtained 
p-value for the cat was equal to p = 0.2 and for the macaque, p = 0 
(values larger than 0.05 indicates a power-law distribution). Thus, 
while the cat cortical networks present cutoff frequencies that 
follows a power law (P x x( ) ∼ −γ) with coeffi cient γ = 3.72), the 
macaque does not present such feature. In fact, we tested other 
distributions, including exponential, log-normal, stretched expo-
nential, and power law with cutoff, and none of the revealed to 
be a suitable fi tting to the distribution of the cutoff frequencies 
of the macaque. Though the macaque and cortical networks dif-
fer with respect to the distribution of the cutoff frequencies, both 

networks present a high variability in the cutoff frequency values. 
More specifi cally, most nodes present small cutoffs, while a few of 
the present high cutoffs. Therefore, the majority of the cortical areas 
receive signals with a high degree of modifi cation.

In order to perform a more detailed analysis of the cutoff fre-
quencies characterizing each community, we determined their 
cumulative distribution in the macaque and cat networks. Several 
simulations were performed while injecting signals from all nodes 
in the network and monitoring the response for nodes inside each 
community. Figure 12A shows the cumulative distributions of cut-
off frequencies obtained for the cat cortical network with respect 
to each community, considering time decay (the situation without 
decay is not discussed here because of its uniform response). The 
signals arriving at the sensory system, which include the somatosen-
sory areas, are heavily fi ltered, indicating greater respective modifi -
cations and blending of differently delayed versions of the original 
signal. This suggests that signals coming from sensory modalities 
such as touch, temperature, proprioception (body position), and 
nociception (pain) are strongly intermixed, eliminating higher fre-
quencies. The community involved in cognition, which includes 
the ectosylvian gyrus, prefrontal cortex, insula, cingulate cortex, 
perirhinal cortex and entorhinal cortex also presents small cutoff 
frequency and therefore receives strongly mixed versions of the 
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original signal. On the other hand, communities 2 and 3, involved 
in perception of complex motion (Rudolph and Pasternak, 1996) 
and representing the auditory fi eld, respectively, tend to receive 
signals with the overall smallest modifi cations, and therefore small-
est degrees of modifi cations and blending.

In the case of the macaque cortical network, shown in Figure 12B, 
the visual community, representing the inferotemporal and ventral 
occipitotemporal areas, receives signals with the lowest level of 
changes, with the highest cutoff frequencies. The inferotemporal 
area is thought to be the fi nal visual area in the ventral stream of 
cortical areas responsible for object recognition (Tanaka, 1996). The 
same effect is observed in the occipitotemporal cortical areas of the 
macaque, which are known to be important for normal object rec-
ognition and for selective attention (Walsh and Perrett, 1994). On 
the other hand, the motor area community, i.e. motor and soma-
tosensory areas, which are highly integrated one another (Kaas, 
2004), tends to receive highly modifi ed versions of the original 
signal. The movement detection community, which incorporates 
the somatosensory cortex, perirhinal cortex, insular cortex, parietal 
cortex, intraparietal cortex, polysensory and frontal eye fi eld, also 
receives signals with high levels of alterations and intermixing.

In addition to the analysis of signal transmissions and inter-
mixing with respect to communities, we can also systematically 

investigate the transmission of signals between different cortical 
areas. The cutoff frequencies were determine between all pairs of 
nodes in the cat and macaque networks. We determined the 20 con-
nections that result in the highest cutoff frequencies for the cat and 
macaque cortical networks, therefore corresponding to the small-
est levels of signal alternations and intermixing. Table 1 presents 
the input and output nodes, as well as the respective communi-
ties that they are included, yielding the highest cutoff frequencies 
among all combinations of nodes for the cat cortical network. The 
suprasylvian area (localized in the visual community) is the domi-
nant motion-processing region of the parietal cortex (Shen et al., 
2006), being sensitive to texture and the distance between edges 
defi ned by motion (Robitaille et al., 2008). Areas in the cognitive 
community are involved in cognitive performance (infralimbic 
medial prefrontal cortex (van Aerde et al., 2008)), specifi c roles 
in the cognitive functions and pathological defi cits of the hippoc-
ampal formation (subiculum area de la Prida et al., 2006), as well 
as spatial memory which helps to reduce errors when navigating 
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in the dark ( retrosplenial cortex Cooper et al., 2001). The highest 
cutoffs are therefore observed for transmissions between regions 
involved mainly in visual, cognitive and audio processing.

Table 2 shows the 20 connections that result in the highest cutoff 
frequencies for the macaque cortical network. These regions are 
mainly related to object recognition and movement detection. Areas 

in communities 1 and 2, which include the visual, occipitotemporal 
and inferotemporal areas, are involved in image processing and 
object detection and recognition (DiCarlo and Maunsell, 2003; 
Felleman et al., 1997). The areas in the movement detection com-
munity are also related to visual tasks. For instance, the posterior 
intraparietal area is involved in visually guided, object-related and 

Table 1 | The 20 connections with the highest cutoffs (cf) in the cat cortical network.

Input Com. Output Com. cf

Posterolateral lateral suprasylvian area Visual Dorsolateral suprasylvian area Visual 2.74

Presubiculum, parasubiculum and postsubicular cortex Cognitive Subiculum Cognitive 1.94

Subiculum Cognitive Area 35 of the perirhinal cortex Cognitive 1.94

Presubiculum, parasubiculum and postsubicular cortex Cognitive Entorhinal cortex Cognitive 1.86

Ventrolateral suprasylvian area Visual Dorsolateral suprasylvian area Visual 1.84

Posterior auditory fi eld Auditory Retrosplenial cortex Cognitive 1.84

Dorsolateral suprasylvian area Visual Ventrolateral suprasylvian area Visual 1.64

Subiculum Cognitive Infralimbic medial prefrontal cortex Cognitive  1.54

Area 21b Visual Dorsolateral suprasylvian area Visual 1.45

Ventroposterior auditory fi eld Auditory Anterior auditory fi eld Auditory 1.34

Dorsolateral suprasylvian area Visual Anterolateral lateral suprasylvian area Visual 1.25

Secondary auditory fi eld Auditory Temporal auditory fi eld Auditory 1.24

Anterior auditory fi eld Auditory Primary auditory fi eld Auditory 1.16

Anterior auditory fi eld Auditory Secondary auditory fi eld Auditory 1.16

Anterior auditory fi eld Auditory Ventroposterior auditory fi eld Auditory 1.16

Ventroposterior auditory fi eld Auditory Primary auditory fi eld Auditory 1.16

Anterior auditory fi eld Auditory Posterior auditory fi eld Auditory 1.04

Ventroposterior auditory fi eld Auditory Posterior auditory fi eld Auditory 1.04

Secondary auditory fi eld Auditory Primary auditory fi eld Auditory 1.04

Secondary auditory fi eld Auditory Ventroposterior auditory fi eld Auditory 1.04

Table 2 | The 20 connections with the highest cutoffs (cf ) in the macaque cortical network.

Input Com. Output Com. cf

Insular cortex Memory Secondary somatosensory area Motor 3.14

Medial superior temporal (lateral) det. movement Superior temporal polysensory (posterior) Memory 3.14

Anterior inferotemporal (dorsal) Memory Area 7a Memory 2.74

Anterior inferotemporal (dorsal) Memory Area 46 Memory 2.66

Dorsal preluneate det. movement Posterior intraparietal det. movement 2.56

Central inferotemporal (ventral) Visual Superior temporal polysensory (posterior) Memory 2.54

Ventral Posterior det. movement Posterior inferotemporal (dorsal) Visual 2.46

Posterior inferotemporal (ventral) Visual Central inferotemporal (ventral) Visual 2.46

Visual area 4 Visual Posterior inferotemporal (dorsal) Visual 2.46

Ventral occipitotemporal Visual Posterior inferotemporal (ventral) Visual 2.46

Central inferotemporal (dorsal) Visual Anterior inferotemporal (ventral) Visual 2.36

Anterior inferotemporal (ventral) Visual TH Memory 2.16

Area 35 Memory Insular cortex Memory 2.06

Ventral occipitotemporal Visual Ventral Posterior det. movement 2.04

Anterior inferotemporal (dorsal) Memory Central inferotemporal (ventral) Visual 1.96

Anterior inferotemporal (dorsal) Memory Posterior inferotemporal (ventral) Visual 1.94

Ventral occipitotemporal Visual Posterior inferotemporal (dorsal) Visual 1.64

Posterior inferotemporal (dorsal) Visual Anterior inferotemporal (dorsal) Memory 1.56

Ventral Posterior det. movement Ventral occipitotemporal Visual 1.54

Medial dorsal parietal Memory Area 7a Memory 1.54
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hand movements (Shikata et al., 2003). The ventral posterior areas 
are also related to visual processing. At the same time, areas in 
memory community participate in object recognition and memory 
(e.g. the insular cortex (Bermudez-Rattoni et al., 2005)). Therefore, 
interconnections between visual processing-related regions in the 
macaque cortex tend be characterized by the smallest low-pass 
fi ltering modifi cations. This fact is related to a relatively small mix-
ture of signals between the source and visual reals. A given corti-
cal region presents a high cutoff frequency because there are little 
alterations of signals going from the source to such region. The 
alterations are mainly caused by dependent walks, where signals 
tend to mix. Therefore, the more independent the walks between 
the source and destination, higher the frequency cutoff.

CONCLUSIONS
The relationship between brain organization and function cor-
responds to one of the most fundamental and challenging issues 
in neuroscience currently. Linear dynamics approaches, such as 
synchronization (e.g. Zemanova et al., 2008; Zhou et al., 2006, 
2007), have been extensively considered in order to investigate the 
structure-function paradigm in the brain. For instance, it has been 
observed that the onset of epileptic seizures can be induced by 
addition of random connections that tend to decrease the small-
world character of the brain (e.g. Nadkarni and Jung, 2003; Percha 
et al., 2005).

In the current work, we described a methodology to investigate 
diffusive signal propagation and blending between pairs of areas 
in cortical networks in terms of digital signal processing concepts 
and methods. Under these assumptions, the whole dynamics of 
brain propagation between each pair of nodes (source and destina-
tion) can be described by the convolution between the input signal 
and the probabilities of transition for walks of different lengths 
between the respective source and destination, a processing which 
can be neatly summarized in terms of fi nite-impulse-response 
fi lters (FIRs). We applied the z-transform in order to effectively 
perform these convolutions in terms of products. This approach 

also paves the way to the recovery, under certain conditions, of 
the original signal given the respective FIR structure. In addition, 
the z-transform approach allows the identifi cation of the zeroes 
and poles of the system function (the z-transform of the fi nite 
impulse response). This is important because the zeroes and poles 
defi ne completely the system response, and therefore can be used 
for the characterization of the functionalities implemented by the 
diffusion in the respective cortical topologies.

The obtained dynamics for the cat and macaque cortical net-
works was found to correspond to low-pass fi ltering, which tends 
to attenuate high-frequency harmonic components and allow the 
lower frequency components to pass with little or no alteration. In 
this way, the signal alterations undergone between the source and 
destination node can be summarized in terms of their respective 
FIR cutoff frequency. By analyzing signals received at each com-
munity, it was found that the areas involved in object recogni-
tion tended to suffer the smallest modifi cations in both the cat 
and macaque networks. In addition, in the cat, the areas related to 
sound processing were also verifi ed to receive signals with smaller 
modifi cations than the other regions.

The extension of the current work to other cortical networks, 
such as human and rat, is immediate. In addition, it would be 
interesting to investigate how failures and attacks to the original 
networks induce changes in the respective fi ltering. The valida-
tion of the proposed approach involves monitoring several specifi c 
brain regions while a known input is fed into a giver region. For 
instance, a known stimulus can be applied in the auditory system of 
a macaque and be measured at different brain regions by electrode 
insertion. A comparison between the input and output signals in 
such experiments could be used to validate our theory.
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