
Frontiers in Neuroinformatics www.frontiersin.org August 2009 | Volume 3 | Article 27 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 28 August 2009
doi: 10.3389/neuro.11.027.2009

Whilst workfl ows are important tools for both designers and con-
sumers in their own right, they also form a vital line of communication
within the neuroimaging community to disseminate new algorithms
or pipelines, optimised module parameters and standardised pro-
cedures. A workfl ow represents the collective wisdom on how to
perform a data analysis task and documents the process allowing
experience to be reused, transferred, and consolidated.

A review of workfl ow applications reveals that the majority of
existing workfl ow environments are effective at modifying pipe-
lines, but not optimised for processing large amounts of data.
CamBAfx is an Eclipse (International Business Machines, 2006)
Rich Client Platform (RCP, McAffer and Lemieux, 2005) based
workfl ow application that provides both a front-end (user inter-
face) optimized for data processing and a back-end pipeline model
to facilitate creation and manipulation of pipelines. Additionally, it
offers the fl exibility of using different process strategies (for exam-
ple, single machine scripting or grid-based computing) within the
same pipeline description.

We begin with a brief overview of alternative workfl ow appli-
cations providing context for the objectives of CamBAfx. The
operation of CamBAfx from the viewpoint of consumers is then
considered showing how the user interface helps in the analysis
of their data. For designers, discussion is orientated towards the
delivery of the pipelines and workfl ows to consumers through the
deployment of Eclipse-based facilities. Examples of delivering pipe-
lines from a variety of neuroinformatics packages are given and
concluding remarks made on future directions.

INTRODUCTION
Workfl ows are the combination of pipelines (i.e. modules repre-
senting individual programs with connecting pipes representing
data transfer from one module to another) and data control systems
that coordinate data processing on local or distributed computer
architectures. Neuroimaging brings together two broad scientifi c
constituencies: the design and implementation of workfl ows and
the application of these workfl ows to brain imaging datasets.
Correspondingly, the demands made upon workfl ow-based soft-
ware change according to circumstances.

Conceptually, workfl ows are a useful way to gain traction over
complex data analysis tasks. By decomposing the workfl ow into
constituent parts, the problem is reduced to the creation and
maintenance of small, simple programs that can be reused across
workfl ows. To workfl ow designers (designers), the development
environment should offer uncomplicated integration of their pro-
grams into existing pipelines, quick construction of new pipelines
from existing modules and facilities for rapid testing, validation
and deployment of workfl ows.

For those who apply workfl ows (consumers), the small effect
sizes and large between-subject variance associated with most
neuroimaging techniques call for a simple system for entering
data into the workfl ow at low error rates and data control systems
that emphasize high dataset throughput. Ideally, all workfl ows
should follow a common ontology and it should be possible to use
the same workfl ows with different data control systems without
modifi cation.

CamBAfx: workfl ow design, implementation and application
for neuroimaging

Cinly Ooi1,2*, Edward T. Bullmore1,2, Alle-Meije Wink3, Levent Sendur1,2, Anna Barnes1,2, Sophie Achard1,2,

John Aspden4, Sanja Abbott2, Shigang Yue5, Manfred Kitzbichler2, David Meunier1,2, Voichita Maxim1,2,

Raymond Salvador2, Julian Henty1,2, Roger Tait1,2, Naresh Subramaniam2 and John Suckling1,2

1 Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
2 Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
3 Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College, London, UK
4 J.L. Aspden Ltd, Cambridge, UK
5 Department of Computing and Informatics, University of Lincoln, Lincoln, UK

CamBAfx is a workfl ow application designed for both researchers who use workfl ows to
process data (consumers) and those who design them (designers). It provides a front-end (user
interface) optimized for data processing designed in a way familiar to consumers. The back-end
uses a pipeline model to represent workfl ows since this is a common and useful metaphor used
by designers and is easy to manipulate compared to other representations like programming
scripts. As an Eclipse Rich Client Platform application, CamBAfx’s pipelines and functions can
be bundled with the software or downloaded post-installation. The user interface contains all the
workfl ow facilities expected by consumers. Using the Eclipse Extension Mechanism designers
are encouraged to customize CamBAfx for their own pipelines. CamBAfx wraps a workfl ow
facility around neuroinformatics software without modifi cation. CamBAfx’s design, licensing
and Eclipse Branding Mechanism allow it to be used as the user interface for other software,
facilitating exchange of innovative computational tools between originating labs.

Keywords: workfl ow, eclipse, rich client platform, batch processing, camba, open source, pipeline

Edited by:

John Van Horn, University of California,
USA

Reviewed by:

Ivo Dinov, University of California, USA
John Van Horn, University of California,
USA

*Correspondence:

Cinly Ooi, Brain Mapping Unit,
Herchel Smith Building for Brain And
Mind Sciences, University Forvie Site,
Robinson Way, Cambridge CB2
0SZ, UK.
e-mail: co224@cam.ac.uk

Frontiers in Neuroinformatics www.frontiersin.org August 2009 | Volume 3 | Article 27 | 2

Ooi et al. CamBAfx

WORKFLOW ENVIRONMENTS
Workfl ows are normally visualised as pipelines, i.e., a collection of
modules with pipes to represent the data fl ow from output ports
of one module to the input ports of another. Traditionally, Visual
Pipeline Editors (VPEs) are used to manipulate pipelines. VPEs
represent pipelines graphically, usually with boxes as modules, lines
as pipes, and small shapes inside the module box as input and
output ports. Users modify workfl ows by manipulating this graphi-
cal representation, such as adding modules or re-routing pipes.
Commercially available software offers workfl ow capability in two
different ways: either specialised for workfl ow operations (National
Instruments’ LabView)1, with a VPE as the main user interface
and programming interface for module creation and different data
processing strategies, or as extensions to existing programming lan-
guages (Simulink)2 that provide VPEs and programming interfaces
for modules to accommodate pipelines.

The LONI Pipeline (Rex et al., 2000) looks and behaves like a
traditional Visual Pipeline Editor. To enter data, consumers click
on input ports which then request single values or a list of values.
Batch processing is achieved by asking the input port of a module
to interpret a list of values one-at-a-time instead of all-at-once. For
batch-processing, LONI Pipeline offers the run-on-machine method,
including via a script containing the individual processing instruc-
tions, as well as grid processing. It uses Extensible Markup Language
(XML, Bray et al., 2008) to describe the pipeline as a combination
of modules, connections, ports and data. Conveniently, meta-data
about modules such as their creators and the software suite to which
the modules belong can also be stored. LONI Pipeline modules may
be downloaded separately to augment the main package.

Fiswidgets (Fissell et al., 2003) visualizes its pipeline as a linear
stack without pipes or ports. Modules need not be activated in the
order the visual representation implies. Clicking on modules brings
up a module window that asks for data and parameters. Fiswidgets’
modules are defi ned in Java or in XML and describe the layout of
the module window. For batch-processing a visual programming
approach is adopted with loop structures for iteration within the
pipeline. Inside the module windows, symbols defi ne inputs and
outputs. During data processing the symbols are substituted with
the corresponding values from a lookup table. Fiswidgets distrib-
utes modules as part of the main software.

BrainVISA (Cointepas et al., 2001) has a collection of workfl ows
each with a “confi guration page” that presents a workfl ow as a tree
of modules. Important module parameters can be attached as leaves
to the module in the tree, others in an associated detail page. Batch
processing is initiated by duplicating the “confi guration page” for
each dataset. BrainVISA’s pipeline is implemented in the form of
Python scripts. Pipelines are delivered in toolboxes bundled with
the software or downloaded post-installation. The toolbox itself is
a directory of confi guration fi les, binary fi les, text fi les, help fi les
and python scripts. BrainVISA has an optional database for man-
aging datasets that uses a data ontology and provides software for
conversion between images fi le formats.

In summary, based on the applications’ look-and-feel both LONI
and FisWidgets give strong emphasis to pipeline manipulation

while softwares like BrainVISA prioritise clear data entry. Finally,
an established way to deliver workfl ow-based software is to write a
custom user interface for each workfl ow; some program interfaces
in FSL (Smith et al., 2004) and SPM (Friston et al., 1995) fall into
this category.

CamBAfx is a user interface for neuroinformatics software
designed to support multiple pipelines and to provide the facilities
needed to support workfl ow operation; namely, data management
and batch processing. The philosophy is to provide the shortest
possible bridge between designers and consumers, iteratively
improving processing with pipelines via software development
and practical experience. CamBAfx aims to provide resource in
equal measure to both constituencies.

CamBAfx
OBJECTIVES
Workfl ows evolve as algorithms are developed and applications
become more demanding. A Workfl ow environment must therefore
be able to maintain fl exibility for development while being able
to include new applications without modifi cation and maintain a
consistent user interface across all pipelines. Thus, a major objec-
tive in the design of CamBAfx is to provide for consumers’ needs
at the front-end, while exploiting the fl exibility of workfl ows at
the back-end in order to deliver the pipeline assembly capability
for designers. As expectations change, the environment should be
fl exible enough to refocus these different aspects from front-end
to back-end and vice-versa.

The user interface practices a minimalist philosophy: the initial
download is a complete, ready-to-use package but only con-
tains those functions that are needed immediately to get started.
Consumers customise the interface as dictated by their needs.

Generic functions to manage pipelines and data are provided.
Designers are encouraged to make their pipelines more attractive
by adding supporting functions.

The environment should reuse existing industrial-grade soft-
ware and follow existing and de facto standards and practices.
Availability of an Integrated Development Environment (IDE)
that supports day-to-day programming work such as debugging,
version control and automation of mundane tasks greatly improves
developers’ productivity.

FRONT-END: RESOURCES FOR WORKFLOW CONSUMERS
Our observations indicate that normal practice for workfl ow con-
sumers is to maintain a library of workfl ows. Once a workfl ow
has been demonstrated as robust and capable, its composition
and parameters are infrequently reconfi gured suggesting that it
would not be appropriate to focus on workfl ow manipulation
capability for these users. Instead, the biggest workload under-
taken by consumers is to enter specifi c data instances into the
workfl ow and to ensure the data is valid to maximize the suc-
cess rate of processing. Thus, the front-end of CamBAfx has as
its most important undertaking the acceptance and validation of
data entered by consumers. Careful validation of the data reduces
the number of problematic datasets in a multi-subject dataset, but
cannot completely eliminate them. The problems that then arise
are corrected between repeats of batch processing. The challenge
is to design a system that accommodates multiple repeats, but

1http://www.ni.com/labview/
2http://www.mathworks.co.uk/products/simulink/

http://www.ni.com/labview/
http://www.mathworks.co.uk/products/simulink/

Frontiers in Neuroinformatics www.frontiersin.org August 2009 | Volume 3 | Article 27 | 3

Ooi et al. CamBAfx

A New
pipeline

B Select Pipeline

C Configure Pipeline

E Pipeline Scheme

D Input Table

FIGURE 1 | Steps in operation by consumers to select, create and modify workfl ows. See text for details.

reduces unnecessary reprocessing of datasets already successfully
processed. This overall process maps well onto a traditional soft-
ware usage pattern:

(1) select a workfl ow and confi gure it
(2) enter the data into the interface
(3) run the processing in batch mode

Selecting and confi guring workfl ows
In CamBAfx, the process starts by selecting a pipeline from a library
of pipelines using a New Wizard (Figures 1A,B). A pipeline-specifi c
wizard (Figure 1C) is then used to guide the confi guration of the
pipeline, including a review of the important module parameters
and requests to supply values to parameters that cannot have default
values. CamBAfx requires pipeline designers to guarantee that the

Frontiers in Neuroinformatics www.frontiersin.org August 2009 | Volume 3 | Article 27 | 4

Ooi et al. CamBAfx

pipeline created at the end of this process is valid and immediately
useable.

Data entry via the interface
The pipeline itself is not graphically represented. Instead an Input
Table (Figure 1D) is presented where all the data necessary for
batch processing is specifi ed. The Input Table is customised to
the workfl ow, although there is consistency across the instances
of the interface for each pipeline. In general, each row refers to
the data for a particular imaging dataset. A table cell only displays
the appropriate interactive element determined by the pipeline
to solicit data (e.g. text boxes, drop-down lists of choices, fi le and
directory selection dialogs). If the data required is a list, then a
new table with one column is presented with the same interactive
element facilities as the Input Table. If there are two or more list-
based data required, they can each use a separate table or share a
multi-column table.

To improve the chances for successful data processing the table
cells accept or reject data following input. This can be as simple
as rejecting letters when numbers are expected or enforcing spe-
cifi c restrictions imposed by the pipeline, such as minimum and
maximum values or lengths. Error messages, possibly containing a
message from the pipeline designer, are displayed to the user where
available. The Input Table additionally contains a free-text cell enti-
tled “Notes” where annotations can be made about the dataset.

Associated with each dataset is a “Pipeline Schemes” (Figure 1E).
This is a drop-down list with preconfi gured schemes that defi ne the
precise list of modules activated in the processing of that dataset.

By default, the two schemes that bound the possible processing
are available; namely, one that activates all modules and another
that entirely bypasses all the modules. Pipeline designers can add
new schemes that activate only part of the pipeline and in doing so
lead to more effi cient analyses of datasets that have been partially
processed previously.

A drop-down box below the Input Table (Figure 2A) is used to
host functions that work on the Input Table as a whole. A function
to copy data from another instance of the same pipeline is avail-
able. Pipeline designers can add pipeline-specifi c functions into
this drop-down box. The table of parameters (Figure 2B) can also
be invoked from here. Parameters are variables for modules that
remain constant throughout processing of the datasets (e.g. a spatial
smoothing kernel). In keeping with the philosophy of a pipeline-
centric view, this table shows all parameters for all modules. It
uses a two column format with one parameter per row. The fi rst
column contains the parameter name and the second its value. The
table offers the same interactive elements and validation facilities
as the Input Table. For parameters that must share the same value,
only one will be listed and any modifi cation here is propagated to
all parameters.

Batch mode processing
Once data entry is complete, the workfl ow is initiated via the “Run
Wizard” (Figures 3A,B,C). Here additional information required
by the data processing engine, such as the summary output direc-
tory name, will be requested. Currently, the data processing engine
operates by script generation and execution.

A Dropdown Box

B Parameter Table

FIGURE 2 | Steps in operation by consumers to modify parameters for the workfl ow. See text for details.

Frontiers in Neuroinformatics www.frontiersin.org August 2009 | Volume 3 | Article 27 | 5

Ooi et al. CamBAfx

Other practical issues
CamBAfx is a self-extracting archive available for download3 con-
taining both CamBAfx, the workfl ow environment, and a set of
pipelines based on modules of the CamBA software (Suckling and
Bullmore, 2004; Suckling et al., 2006). Also included are support-
ing functions such as functions to copy the results of one pipeline
as the input to another. New pipelines and functions are delivered
post-installation as plug-ins that are downloaded, dropped into the
original installation and included into the distribution following a
restart of the software. Most plug-ins orientated towards consumers
modify the user interface to advertise their availability.

BACK-END: RESOURCES FOR WORKFLOW DESIGNERS
Out of the box, CamBAfx has all the generic facilities needed to man-
age workfl ows. For all pipelines, CamBAfx provides all the expected

facilities to confi gure pipelines as well as collect, collate and batch-
process datasets that together form the workfl ow. However, since
the Eclipse Extension Mechanism (EEM, Bolour, 2003) gives access
to the user interface and allows them to contribute new functions,
CamBAfx plug-ins customize the user interface to support the spe-
cifi c processing requirements of each pipeline and implement sup-
port facilities such as data imports from other pipelines.

Pipeline features
All information CamBAfx needs is contained in the pipeline
fi le, written in XML, with three sections: Pipeline, Input Data
and Preferences. The Pipeline section represents the pipeline as
a collection of modules and connections. The modules are fur-
ther decomposed into variables (i.e. installation specifi c values),
parameters, input and output ports, and how to invoke the pro-
gram. Almost everything describing the pipeline is in XML except
for complex data manipulation, such as generating the command 3http://www-bmu.psychiatry.cam.ac.uk/software/

A Run Pipeline

B Run Wizard

C Run Output

FIGURE 3 | Steps in operation by consumers to run the workfl ow. See text for details.

http://www-bmu.psychiatry.cam.ac.uk/software/

Frontiers in Neuroinformatics www.frontiersin.org August 2009 | Volume 3 | Article 27 | 6

Ooi et al. CamBAfx

line instructions, where Java program code is used in the form of
a BeanShell Script4. Variables, parameters, input and output ports
all carry datatype information (e.g., integer or string) and include
restrictions on the data. All pipeline components can have varia-
tions on, for example, datatypes, modules (input or standard) and
ports (data or signals). They start with a XML element with the
same name, but with an attribute that identifi es the variant. The
attached XML leaf elements change according to the variant. The
Input Data section simply contains a description of each dataset
as displayed by the Input Table. The Preference section contains
optional information about the pipeline such as pipeline schemes
and a list of linked parameters that should share the same value.

Steps are taken to make the pipeline simpler and easier to
understand: First, looping constructs, normally used to effect batch
processing, but complicating data fl ow, are eliminated by insist-
ing that each dataset is processed through the complete workfl ow
from beginning to end and that each input port can only have
one connection. Second, uncertainty about whether an input port
needs to be connected is removed by insisting that all ports need
to be connected. To satisfy this, and to show where datasets enter
the pipeline, each pipeline has one (and only one) input module
responsible for communication with the outside world.

Data standard and datatype hierarchy
For effective data exchange between modules, CamBAfx has a Data
Standard for all datatypes it uses that defi nes the fi le format and
the meta-data it must provide. For example, functional magnetic
resonance imaging data (fMRI) is in 4D NifTI (Cox et al., 2004)
single fi le format and must carry the sequence in which the slices
of the three-dimensional volume were acquired, which is encoded
as the slice_code meta-data. This approach guarantees the exact
content available to designers for writing modules. In return, the
output from a module should also satisfy this standard and the
designer is responsible for converting data to and from the data
format their program expects. Adhering to this data standard means
data can be easily exchanged between modules. Designers only have
to convert their data to one other format, i.e. to the data stand-
ard only and not all possible data formats they might encounter.
Although CamBAfx is organised to validate data against the data
standard following input, this is postponed until CamBAfx develops
the appropriate editors to edit the data in situ as consumers prefer
to be able to do this if their data fail validation.

Datatypes are organized into a hierarchy, with each datatype
having only one parent and children must carry all data inherited
from its parent as well as optional data of its own. A special equiva-
lence is used to defi ne a unidirectional relationship between two
datatypes that do not share a common ancestry. This data hierarchy
tree is used to prevent incompatible data transfer between modules
in the VPE by restricting connection of output ports to input ports
that expect the same datatype or its parents.

New pipeline wizards
A new pipeline can be created by cloning, i.e., loading the pipeline
into the user interface and then saving it under a new name. This
approach may, however, also copy unwanted details from the old

pipelines, such as the specifi c dataset names and modifi cations to
the pipeline. Therefore in CamBAfx, the preferred approach is to
create pipelines using a New Pipeline Wizard where the new pipe-
line is cloned from a clean copy of the parent pipeline and can be
manipulated if necessary before being presented to consumers.

CamBAfx DESIGN AND ARCHITECTURE
Eclipse and eclipse rich client platform
CamBAfx is an Eclipse Rich Client Platform (RCP, McAffer and
Lemieux, 2005) application. Eclipse5 (International Business
Machines, 2006) was originally created as an IDE with an exten-
sion mechanism (Eclipse Extension Mechanism, EEM, also known
as Eclipse Plug-in Architecture, Bolour, 2003) designed to integrate
development tools. The EEM is a way of extending an Eclipse-
aware program. A program that supports extensions publishes an
extension point and its expectation. Interested parties then provide
extension(s) that latch on to this extension point. Extensions can
provide confi guration information or program code or both and
together with their supporting data, such as icons and programs,
are packaged into plug-ins.

Eclipse itself is designed as a collection of plug-ins, with the
exception of a small kernel that starts up and bootstraps the EEM.
After bootstrapping, the EEM discovers and manages all the installed
plug-ins. It then searches the command that invoked it, and if neces-
sary a confi guration fi le, to fi nd the master application. This is read
through the EEM and executed. In the original design there was
only one master application: the Eclipse IDE. However, the Eclipse
Extension Mechanism proved suffi ciently useful as a platform for
development of standard programs that it was exploited by the
Rich Client Platform (RCP) project. The RCP project allows other
applications, such as CamBAfx, to be the master application.

All RCP applications are programs built using the EEM, and
all share a common architecture and plumbing. RCP developers
simply write the missing part, i.e. the program code specifi c to their
project and insert it into the RCP framework.

CamBAfx as a RCP application
CamBAfx, like all RCP applications, is actually a collection of plug-
ins. For example, all CamBA’s command line programs, pipelines
and supporting functions are encapsulated into Eclipse plug-ins and
managed through the EEM. Tasks such as creating a New Pipeline
Wizard are performed by extending CamBAfx using EEM.

The Eclipse extension point org.eclipse.core.runtime.applications,
is the only mandatory extension point allowing CamBAfx to be
invoked as a master application. CamBAfx also uses other Eclipse
extension points such as org.eclipse.ui.editors for the main Input
Table and org.eclipse.ui.actionSets to add menu and toolbars items.
CamBAfx also defi nes its own extension points including the org.
genericfx.ui.inputtable.taskagents extension point which adds items
to the Input Table’s drop-down box. Extension points, such as org.
genericfx.data.hierarchy which defi ne the datatype hierarchy custom-
ize CamBAfx for designers. CamBAfx also provides a special generic
New Pipeline Wizard for the org.eclipse.ui.newWizards extension
point eliminating the need to write generic wizards for pipelines by
using instead CamBAfx’s org.genericfx.ui.base.newWizards extension

4http://www.beanshell.org/ 5http://www.eclipse.org/

http://www.beanshell.org/
http://www.eclipse.org/

Frontiers in Neuroinformatics www.frontiersin.org August 2009 | Volume 3 | Article 27 | 7

Ooi et al. CamBAfx

point to read in the pipeline from a fi le. Part of CamBAfx, such as
new items for the Input Table drop-down box, are constructed by
extending its own extension points. All extension points, either those
of Eclipse or CamBAfx, are available to downstream developers who
can also defi ne their own.

Developing for CamBAfx
As standard Eclipse plug-ins, CamBAfx and its plug-ins are devel-
oped using Eclipse’s Plug-in Development Environment (PDE,
Melhem and Glozic, 2003) that is designed specifi cally to develop,
test and integrate plug-ins with their intended application. CamBAfx
provides an editor, integrated into the IDE, for development and
testing of pipelines. This editor has the Input Table and a rudimen-
tary VPE. CamBAfx has two data processing engines: traditional
batch processing controlled directly by the program itself and a
version that writes and then executes the processing steps via scripts.
Both are callable from the IDE via its Run Wizard.

Eclipse also makes available supporting software facilities, such
as an update mechanism and help browser. It provides tools for
CamBAfx such as the Graphical Editor Framework6 (GEF, Hudson,
2004) which is the basis of CamBAfx’s VPE.

Developers “pick-and-mix” CamBAfx plug-ins for their applica-
tions. Architecturally, there are three major parts: Pipeline, Input
Table and Data Processing Engine (Figure 4). These three parts are
kept independent of each other with minimum communication
between them. Conceptually, the software is developed in three
layers (Figure 5): At the bottom is GenericFX, a complete generic
pipeline application; BrainFX is the middle layer that customizes
GenericFX for neuroinformatics applications by defi ning the data
hierarchy, data standard and some commonly used routines, such
as NifTI data conversion. CamBAfx is the top layer and contains
only CamBA-specifi c pipelines and functionalities. Third party
developers who do not need CamBA can create their applications
from either GenericFX or BrainFX. The same Eclipse Branding

Mechanism (Eidsness and Rapicault, 2004) that defi nes CamBA’s
own About Dialog, splash screen and icons can be used to brand
other applications.

IMPLEMENTATION OF PIPELINES
CamBA ANALYSIS PIPELINES
CamBA is software for the analysis of neuroimaging data. The initial
download contains a number of pipelines available for fi rst-level
(within-subject) and second-level (between-subject) analysis for
which CamBAfx provides customised interfaces. The CamBAfx
application running CamBA pipelines has been widely used in
the analysis of functional and structural MRI (examples include:
Chamberlain et al., 2008, 2009; Habets et al., 2008; Menzies et al.,
2008; Wink et al., 2008).

CamBA’s fi rst-level analysis pipelines’ main purpose is to gen-
erate maps that summarise responses or signal properties from
raw 4D fMRI. For example, a “time-series analysis pipeline” pre-
processes the data removing subject movement related artefacts
followed by response estimation with the general linear model.
The resulting effect maps are mapped into a standard stereotactic
space in readiness for second-level pipelines.

Consumers start by choosing the “group activation mapping”
pipeline from the library of pipelines (Figures 1A,B). Its pipeline
wizard (Figure 1C) can confi gure the pipeline to perform house-
keeping tasks to meet the Data Standard, such as inserting the correct
slice_code into the fMRI 4D data and removing unwanted 3D
scans from the start of the data. The Input Table (Figure 1D) asks
for the fMRI data and the design matrix fi le. Its Pipeline Schemes
are carefully selected to activate parts of the pipeline according to
the specifi ed usage of the pipeline.

At the second level, pipelines that offer fl exibility in choosing
different statistical models present a more diffi cult challenge for
parameter confi guration, with many parameters dependent on oth-
ers. The pipeline can be invalidated if the wrong combination of
parameter values is chosen. The corresponding New Pipeline Wizard
therefore guides consumers by changing the display according to
the model required. At pipeline creation, the available parameter
values are screened to remove incompatibilities. The Wizard adds,

FIGURE 4 | Conceptually, CamBAfx application is constructed from of

three components: Pipeline, Input Table and Data Processing Engine,

integrated inside the Eclipse Rich Client Platform (RCP) framework.

Minimal communication between each component allows components to be
replaced or removed. The separation between front-end (user interface) and
back-end can be reconfi gured as needs change. “S” denotes supporting
functions which can be attached to the application as plug-ins.

6http://www.eclipse.org/gef/

FIGURE 5 | Architecturally, CamBAfx is organized in three layers (Solid

boxes): CamBAfx, BrainFX and GenericFX. CamBA is unmodifi ed and
completely contained inside a plug-in in the CamBAfx layer. They are all built
on top of the Eclipse RCP Framework and developed inside Eclipse Integrated
Development Environment’s (IDE) Plug-in Development Environment (dashed
boxes). CamBAfx extends the Eclipse IDE with a Visual Pipeline Editor to
visualize the pipelines during their development and testing.

http://www.eclipse.org/gef/

Frontiers in Neuroinformatics www.frontiersin.org August 2009 | Volume 3 | Article 27 | 8

Ooi et al. CamBAfx

on request, new ports and connections to the pipeline that represent
additional variables. These variables also appear on the Input Table
as additional columns. The majority of the Input Table columns are
programmed to accept numbers only and where appropriate are fur-
ther restricted to a small range of values. In effect, the wizard creates
different variations of pipelines for the consumers. All second-level
pipelines insert an item into the drop-down box below the Input
Table that can import results from fi rst-level pipelines.

In general, data generated by one software suite cannot be used
by another because the data are stored as a different data type. The
most common data type mismatch is 32 bit and 64 bit fl oating-
point data and therefore CamBAfx provides a pipeline to convert
data between these formats. Additional information for performing
data type conversions from specifi c software suite is available inside
the Help Browser bundled with the core CamBAfx download.

For fi rst-level pipelines, the repetitive entering of data is assisted
by a supporting function for automatically reading data into the
Input Table from a directory-based data organization. Following
download and installation, it adds itself to the drop-down box of
the Input Table. Another download adds a menu item to extract
statistics from data in predefi ned regions-of-interest (anatomical
or identifi ed by statistical testing). Finally, users can download a
menu item that modifi es the NifTI header data in batch mode and
checks that the modifi cation satisfi es the data standard.

IMPLEMENTATION OF FSL TRACK-BASED SPATIAL STATISTICS
To illustrate the fl exibility of the CamBAfx approach, a plug-in
(TBSSfx) is available which repackages the tract-based spatial sta-
tistics (TBSS, Smith et al., 2006) software for diffusion tensor image
analysis, available as part of the FSL package. Since TBSS is part of
the FSL pipeline, licensing restrictions require a separate download
of FSL7. In brief, TBSS is a fi ve step process:

(1) Input data is organised into a directory. Pre-processing sof-
tware relocates input data into a subdirectory.

(2) If there is a target image that defi nes the stereotactic space
of the analysis, copy and rename into the subdirectory. The
target image cannot be copied until step 1 is completed.

(3) The analysis software is executed.
(4) A design matrix and a contrast fi le are created and further

analysis takes place.
(5) Call a collection of programs to perform voxel-wise statisti-

cal analysis.

There are a number of restrictions on these steps, particularly with
regard to the order in which they are conducted. Furthermore, con-
struction of the design matrix is interactive and unconstrained.

TBSSfx is a collection of plug-ins with a plug-in used to host
the FSL archive, which the consumers download separately. TBSSfx
simplifi es data entry and automates the processing ensuring com-
pliance with the restrictions on the processing steps. For example,
during pipeline creation, TBSSfx asks the user to name the number
of conditions (columns) for the design matrix and to specify the
contrast fi le and then validates this against the format of the design
matrix. The contrast fi le is defi ned at this stage (and not later in

the pipeline) to guarantee that the pipeline created is confi gured
 correctly. In the Input Table consumers enter the image data
fi lename in the fi rst row with subsequent columns only accepting
numerical data corresponding to the design matrix.

The Run Wizard asks for an output directory, which is cleaned
and populated with hard links to the actual data for speed and
economy of resources as well as ensuring that the original data are
preserved. The design matrix fi le and contrast fi le are then created
with fi lenames constructed to maintain the list orders from the
Input Table. The processing script manages data processing in a
way consistent with the original TBSS process.

DISCUSSION
CamBAfx is an application that presents workfl ows according the
needs of users: designers or consumers. The initial download con-
sists of the basic program only. New functionalities and pipelines
can be added post-installation maintaining the installation to a size
adequate for local needs. This is made possible by the EEM which
manages plug-ins for consumers.

The overall organisation is as Input Table, Pipeline Confi guration
and Data Processing Engine. The Input Table presents the full view
of the datasets, allows users to take notes and fi ne tune the actual
processing of individual datasets. Both Input Table and Parameter
Table validate and reject invalid data. These are all designed to
improve the chances of successful data processing.

CamBAfx packages neuroinformatics software, without modi-
fi cation, inside plug-ins. Other CamBAfx plug-ins provide the
branding, the pipelines and their New Pipeline Wizards as well as
supporting functions. Pipelines are organized into directories and
each pipeline comes with its own customized wizards.

The back-end’s aim is to deliver workfl ows to the user. It uses
the traditional pipeline view of the workfl ow making modifi cations
straightforward. Facilities like data hierarchy, data standards and
pipeline simplifi cation strategies are designed to assist pipeline con-
struction and improve readability. Pipelines are written in XML for
human-readability and can be manipulated programmatically.

For developers, CamBAfx supplies a generic set of functions for
their pipelines. However, customization of CamBAfx is encouraged
by developing supporting facilities. These supporting functions
have access to the user interface via Eclipse or CamBAfx extension
points.

Organising software in a consistent manner facilitates construc-
tion of new pipelines from modules originating from different soft-
ware packages and is an important design objective for CamBAfx.
Analysis software is not merely repackaged, rather consumers and
designers can integrate tools to generate custom workfl ows or
undertake optimisation of pipelines through systematic compari-
son of modules.

Using Eclipse RCP technology means that CamBAfx uses
industrial standard architecture reducing development time and
ensuring that the underlying technology is constantly updated
and improved. Eclipse-based tools can be incorporated easily and
CamBAfx can integrate with other Eclipse programs. Eclipse’s
PDE is a useful aid for developing CamBAfx and its plug-ins.
CamBAfx’s extensions for Eclipse IDE allows plug-in integra-
tion to be debugged and tested using PDE. The source code is
organized in a logical and fl exible manner to maximize reuse 7http://www.fmrib.ox.ac.uk/fsl/

http://www.fmrib.ox.ac.uk/fsl/

Frontiers in Neuroinformatics www.frontiersin.org August 2009 | Volume 3 | Article 27 | 9

Ooi et al. CamBAfx

 potential. Workfl ow applications can be developed from BrainFX
or GenericFX if CamBA is not needed.

CamBAfx is released under the terms of General Public License
(GPL, Free Software Foundation, 2007) and specifi cally allows
designers to integrate their pipelines before shipping. This removes
problems associated with consumers having to download pipelines
and workfl ow applications separately and following instructions
to integrate them to form the fi nal application.

GenericFX, BrainFX, CamBAfx and TBSSfx can be downloaded
from SourceForge.net8 or NITRC9.

CONCLUSION
CamBAfx is a workfl ow application designed to be the user interface
that services consumers’ needs in the front-end by guiding them
throughout the whole process from pipeline creation, through data
entry and validation, to data processing. At the back-end, workfl ow
creation and manipulation are made easier by adopting a pipe-
line model complete with a strategy to understand and use a data
standard and data hierarchy as well as facilities to manipulate these
pipelines. Out of the box, CamBAfx provides all the generic facili-
ties expected of a workfl ow application for any pipeline although,
uniquely, designers are encouraged to customize CamBAfx for their
own pipelines. CamBAfx is built as an Eclipse RCP application and
benefi ts from industrial standard architecture and modern soft-
ware facilities, such as supporting post-installation modifi cation.
EEM makes CamBAfx highly fl exible, confi gurable and extensible.
Designers use it to customise CamBAfx for their pipelines, to insert
supporting functions and to access the user interface. Moreover, by

selecting components from CamBAfx and with the help of Eclipse
Branding Mechanism, new workfl ow applications can be created.
The availability of PDE, designed to support Eclipse plug-in devel-
opments, improves CamBAfx designers’ productivity.

FUTURE WORK
New versions of CamBAfx will use EEM more extensively. Small
utility programs are being developed to check that the CamBAfx
instance is error free. The current XML pipeline descriptor can
contain two or more ways to describe the same data. This will be
reduced to one as part of the effort to rationalise the XML descrip-
tors. The new XML will use XML Namespace (Bray et al., 2006)
and support XML Schema (Fallside and Walmsley, 2004) valida-
tion. Meta-data such as the author’s name and email, are managed
centrally using the Resource Description Framework (RDF, Beckett,
2004), removing duplication and simplifying updates. RDF also
stores the relationship between meta-data.

ACKNOWLEDGEMENTS
This neuroinformatics research was supported by a Human Brain
Project grant from the National Institute of Mental Health and the
National Institute of Biomedical Imaging and Bioengineering. EB
is employed 50% by GlaxoSmithKline and 50% by the University of
Cambridge. The work was conducted in the MRC/Wellcome Trust
Behavioural & Clinical Neurosciences Institute, Cambridge UK. This
project was awarded an IBM Eclipse Innovation Award 2003.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/neuroinformatics/paper/10.3389/
neuro.11/027.2009/

8http://sourceforge.net/projects/camba/
9http://www.nitrc.org/projects/camba/

REFERENCES
Beckett, D. (ed.) (2004). RDF/XML

Syntax Specifi cation (Revised). W3C
Recommendation 10 February 2004.
Available at: http://www.w3.org/
TR/2004/REC-rdf-syntax- grammar-
20040210/. RDF Interest Group,
http://www.w3.org/RDF/.

Bolour, A. (2003). Notes on the Eclipse
Plug-in Architecture (Eclipse Corner
Article). Available at: http://www.
eclipse.org/articles/Article-Plug-in-
architecture/plugin_architecture.
html.

Bray, T., Hollander, D., Layman, A., and
Tobin, R. (eds) (2006). Namespaces
in XML 1.0, 2nd Edn. W3C
Recommendation 16 August 2006.
Available at: http://www.w3.org/
TR/2006/RECxml-names-20060816/.
XML Core Working Group, http://
www.w3.org/XML/Core/.

Br ay, T. , Pao l i , J. , Sper berg-
McQueen, C. M., Maler, E., and
Yergeau, F. (2008). Extensible
Markup Language (XML) 1.0, 5th
Edn. W3C Recommendation 26
November 2008. Available at: http://
www.w3.org/TR/REC-xml/. XML

Core Working Group, http://www.
w3.org/XML/Core/.

Chamberlain, S. R., Hampshire, A.,
Müller, U., Rubia, K., Del Campo, N.,
Craig, K., Regenthal, R., Suckling, J.,
Roiser, J. P., Grant, J. E., Bullmore, E. T.,
Robbins, T. W., and Sahakian, B. J.
(2009). Atomoxetine modulates
right inferior frontal activation dur-
ing inhibitory control: a pharmaco-
logical functional magnetic resonance
imaging study. Biol. Psychiatry 65,
550–555.

Chamberlain, S. R., Menzies, L.,
Hampshire , A. , Suckl ing , J. ,
Fineberg, N. A., del Campo, N.,
Aitken, M., Craig, K., Owen, A. M.,
Bullmore, E. T., Robbins, T. W., and
Sahakian, B. J. (2008). Orbitofrontal
dysfunction in patients with obsessive-
compulsive disorder and their unaf-
fected relatives. Science 321, 421–422.

Cointepas, Y., Mangin, J.-F., Garnero, L.,
Poline, J.-B., and Benali, H. (2001).
BrainVISA: software platform for
visualization and analysis of multi-
modality brain data. Neuroimage
13, S98. Available at: http://www.
brainvisa.info/.

Cox, R. W., Ashbourner, J., Breman, H.,
Fissell, K., Haselgrove, C., Holmes, C. J.,
Lancaster, J. L., Rex, D. E., Smith, S. M.,
Woodward, J. B., and Strother, S. C.
(2004). A (Sort of) New Image Data
Format Standard: NIfTI-1. 10th
Annual Meeting of the Organization
for Human Brain Mapping (OHBM
2004), Budapest, Hungary, June
13–17. Available at: http://nifti.nimh.
nih.gov/nifti-1/documentation/hbm_
nifti_2004.pdf.

Eidsness, A., and Rapicault, P. (2004).
Branding Your Application (Eclipse
Corner Article). Available at: http://
www.eclipse.org/articles/Article-
Branding/branding-your- application.
html.

Fallside, D. C., and Walmsley, P. (eds)
(2004). XML Schema Part 0, Primer,
2nd Edn. W3C Recommendation
28 October 2004. Available at:
http://www.w3.org/TR/2004/REC-
 xmlschema-0-20041028/. XML
Schema Working Group, http://www.
w3.org/XML/Schema/.

Fissell, K., Tseytlin, E., Cunningham, D.,
Iyer, K., Carter, C. S., Schneider, W.,
and Cohen, J. D. (2003). Fiswidgets:

a graphical computing environment
for neuro imag ing ana lys i s .
Neuroinformatics 1, 111–125. Available
at: http://grommit.lrdc.pitt.edu/.

Free Software Foundation (2007). GNU
General Public License. Available at:
http://www.gnu.org/licenses/gpl.
html.

Friston, K. J., Holmes, A. P., Worsley, K. J.,
Poline, J. B., Frith, C., and
Frackowia, R. S. J. (1995). Statistical
parametric maps in functional imag-
ing: a general linear approach. Hum.
Brain Mapp. 1995, 189–210. Available
at: http://www.fi l.ion.ucl.ac.uk/spm/.

Habets, P., Krabbendam, L., Hofman, P.,
Suckling, J., Oderwald, F., Bullmore,
E., Woodruff, P., Van Os, J., and
Marcelis, M. (2008). Cognitive per-
formance and grey matter density
in psychosis: functional relevance
of a structural endophenotype.
Neuropsychobiology 58, 128–137.

Hudson, R. (2004). The Graphical Editing
Framework. EclipseCon 2–5 February
2004, Anaheim, CA, USA. Available
at: http://www.eclipsecon.org/2004/
EclipseCon_2004_TechnicalTrackPre
sentations/47_Hudson.pdf.

http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/027.2009/
http://sourceforge.net/projects/camba/
http://www.nitrc.org/projects/camba/

Frontiers in Neuroinformatics www.frontiersin.org August 2009 | Volume 3 | Article 27 | 10

Ooi et al. CamBAfx

International Business Machines (2006).
Eclipse Platform Technical Overview
(Eclipse White Paper). Available
at: http://www.eclipse.org/articles/
Whitepaper-Platform-3.1/eclipse-
platform-whitepaper.pdf.

McAffer, J., and Lemieux, J.-M. (2005).
Eclipse Rich Client Platform –
Designing, Coding and Packaging
Java Applications (Addison-Wesley
Professional). RCP website, Available
at: http://wiki.eclipse.org/index.
php/Rich_Client_Platform.

Melhem, W., and Glozic, D. (2003).
PDE Does Plug-ins (Eclipse Corner
Article). Available at: http://www.
eclipse.org/articles/Article-PDE-
does-plugins/PDE-intro.html. PDE
project website at http://www.eclipse.
org/pde/.

Menzies, L., Williams, G., Chamberlain, S.,
Ooi, C., Fineberg, N., Suckling, J.,
Sahakian, B., Robbins, T., and
Bullmore, E. (2008). White mat-
ter abnormalities in patients with
 obsessive-compulsive disorder and
their first-degree relatives. Am.
J. Psychiatry 165, 1308–1315.

Rex, D. E., Ma, J. Q., and Toga, A. W.
(2000). The LONI pipeline process-
ing environment. Neuroimage 19,
1033–1048. Available at: http://
pipeline.loni.ucla.edu/.

Smith, S. M., Jenkinson, M., Johansen-
Berg, H., Rueckert, D., Nichols, T. E.,
Mackay, C. E., Watkins, K. E.,
Ciccarel l i , O., Cader, M. Z. ,
Matthews, P. M., and Behrens, T. E. J.
(2006). Tract-based spatial statistics:
voxelwise analysis of multi- subject
diffusion data. Neuroimage 31,
1487–1505. Available at: http://www.
fmrib.ox.ac.uk/fsl/tbss/index.html.
Implementation described her is based
on the version in 2007: http://web.
archive.org/web/20070703045209/
http://www.fmrib.ox.ac.uk/fsl/tbss/
index.html.

Smith, S . M. , Jenkinson, M. ,
Woolrich, M. W., Beckmann, C. F.,
Behrens, T. E. J., Johansen-Berg, H.,
Bannister, P. R., De Luca, M.,
Drobnjak, I., Flitney, D. E., Niazy, R.,
Saunders, J., Vickers, J., Zhang, Y.,
De Stefano, N., Brady, J. M., and
Matthews, P. M. (2004). Advances

in functional and structural MR
image analysis and implementation
as FSL. Neuroimage 23, 208–219.
Available at: http://www.fmrib.ox.ac.
uk/fsl/.

Suckling, J., and Bullmore, E. (2004).
Permutation tests for factorially
designed neuroimaging experiments.
Hum. Brain Mapp. 22, 193–205.

Suckling, M., Davis, M., Ooi, C.,
Wink, A. M., Fadili, J., Salvador, R.,
Welchew, D., Sendur, L., Maxim, V.,
and Bullmore, E. (2006). Permutation
testing of orthogonal, factorial effects
in a language processing experiment
using fMRI. Hum. Brain Mapp. 27,
425–433.

Wink, A. M., Bullmore, E., Barnes, A.,
Bernard, F., and Suckling, J. (2008).
Monofractal and multifractal
 dynamics of low frequency endog-
enous brain oscillations in func-
tional MRI. Hum. Brain Mapp. 29,
791–801.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial

or financial relationships that could
be construed as a potential conflict of
interest.

Received: 31 March 2009; paper pend-
ing published: 26 June 2009; accepted: 02
August 2009; published online: 28 August
2009.
Citation: Ooi C, Bullmore ET, Wink A-M,
Sendur L, Barnes A, Achard S, Aspden J,
Abbott S, Yue S, Kitzbichler M, Meunier D,
Maxim V, Salvador R, Henty J, Tait R,
Subramaniam N and Suckling J (2009)
CamBAfx: workflow design, implemen-
tation and application for neuroim-
aging. Front. Neuroinform. 3:27. doi:
10.3389/neuro.11.027.2009
Copyright © 2009 Ooi, Bullmore, Wink,
Sendur, Barnes, Achard, Aspden, Abbott,
Yue, Kitzbichler, Meunier, Maxim, Salvador,
Henty, Tait, Subramaniam and Suckling.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

