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The development of sophisticated neuroimaging data processing 
tools has been of major importance for distilling the large amount 
of information present in brain imaging data sets into useful 
and enlightening results. Neuroinformatics-based algorithms, in 
particular, have been instrumental in analyzing population level 
cortical anatomy, changes in BOLD activity, and, more recently, 
the rapid processing of diffusion weighted images (DTI/HARDI). 
Several notable examples include Statistical Parametric Mapping 
(Friston, 2006), FSL (Smith et al., 2004), FreeSurfer (surfer.nmr.
mgh.harvard.edu), AFNI (Cox, 1996), and BrainVoyager (Goebel 
et al., 2006), among other analysis packages. The wide availability 
of neuroinformatics tools has helped to signifi cantly spur growth in 
cognitive and clinical neuroscience, as well as permitted the effi cient 
re-analysis of data contained in large-scale data archives (Kennedy 
and Haselgrove, 2006).

Within any of the aforementioned software packages it is possible 
to fi nd the majority of individual steps needed for processing the 
most common types of brain imaging data. With these individual 
operations, accompanied by various inputs, parameters, and other 
options, investigators frequently link executable programs together 
as “scripts” or batch processes in which inputs are passed to one 
executable and the resulting outputs become the input to the next 
processing executable, and so on. In so doing, many laboratories 
have found it possible to create effi cient yet fl exible data processing 
streams to not only process data within modality but also between 
modalities. The notion of scientifi c workfl ows has now taken on its 
own formalism, moving from beyond custom-built scripts toward 
fully-fl edged software environments with several available software 
platforms available to construct neuroimaging workfl ows, optimize 
their performance, and that take advantage of super-computing 
and grid infrastructures to expedite data processing throughput 
(Romano et al., 2005; Oinn et al., 2006; Van Horn et al., 2006; Ruping 
et al., 2007; Verdi et al., 2007). With a fully encompassing workfl ow 
platform it is also possible to break out of a “package-centric” view of 
neuroimage data processing and toward an informatics model that 
draws processing capabilities from across existing software suites 
as well as the incorporation of local informatics tools into hetero-
geneous analysis workfl ows. Such workfl ow descriptions, which 
themselves are often highly structured fi le formats describing the 
executable operations and their various processing choices, can serve 
to provide needed data provenance ensuring the fi delity of data 
reanalysis and replication (Mackenzie-Graham et al., 2008).

More than simply processing individual subject datasets or 
even the data from complete neuroimaging studies, the notion of 
workfl ows has permeated the next level of neuroimaging  analysis 
beyond subject or study-based processing: that of data mining and 
meta-analysis. Data mining is a process of exploring data to identify 
potentially interesting patterns in the data that might not have been 
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examined in the original research studies in question or perhaps were 
not detected by traditional statistical methods. These approaches to 
sifting through large archives of data to extract potentially useful 
patterns and relationships has been most evident in the genomic 
sciences although neuroimagers have explored these methods as 
well (Mitchell, 1999; Megalooikonomou et al., 2000; Wigle et al., 
2001; Anderle et al., 2003). Meta-analysis, on the other hand, fi rst 
gained the attention of the social sciences and related fi elds in the 
late 1970’s and 1980’s as a means to examine the study-specifi c and 
experimental factors that predicted reported effect sizes present in 
published studies (Glass et al., 1981; Rosenthal, 1984). The notion 
of performing an “analysis of analyses” to quantitatively critique, 
explore, and synthesize a literature has proved to be highly compel-
ling and powerful. With the burgeoning growth of neuroimaging 
studies of brain structural differences between clinical populations 
and examinations of human cognition using PET and fMRI, the 
concept of meta-analysis soon found its way into the realm of brain 
imaging (Van Horn and McManus, 1992; Fox and Woldorff, 1994; 
Cabeza and Nyberg, 2000). Data mining and meta-analyses permit 
the exploration of not only the neural structure or patterns of cog-
nitively-induced activity, but these analyses can also provide insights 
into those study factors that can predict the magnitude of reported 
effects. These approaches help to synthesize data from across studies, 
craft general trends in results from across studies, and quantify the 
effects of predictor variables obtained from the studies themselves 
that may infl uence the size and scale of differences.

Data processing workfl ow concepts have been an important ele-
ment for meta-analyses and data mining, too, providing the basis 
for how suffi cient summary metrics are obtained, combined with 
appropriate study meta-data, and then systematically compared and 
combined from across subjects and studies (Figure 1). Visualizing 
the relationships between subjects and study results has also been an 
important element for meta-analysis results and workfl ows are needed 
to provide graphical representations to still further neuroinformat-
ics tools needed for dynamic and interactive visualization (Toga and 
Thompson, 2002; Van Essen, 2002; Van Essen and Dierker, 2007).

In this special issue of Frontiers in Neuroinformatics, we have 
invited several leading groups to provide articles focusing on the 
development of workfl ow technologies and perspectives for effi -
cient neuroimage data processing and that help to permit subse-
quent meta-analysis of the results. Articles by Dinov et al., Ooi 
et al., Kenny et al., and Cheng et al. showcase recent developments 
in advanced workfl ow technologies for effi cient processing of neu-
roimaging data. Contributions from Keator and colleagues discuss 
the use of high-performance computing capabilities upon which 
workfl ow environments have been specifi cally designed to take 
advantage of for rapid processing, while articles from Costafreda 
et al., Bockholt et al., Lohrey et al., and Laird et al. discuss the 
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 development of data mining workfl ows and feature interesting 
examples of data  synthesis. Finally, contributions from Nielsen and 
from Joshi et al. discuss the important role of visualization in data 
mining and the workfl ows necessary to inform novel informatics 
tools that focus on interactively exploring the relationships amongst 
large collections of brain data. The quality of these articles is excep-
tional and provides a broad overview at how workfl ow concepts 
have matured for the neuroimaging fi eld, how they are now being 
used to expedite data mining, meta-analysis, and helping to provide 
the content needed for graphical data interaction.

Informatics as had a historical foothold in the data-rich 
fi eld of neuroimaging. However, with in vivo datasets continu-

ally increasing in size, scope, and complexity, the continued 
 development of effi cient processing tools remains necessary to 
extract the maximal amount of useful information from them. 
Workfl ow technologies for data processing design, application, 
and execution link these tools into high-throughput process-
ing pipelines. Their ongoing development can be expected to 
greatly enrich the ability of researchers to not only process newly 
obtained neuroimaging data but also to compare, contrast, and 
combine results from previous research studies via meta-analytic 
and data mining approaches and to visualize unique patterns 
present in neuroimaging results that could only be identifi ed 
through large-scale informatics approaches.

FIGURE 1 | Scientifi c workfl ows provide fl exible platforms for 

multimodal neuroimage processing that facilitate high-throughput 

analysis of individual subjects as well as complete studies. These are also 
essential software and informatics frameworks for data mining and 

exploration, meta-analytic consideration of effects from across multiple 
studies, as well as providing effi cient approaches for visualizing synthesized 
results and the functional/structural relationships that exist between brain 
imaging data sets.
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