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seen as designed mega-analyses, and the necessary databasing, 
data-sharing and analysis tools are emerging (Keator et al., 2008, 
2009; Bockholt et al., 2009).

In the following, current limitations in function-location brain 
mapping are examined, along with strategies for their remediation 
through data pooling. Following the meta/mega-analysis distinc-
tion frequently employed in the fi eld, the advantages and shortcom-
ings of different types of data-sharing based on the type of data used 
as prime matter for pooling are also discussed. Finally, the different 
steps for a valid data pooling exercise, from data collection to the 
selection of suitable analysis methods, are considered.

LIMITATIONS IN BRAIN MAPPING AND 
DATA-POOLING REMEDIES
ERRONEOUS RESULTS IN SINGLE-STUDY fMRI ANALYSIS
The aim of conventional group analysis of fMRI data is to detect the 
regions that show signifi cant increases in BOLD signal in response 
to a given task. For explanatory purposes, a comparison between 
an active task and a baseline condition will be assumed, although 
the following reasoning can be easily extended to more complex 
designs. Localizing signifi cant changes is often done through vox-
elwise hypothesis testing, where a null (H

0
) and an alternative (H

1
) 

hypothesis are compared. The null hypothesis states that there is no 
difference in mean signal across subjects between the active and the 
baseline tasks, while the alternative hypothesis states that such differ-
ence exists. The decision as to whether or not H

0
 should be rejected 

in favor of H
1
 is then made on the basis of the value of a suitable test 

(e.g. t-test). Table 1 presents the possible decision outcomes.

False positive results
This mapping strategy is liable to false positive (FP) fi ndings, if H

0
 

is rejected when it is in fact correct, that is if the area declared to be 
active was truly not engaged by the active task. The probability α of a 

INTRODUCTION
A goal of brain mapping in healthy subjects is to associate mental 
functions with specifi c brain locations. In its clinical application, 
brain mapping aims at identifying the location of brain activation 
differences between persons suffering from a given neurological or 
psychiatric disorder and healthy controls during the performance 
of a cognitive task. Functional magnetic resonance imaging (fMRI) 
has become the main tool in the brain mapping fi eld as, relative to 
other techniques, it is non-invasive, has increased spatial resolution, 
wider availability and lower cost (Pekar, 2006). Conversely, brain 
mapping studies represent well over half of the fMRI literature to 
date (Logothetis, 2008).

It has been recognized that data pooling across individual studies 
has the potential to signifi cantly accelerate progress in the brain 
mapping fi eld (Van Horn et al., 2004), following other success-
ful data-sharing initiatives, such as The Human Genome Project 
(Collins and Mansoura, 2001). The most immediate advantage of 
data pooling is an increase in power due to the larger number of 
subjects available for analysis. Data pooling across scanning centers 
can also lead to a more heterogeneous and potentially representative 
participant sample. Finally, the study of the causes of variability 
across related experiments may also lead to novel scientifi c insights 
(Matthews et al., 2006; Costafreda et al., 2008).

Meta-analysis techniques based on published coordinates of 
activation have been used since early on to summarize research 
data and generate novel insights (Fox et al., 1998). Mega- analysis, 
defi ned as the pooling of the fMRI time-series, has been less suc-
cessful so far in spite of its much greater potential, probably due 
to the diffi culty in databasing and making publicly available these 
“raw” data, and a lack of specifi c analysis methods that recog-
nize the additional heterogeneity introduced by different scan-
ning centers. Such diffi culties may be easing as the fi eld evolves 
towards multi-site studies (Schumann, 2007), which can be 
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FP result can be kept acceptably low by using multiple comparisons 
control procedures such as the random fi eld theory (Worsley et al., 
1996). In practice, the level of FP results in the literature is likely 
to be higher than the conventional 5% value of α, as uncorrected 
results are sometimes reported and sub-optimal fi xed-effects group 
analysis is still occasionally used.

However, under the assumption that FP appear at random brain 
locations, aggregating results across studies is likely to result in 
improved brain mapping accuracy in the sense of FP reduction, as a 
FP fi nding in a given region is unlikely to be replicated across stud-
ies (Fox et al., 1998). In other words, the more studies which have 
reported that a given area is recruited by a certain paradigm, the less 
likely it is to be a false positive result. This idea can be formalized: 
if an observed level of replication in a given location across studies 
is greater than what would be expected by chance alone, then the 
null hypothesis of a FP result can be rejected. Recent years have 
seen the development of several voxel-based meta-analysis methods 
(Chein et al., 2002; Turkeltaub et al., 2002; Wager et al., 2004, 2007; 
Laird et al., 2005a; Neumann et al., 2005; Costafreda et al., 2009a; 
Eickhoff et al., 2009). The initial breakthrough was provided by 
the Activation Likelihood Estimate (ALE) method presented by 
Turkeltaub et al. (2002). ALE is a kernel-based approach currently 
implemented in BrainMap, an online database of published studies 
(Laird et al., 2009). In kernel-based methods, individual studies 
are represented by a pattern of activation peak coordinates, which 

are smoothed using a spatial kernel function (Silverman, 1986). 
The smoothed patterns are aggregated to obtain a summary map 
with voxel-level scores representing the local density of activation 
peaks. This summary map is then thresholded using simulation 
(Wager et al., 2004; Laird et al., 2005a) or parametric (Costafreda 
et al., 2009a) approaches, and the areas that survive the threshold 
are declared as true positive activations. Voxel-based meta-analysis 
techniques have liberated the meta-analysis process from simple 
counting of anatomical labels reported by each study and have 
increased sensitivity to detect aggregate sub-regional activations. 
A workfl ow example for one of such methods, Parametric Voxel-
based Meta-analysis (PVM, software available from the author; 
Costafreda et al., 2009a), is presented in Figure 1.

False negative results
Brain mapping also suffers from False Negative (FN) reporting, 
when a region truly active during the task is not recognized as 
such. This problem is exacerbated by the low number of subjects 
and, hence, low power that is common in fMRI research. Using 
a 3T scanner, Thirion et al. (2007) estimated that at least 20 and 
preferably 27 or more subjects were needed to obtain reproduc-
ible results with a simple sensori-motor task under random-effects 
assumptions. Although specifi c to the particular scanner, task and 
analysis employed by the authors, these fi ndings suggest that many 
fMRI studies may be underpowered. Additionally, Thirion et al. 
(2007) also found that high inter-subject variability was the key 
element producing low reliability of group mapping. Factors which 
increase inter-subject variability in BOLD response, such as the 
inclusion of psychiatric or neurological populations, will therefore 
require larger samples.

Under certain conditions, data pooling may also result in 
an increase of power to detect brain activations and therefore 
a decrease in FN results. It is this potential for increased power 
through the aggregation of sub-signifi cant results that underpins 
meta-analysis applications in most fi elds (Whitehead, 2002). This 
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FIGURE 1 | Parametric Voxel-based Meta-analysis. Step 1: the coordinates for 
each study are plotted in standard space brain (MNI). Step 2: After smoothing 
with a uniform kernel of size r, each study map is transformed into an indicator 
map, where voxels with 1 values (red) indicate the presence of at least one 
activation within distance r. Step 3: all study-level indicator maps are summed 
and then divided by the number of studies n, to obtain a summary map 
refl ecting the proportion of studies reporting an activation within distance r of 

each voxel. Step 4: the p value of the observed proportion is computed, under 
the null hypothesis that the activations are generated at random spatial 
locations. The fi nal thresholded map refl ects the areas where the proportion of 
studies reporting activation is too high to have been generated by such null 
random process alone. In this example of a meta-analysis of language 
production in healthy subjects, Broca’s area and anterior cingulate are revealed 
as areas of signifi cant activation (Costafreda et al., 2009a).

Table 1 | Outcomes of hypothesis testing.

 State of the world

 H
0
 H

1

Decision

 H
0
 Correct acceptance Type II error (β)

 H
1
 Type I error (α) Correct rejection
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type of effect-size meta-analysis is based on study-level estimates of 
a given scalar effect size (e.g. difference in treatment effects across 
clinical trials) plus, crucially, the standard error of such estimates. 
Effect sizes from several studies are then statistically pooled to 
obtain a summary effect size, which has increased precision over 
any of the original studies.

An equivalent for fMRI research of this primary data would be 
the (group-level) effect size image or “beta map” accompanied by 
its corresponding standard error image. However, fMRI researchers 
rarely publish the complete statistical images, but instead present a 
highly compact and refi ned, but impoverished, representation of the 
original brain activation maps. Regions of signifi cant brain activa-
tion, also known as “blobs”, are three-dimensional structures which 
approximately follow grey matter distribution and its associated 
complicated topography. As a description of such structures, only 
a list of three-dimensional coordinates is available in a standard 
paper, usually the points of maximum activation (most statistically 
signifi cant voxel) for each blob, or its centroid. Results published 
in this format also lack a measure of variance (i.e. standard error), 
which precludes the use of traditional effect-size meta-analytical 
techniques (Fleiss, 1993).

Kernel-based meta-analysis methods can be seen as an attempt 
to recover a richer representation by deeming as active not only 
the point of the activation coordinates, but also some neighboring 
area (Turkeltaub et al., 2002; Wager et al., 2007; Costafreda et al., 
2009a). Non-active areas are simply represented by zero. An una-
voidable consequence of this impoverished representation is that 
subtleties in the three-dimensional spatial distribution of the blobs 
are lost when studies are pooled. Another result is that because the 
(non-signifi cant) measurements of non-active areas are also lost 
and simply coded as zero it is not possible to add non- signifi cant 
fi ndings across studies to decide whether the pooled outcome 
does, in fact, reach signifi cance. In other words, meta-analysis of 
 coordinate-based data cannot aggregate power across studies and 
thus cannot remediate the FN problem. Improvements in power 
can only be obtained through mega-analysis.

In fact, current meta-analysis techniques for brain mapping can 
be described, from a statistical point of view, as spatial vote- counting 
(Hedges and Olkin, 1980), where each study “votes” through its 
reported peak coordinates on whether a particular location is active 
or not. Vote-counting is a less than ideal technique for research 
synthesis in statistical terms (Hedges and Olkin, 1980). In particular 
for fMRI research, detection of signifi cant activation in a given 
study is a factor of both activation effect size and power, mainly 
determined by its sample size. Given that sample size is usually 
limited in typical fMRI experiments, there is scope for misleading 
fi ndings when aggregating vote-counting results.

VARIABILITY IN EXPERIMENTAL DESIGN, POWER AND 
GENERALIZATION
From the previous discussion, it can be seen that the initial appeal 
of pooling fMRI data is therefore a very practical one: to increase 
the reliability of fi ndings and the power of the statistical analy-
sis. However, this comes at a price: relative to a single large-scale 
study, a multi-site (or analogously multi-study) design of a similar 
scale would suffer from infl ated variability in its fMRI measure-
ments. This is because it is rare that independent fMRI  experiments 

can be considered exact replicates of each other. For instance, 
Matthews et al. (2006) described how a subtle variation in the visual 
 presentation of the cue for a simple hand-tapping task across cent-
ers in a multi-center study generated signifi cant between-study 
variability in visual cortical BOLD responses. Findings such as this 
one suggest that minor changes in experimental conditions may 
result in signifi cant differences in brain activation. Examples of 
experimental characteristics with empirical evidence of an effect 
on fMRI results include: scanner strength (Friedman et al., 2006), 
subject sample composition (D’Esposito et al., 2003) and analy-
sis method (Strother et al., 2004). The resulting infl ation in vari-
ability of the fMRI measurements due to these between-study or 
between-site factors, even when a standardised protocol across sites 
is enforced (Zou et al., 2005; Friedman et al., 2006) may reduce the 
statistical power relative to a large single-site design.

Although optimal from the point of view of maximising statis-
tical power, recruitment and other pragmatic issues have tended 
to make such large-scale single site studies an exception in neu-
roimaging. Particularly when elusive clinical samples are neces-
sary, recruitment diffi culties may recommend a multi-site design 
(see for example the Alzheimer’s Disease Neuroimaging Initiative, 
Mueller et al., 2006). Also, for many research questions, a sample 
of relevant studies already exists, and pooling results across this 
sample through meta- and mega-analysis techniques will often be 
a more effi cient use of these data than considering the fi ndings of 
each study in isolation (Salimi-Khorshidi et al., 2009).

Apart from the above practical considerations, the increased 
variability inherent to multi-site or multi-study design is not nec-
essarily detrimental, and can even present advantages for certain 
research questions. The main potential benefi t is that including 
participants from different sites may lead to a more representative 
sample of participants, an important consideration if the results 
of the analysis are intended to be generalized to the population at 
large. Additionally, activations that generalize over sites and stud-
ies are more likely to be linked to the substantive research question 
under consideration than to idiosyncrasies in study design. As an 
illustration, the discovery of the resting state brain network in an 
early mega-analysis was “(…) particularly compelling because these 
activity decreases were remarkably consistent across a wide variety 
of task conditions” (Raichle and Snyder, 2007). Data pooling can 
then be useful to quantitatively examine the generalization of a 
fi nding by pooling the results of related studies performed under 
different conditions. Finally, the causes of between-study variability 
may also be of interest in themselves. In Costafreda et al. (2008), we 
applied a meta-regression approach to a large sample of experiments 
on emotional processing to identify the study characteristics that 
predicted amygdala activation. Independent predictors of amygdala 
activation included the type of emotion depicted in the experimental 
stimuli (e.g. fear), along with more “methodological” variables such 
as modality of presentation of the stimulus or scanner strength.

REVERSE INFERENCE
Reverse inference in functional neuroimaging is the deduction of the 
presence of a particular cognitive process as a component of a task 
due to the engagement of the region (or set of regions) during the 
task (Poldrack, 2006). An example of reverse inference is conclud-
ing that reward may be present during a particular task on the basis 
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of observing activation in striatum. Although problematic from a 
 logical point of view, used cautiously reverse inference may be useful 
to elucidate the component processes for a task, and it is often used 
by functional neuroimaging practitioners (Poldrack, 2006).

In Costafreda et al. (2008) we reported quantitative estimates of 
the selectivity of amygdala for different emotions relative to neutral 
material. For example, we found that the amygdala is four to seven 
times more likely to be activated by fear than by stimuli of neutral 
content. This probabilistic estimate may be useful in the interpre-
tation of a particular study fi nding by quantifying the specifi city 
of the link between an area (or network) and a cognitive process. 
This estimate also acts as an explicit reminder of the limitations in 
reverse inference, in that such link is not absolute, but probabilistic 
and necessarily relative to an alternative state (in this example, a 
neutral stimulus). Therefore, detecting amygdala activation in a 
particular experiment cannot lead to the conclusion that the task 
must have involved a fearful stimulus, but simply that it is more 
likely that the stimulus was fearful than neutral. Additionally, this 
single estimate cannot exclude a number of credible alternatives, 
such as amygdala reactivity to social stimuli per se or emotions 
other than fear.

SPATIAL RESOLUTION AND FUNCTIONAL SEGREGATION
The spatial resolution of fMRI has been estimated as a point spread 
function with full width at half maximum (FWHM) of 3.5 mm 
for 1.5 T scanners (Engel et al., 1997) and as low as 2 mm for 7 T 
scanners (Shmuel et al., 2007). However, inter-subject variability in 
cytoarchitecture is substantial (Amunts et al., 1999), which signifi -
cantly reduces the resolution obtainable at group level. In addition, 
the analysis of fMRI data usually involves Gaussian fi ltering, with 
typical fi lter sizes (FWHM) being in the range of 6–15 mm, thus 
further limiting the effective resolution obtained in practice.

Spatial resolution is particularly relevant to the study of functional 
segregation. Functional segregation aims to delineate discrete corti-
cal regions along functional lines. Very fi ne-grained examinations 
of functional segregation have been attempted by pooling results 
from different studies (Picard and Strick, 1996). In Costafreda et al. 
(2006; Figure 2), we developed a quantitative method to determine 
whether two sets of activation peaks are spatially segregated in 
their cortical distribution. We applied this method to the analysis 
of verbal fl uency studies demonstrating different distributions for 
the activation peaks of phonological and semantic studies within 
Broca’s area. The signifi cant difference in mean location identifi ed 
between both distributions (2–18 mm) was comparable or below 
the usual resolution of any single study.

A TYPOLOGY OF fMRI DATA-POOLING
META-ANALYSIS
Activation coordinates as primary data
Almost all the pooling exercises to date have been meta-analysis, 
conducted using the coordinates of the location of activations as the 
primary data. Some of this popularity may be due to the availability 
of coordinate data, which has become a standard of neuroimaging 
reporting (Laird et al., 2009). As discussed earlier, its main dis-
advantage is the impossibility to aggregate power across studies. 
Therefore most meta-analyses compute estimates of between-study 
reliability of activations, although many other coordinate-based 

approaches are possible, such as the examination of between-study 
co-activation of brain as a proxy of functional connectivity (Toro 
et al., 2008).

Meta-analysis using additional descriptors
Neuroimaging publications often report both coordinates of peak 
or maximum activation and their associated anatomical label. 
Meta-analysis based on labels (Laird et al., 2005b), or a combina-
tion of labels and coordinates (Costafreda et al., 2008) is possible, 
and can even be more powerful than voxel-based meta-analysis 
when the number of studies is low (<10) as multiple testing is 
reduced from the number of voxels to the number of regions. 
However, the variability in anatomical nomenclature in published 
studies can be a serious limitation. Additionally, voxel-based meta-
analysis may be more sensitive if the clustering of activations across 
studies is not well matched by the chosen anatomical label (Laird 
et al., 2005b).

Often, in addition to location coordinates, additional meas-
ures of the activation characteristics are reported. If the volume 
of the activated “blobs” was consistently reported, then it could 
be used for more accurate approximation of the original acti-
vations. In our experience though, volume of activation is not 
consistently reported.

Often the T or Z statistics of signifi cant activations are also 
reported. It is possible to employ these quantities to generate effect 

FIGURE 2 | Bootstrap 95% confi dence intervals for the mean locations of 

peak activations in a meta-analysis of phonological and semantic verbal 

fl uency activations in the left inferior frontal gyrus. Updated version of the 
analysis in Costafreda et al. (2006): the systematic literature search has been 
updated to September 2008 with a total of 25 studies included, and the 
bootstrap method has been modifi ed to take into account the clustered nature 
(activations within studies) of the data. The conclusions are the same as the 
ones in the published paper. Left lateral view of a rendered image of the brain 
(MNI template). The confi dence intervals (CI) for the mean location of peak 
BOLD responses associated with semantic verbal fl uency (red) were 
signifi cantly more ventral (z-axis) than for those for phonological verbal fl uency 
(blue) at α = 0.05. Areas of intersections of the CI (phonological semantic) are 
shown in mauve.
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size meta-analyses. The diffi culty with this approach,  however, 
 consists of how to handle non-signifi cant effects, for which no effect 
size estimate is given: are we to assume these unknown effect sizes 
are zero, or just below signifi cance, or simply exclude them from 
the dataset? In our view any of these alternatives leads to further 
diffi culties in the form of potential biases of our results, while the 
benefi t is only an apparent increase in power (apparent because 
the subsignifi cant results are unknown).

In conclusion, while acknowledging the serious limitations 
inherent in coordinate-based data, and short of a decided move 
towards full voxel-based reporting of signifi cant and non-
 signifi cant effect sizes discussed below, coordinates are currently 
the best available substrate for meta-analysis.

MEGA-ANALYSIS
fMRI time-series as primary data
As the raw time-series contains the record of all the measurements 
obtained during an fMRI experiment, it would seem the obvious 
prime matter for data pooling: mega-analysis can reduce both false 
positive and false negative results. However, three practical diffi cul-
ties have severely limited the application of this approach. First, 
fMRI measurements from a single study typically generate gigabytes 
of data. Databasing such large volumes of information and making 
it publicly available is no trivial technical task (Van Horn et al., 
2001; Bockholt et al., 2009). Secondly, fMRI data sharing initiatives 
have in the past sparked serious objections in the scientifi c commu-
nity, which has often proven reticent to share data that are diffi cult 
and expensive to acquire (Koslow, 2002). Only a very small fraction 
of fMRI experiments are nowadays publicly available for download. 
Finally, there is currently a paucity of quantitative methods that are 
able to cope with the processing complexity that may arise in fMRI 
data mega-analysis. These factors create a classical egg and chicken 
situation: as very limited data are available for download, limited 
effort is put into developing mega-analysis methods, which in turn 
further limits the appeal of data-sharing in this format.

This situation, however, is starting to change. Empirical stud-
ies have shown low scanner-related variance relative to between-
subject variability and measurement error (Costafreda et al., 2007; 
Suckling et al., 2008) thus encouraging multi-center designs and 
associated databasing technology (Keator et al., 2008). Methods of 
analysis are also starting to refl ect the need for large-scale integra-
tion of results (Pinel et al., 2007; Costafreda et al., 2009b; Dinov 
et al., 2009; Salimi-Khorshidi et al., 2009), as discussed below.

Statistical maps as intermediate format
The complexity in databasing and publishing time-series data 
would be reduced if instead statistical brain maps were made 
publicly available. If effect-size brain maps were accompanied by 
their standard error images, then usual effect-size meta-analysis 
methods could be applied (Whitehead, 2002), and power could 
be aggregated across studies with smaller databasing overheads. 
Additionally, standard random-effects fMRI analysis techniques 
could be used validly on such summaries (Salimi-Khorshidi et al., 
2009). If subject-level statistical maps, rather than group-level 
maps, were to be released, this would also allow the examination 
of the causes of between-subject variability, which has been con-
sistently identifi ed as the main source of heterogeneity in fMRI 

measurements (Zou et al., 2005; Costafreda et al., 2007; Thirion 
et al., 2007; Suckling et al., 2008).

In spite of its convenience, it must be stressed that such inter-
mediate data format would also have its disadvantages. Temporal 
data, and therefore, connectivity information, would be lost in the 
translation. Relative to time-series pooling, extraneous variability 
would also be introduced by those statistical maps, as different labs 
would report maps obtained through varying pre-processing and 
fi rst-level analysis approaches.

REQUIREMENTS AND ANALYSIS TOOLS FOR VALID 
fMRI DATA POOLING
SYSTEMATIC SEARCH STRATEGY
The validity of data pooling is crucially dependent on which studies 
are included. In effect-size meta-analysis, a particularly important 
problem is publication bias. Also known as the “fi le-drawer” prob-
lem, it originates from the fact that negative studies are less likely 
to be published, biasing the overall estimate of effect size towards 
higher values (Sterne and Egger, 2001). Unbiased, exhaustive and 
a priori literature-sampling strategies are necessary to ensure the 
inclusion of all relevant studies, or at least of a representative sam-
ple, of which only clearly fl awed or inadequate studies should be 
excluded. It is worth insisting that these sampling considerations 
also apply to mega-analysis of fMRI data, as negative studies may be 
less likely to be represented in publicly available data repositories. 
In our view, databases containing the results of fMRI experiments 
(e.g. Brainmap, fMRIDC) (Laird et al., 2009) should be used to 
complement the systematic literature search bearing in mind the 
caveat they do not include all potential studies, and the criteria for 
inclusion in the database are often not explicitly stated, creating 
room for selection biases. By contrast, in coordinate-based meta-
analysis, the focus of the analysis is usually the determination of 
the location of an effect, which may be less affected by the exclusion 
of non-signifi cant results (Fox et al., 1998).

STUDY AS A RANDOM EFFECT
Both meta- and mega-analysis require analysis methods adapted to 
the specifi cities of pooling data across experimental designs. As dis-
cussed earlier, functional MRI experiments are highly heterogene-
ous in their subjective recruitment strategies, cognitive paradigms, 
acquisition software and hardware, and analysis methods. Even 
with standardized protocols and adequate data preprocessing (Zou 
et al., 2005; Friedman et al., 2006; Costafreda et al., 2007) two fMRI 
measurements coming from the same center can be expected to be 
more similar to each other than what would be expected by chance 
alone, compromising crucial independence assumptions inherent 
to most analysis methods. Therefore, the existence of multiple sites 
for data acquisition will in most cases have to be recognized during 
data analysis as well.

In the analysis of the effi cacy of clinical interventions, meta-
analysis of (scalar) data from heterogeneous trials is also the rule 
(Whitehead, 2002). It is often dealt with in a double strategy: (1) by 
employing study-level covariates that are likely to explain some 
of the study heterogeneity as fi xed-effects in a meta- regression 
approach, and (2) through the inclusion of a study-level error 
term capturing residual inter-study variability. This second point 
is equivalent to treating the study factor as a random effect, in a 
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similar way as subjects are treated in fMRI group-level estimates 
(Mumford and Nichols, 2006).

Meta- and mega-analysis of functional imaging data could 
benefi t from a similar approach. The study should therefore be 
recognized as a further level in the usual fMRI data hierarchy of 
task runs within subjects within studies (Penny et al., 2003). Most 
methods currently in use for fMRI meta-analysis, however, con-
sider the foci of activation as the independent observations and 
ignore the clustering of coordinates in the original studies (Chein 
et al., 2002; Turkeltaub et al., 2002; Wager et al., 2004; Laird et al., 
2005a; Neumann et al., 2005). These approaches are therefore fi xed-
effects meta-analysis techniques. The results of fi xed-effects meta-
 analysis only apply to the specifi c sample of experiments under 
consideration and cannot be generalized to a population of studies 
if between-study heterogeneity is present. In practical terms, the 
main undesirable consequence of omitting study-level clustering 
is that statistically signifi cant density can be obtained with fi xed-
effects methods simply by the report of several contiguous foci 
by a single paper, which may have been obtained through overly 
generous statistical thresholding and thus a marker of poor study 
quality (Wager et al., 2007). Random-effects alternatives for fMRI 
meta-analysis have been recently developed using simulation-based 
(Wager et al., 2007; Eickhoff et al., 2009) and parametric analytical 
approaches (Costafreda et al., 2009a), and should in our view be 
preferentially employed.

In particular, PVM (Costafreda et al., 2009a; Figure 1) is a statis-
tical method for function-location meta-analysis that allows valid, 
powerful, fast and scalable detection of the areas with signifi cance 
concordance between studies for maps expressed in proportions. 
That is, the statistic computed in this approach is, for each voxel, 
the proportion of studies that have reported activation within a 
pre-determined local neighbourhood. Proportions are “natural” 
random effects estimators, in the sense of taking between-study 
variability into account. They are also easily interpretable, even 
when translated into a map. Finally proportions, and ratios between 
proportions, can be directly used as quantitative estimates of prob-
ability, for example as guidance in reverse inference.

Regarding mega-analysis, the existence of study-level clustering 
effects would need to be recognized through, for example, the intro-
duction of a study level in the analysis hierarchy (e.g. runs within 
tasks within subjects within group within centers/studies). If the 
highest-level, “top” summary map is of interest, a random-effects 
analysis can be obtained through the application of split-level anal-
ysis using usual software libraries, such as FSL (Salimi-Khorshidi 
et al., 2009). Costafreda et al. (2009b) presents a mega-analysis tool 
that may be useful for more complex designs, especially in the 
presence of clusters (families, studies) with potentially low degrees 
of freedom. If covariate estimation is required, then clusters with 
low counts may present an identifi ability problem (if number of 
parameters ≥ items in cluster). The Bayesian all-in-one approach 
allows the estimates to “borrow strength” across clusters, thus sta-
bilizing the model fi tting process (Bowman et al., 2008).

STUDY DIFFERENCES AS FIXED EFFECTS
As discussed earlier, heterogeneous experimental designs are inevi-
table in many data pooling situations. Some of this heterogeneity 
may have direct consequences on the results of the experiments. 

Known or suspected sources of heterogeneity may be controlled at 
the study selection step by restriction, for example by only includ-
ing studies with exclusively right-handed samples in a language 
meta-analysis. At the analysis step, covariates can be included as 
fi xed effects in a meta-regression strategy (Costafreda et al., 2008). 
Covariate adjustment is often an attractive option, because the 
addition of the extraneous factor as a covariate maximizes power 
both by allowing the inclusion of a larger number of studies than if a 
restrictive approach had been used, and by removing the variability 
associated with the covariate factor. Whether a covariate is, in fact, 
infl uencing the summary fi ndings can then also be determined, 
which may be interesting in itself.

Finally, if the covariate is associated with both the outcome 
under study and the predictor of primary interest, this association 
may result in confounding, which would lead to biased meta-
 analytical fi ndings if not taken into account (Greenland et al., 
1999; Lawlor et al., 2004). A hypothetical example of confounding 
would be created if fMRI was a more sensitive technique than PET, 
and experiments on negative emotions were mostly done with 
fMRI while those on positive emotions were conducted with PET. 
Thus, ignoring this potential confounding effect in the analysis 
would create an apparent increase in the probability of amygdala 
activation for negative over positive emotions. Two diffi culties 
have to be acknowledged when dealing with confounding. First, 
potential confounders are not always accurately measured. For 
example, while functional neuroimaging publications do not 
always disclose enough methodological detail to ascertain whether 
fi xed or random-effects multisubject analysis was performed, this 
methodological choice infl uences the sensitivity and generaliz-
ability of the analysis (Friston et al., 1999). Accurate and exten-
sive meta-data collection is thus a pre-requisite for pooled data 
analysis, which should benefi t from recent advances in automated 
meta-data collection (Bockholt et al., 2009). Second, the number 
of potential confounding factors that can be effectively introduced 
in the analysis depends ultimately on the size of the available 
dataset. A general rule-of-thumb in linear modeling is that one 
predictor may be included for each 10 independent observations 
(Harrell, 2001), although newer statistical approaches may be 
able to remediate this limitation (Fu et al., 2008). If these steps 
for heterogeneity control are not available, for example due to 
incomplete information, then the likely impact of potential con-
founding factors should be addressed when discussing the results 
(Costafreda et al., 2006).

Crucially, random and fi xed-effects strategies are not compet-
ing alternatives to deal with between-study heterogeneity. When 
possible, pertinent covariates can be used in a meta-regression to 
explain some of the variability or to study the causes for between-
study heterogeneity. Additionally, all attempts at fMRI data pooling 
should include a study-level error even if study factors are already 
included as fi xed effects, because it is unlikely that the measured 
covariates capture all the between-study variability.

THE VALUE OF fMRI DATA POOLING
Pooling data across sites responds primarily to pragmatic necessi-
ties, such as the maximization of sample size, especially in elusive 
clinical populations. It can also satisfy the need to utilize already 
existing, but frequently underpowered, neuroimaging studies in 
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a more effi cient way than the consideration of their individual 
 fi ndings. Last but not least, as fMRI research grows exponentially, 
quantitative synthesis of published fMRI research will remain 
necessary simply to allow researchers a summary of a moun-
tain of research data. As functional neuroimaging becomes more 
data-rich, such computational approaches able to extract novel 
insights from existing large-scale datasets are likely to become 
increasingly valuable.
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