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The idea that complex systems have a hierarchical modular organization originated in the early
1960s and has recently attracted fresh support from quantitative studies of large scale, real-
life networks. Here we investigate the hierarchical modular (or “modules-within-modules”)
decomposition of human brain functional networks, measured using functional magnetic
resonance imaging in 18 healthy volunteers under no-task or resting conditions. \We used a
customized template to extract networks with more than 1800 regional nodes, and we applied
a fast algorithm to identify nested modular structure at several hierarchical levels. We used
mutual information, 0 < /< 1, to estimate the similarity of community structure of networks in
different subjects, and to identify the individual network that is most representative of the group.
Results show that human brain functional networks have a hierarchical modular organization
with a fair degree of similarity between subjects, /= 0.63. The largest five modules at the
highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and
fronto-temporal systems; occipital modules demonstrated less sub-modular organization than
modules comprising regions of multimodal association cortex. Connector nodes and hubs,
with a key role in intermodular connectivity, were also concentrated in association cortical
areas. We conclude that methods are available for hierarchical modular decomposition of
large numbers of high resolution brain functional networks using computationally expedient
algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy
or neardecomposability of physical symbol systems is a critical design feature for their fast

adaptivity to changing environmental conditions.
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INTRODUCTION
Almost 50 years ago, Herbert Simon wrote an essay entitled “The
architecture of complexity” (Simon, 1962). In this prescient analysis,
he argued that most complex systems, such as social, biological and
physical symbolic systems, are organized in a hierarchical manner. He
introduced the notion of “nearly-decomposable systems”, i.e. systems
where elements have most of their interactions (of any kind) with
a subset of elements in some sense close to them, and much less
interaction with elements outside this subset. In mainstream contem-
porary parlance, Simon’s near-decomposability is closely analogous
to the concept of topological modularity: nodes in the same module
have dense intra-modular connectivity with each other and sparse
inter-modular connectivity with nodes in other modules (Newman,
2004,2006). Simon argued that near-decomposability was a virtually
universal property of complex systems because it conferred a very
important evolutionary or adaptive advantage. Decomposability,
or modularity, accelerates the emergence of complex systems from
simple systems by providing stable intermediate forms (component
modules) that allow the system to adapt one module at a time without
risking loss of function in other, already-adapted modules.

Our understanding of complexity has progressed considerably
since that time, partly due to the availability of large data-sets that
now allow us to explore empirically the architecture of complex

systems and thereby to feedback on theoretical considerations
(Strogatz, 2001; Amaral and Ottino, 2004). Many complex sys-
tems can be represented using tools drawn from graph theory as
networks of nodes linked by edges. Such networks have been used
to represent a broad variety of systems, ranging from genetic and
protein networks to the World Wide Web. The huge size of some
of these systems (~10 billion nodes in the WWW) has driven the
development of new statistical tools in order to characterize their
topological properties (Newman, 2003).

A quantity called modularity has been introduced in order to
measure the decomposability of a network into modules (Guimera
et al., 2004; Newman and Girvan, 2004). Modularity can be used
as a merit function to find the optimal partition of a network. The
resulting partition has been shown to reveal important network
community structures in a variety of contexts, e.g. the global air
transportation network (Guimera et al., 2005) and gene expression
interactomes (Oldham et al., 2008) are two diverse examples of
complex systems with topological modularity. However, in sys-
tems having an intrinsic hierarchical structure, finding a single
partition is not satisfactory. Several approaches have therefore been
proposed in order to allow for more flexibility and to uncover com-
munities at different hierarchical levels. Among those multi-scale
approaches, there are algorithms searching for local minima of
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the modularity landscape (Sales-Pardo et al., 2007) or modifying
the adjacency matrix of the graph in order to change its typical
scale (Arenas et al., 2008). Another class of methods consists in
modifying modularity by incorporating in it a resolution param-
eter (Reichardt and Bornholdt, 2006). This allows one to “zoom
in and out” of a modular hierarchy in order to find communities
on different levels; for example, the resolution parameter can be
interpreted as the time scale of a dynamical process unfolding on
a network (Lambiotte et al., 2009).

There is already strong evidence that brain networks have a
modular organization; see Bullmore and Sporns (2009) for review.
Some support comes from non-human data, like the anatomical
networks in felines and primates (Hilgetag et al., 2000) or func-
tional networks in rodents (Schwarz et al., 2008). Recently, human
neuroimaging studies have also provided evidence for comparable
modular organization in both anatomical (Chen et al., 2008) and
functional (Ferrarini et al., 2009; Meunier et al., 2009) brain net-
works. However, a limitation of these previous neuroimaging stud-
ies has been the computational time required to derive a modular
decomposition (Brandes et al., 2006), thus limiting the size of the
networks under study. In addition, these studies were limited to
studying modularity at one particular level of community structure,
neglecting consideration of possible sub-modular communities at
lower levels. Finally, it has been a taxing problem to quantify the
topological similarity between two or more modular decomposi-
tions, with most investigators simply examining modularity on the
basis of an averaged connectivity matrix estimated from a group
of individuals.

In this study, we report on progress towards addressing each
of these issues. We applied a recently developed, computationally
efficient algorithm (Blondel et al., 2008) to derive a hierarchical,
modular decomposition of human brain networks measured using
functional magnetic resonance imaging (fMRI) in 18 healthy vol-
unteers. By providing rapid decomposition, the algorithm enabled
us to study the modular structure of whole brain networks on a
larger scale (thousands of equally sized nodes) than previously pos-
sible (tens of differently sized nodes), with concomitant improve-
ments in the spatial or anatomical resolution of the network, while
simultaneously avoiding biases associated with using a priori ana-
tomical templates that are inevitably somewhat arbitrary in their
definition of regions-of-interest (Tzourio-Mazoyer et al., 2002).
Thus, the method enabled rapid, high-resolution, hierarchical
modular decomposition of brain functional networks constructed
from individual fMRI datasets. In addition, we present a method
for comparing the similarity or mutual information between two
modular community structures obtained for different subjects, and
use it to identify the single, “most representative” subject whose
brain network modularity was most similar to that of all the other
networks in a sample of 18 healthy participants.

MATERIALS AND METHODS

EXPERIMENTAL DATA

Study sample

Eighteen right-handed healthy volunteers (15 male, 3 female)
were recruited from the GlaxoSmithKline (GSK) Clinical Unit
Cambridge, a clinical research facility in Addenbrooke’s Hospital,
Cambridge, UK. All volunteers (mean age 32.7 years + 6.9 SD) had a

satisfactory medical examination prior to study enrolment and were
screened for any other current Axis I psychiatric disorder using the
Structured Clinical Interview for the DSM-IV-TR Axis I Disorders
(SCID). Participants were also screened for normal radiological
appearance of structural MRI scans by a consultant neuroradiolo-
gist, and female participants were screened for pregnancy. Urine
samples were used to confirm abstinence from illicit drugs and
breath was analysed to ensure that no participant was under the
influence of acute alcohol intoxication. All volunteers provided
written informed consent and received monetary compensation
for participation. The study was reviewed and approved by the
Cambridge Local Research Ethics Committee (REC06/Q0108/130;
PI: TW Robbins).

Functional MRI data acquisition

Whole-brain echoplanar imaging (EPI) data depicting BOLD con-
trast were acquired at the Wolfson Brain Imaging Centre, University
of Cambridge, UK, using a Siemens Magnetom Tim Trio whole
body scanner operating at 3 T with a birdcage head transmit/
receive coil. Gradient-echo, EPI data were acquired for the whole
brain with the following parameters: repetition time = 2000 ms;
echo time = 30 ms, flip angle = 78°, slice thickness = 3 mm plus
0.75 mm interslice gap, 32 slices parallel to the inter-commissural
(AC-PC) line, image matrix size = 64 X 64, within-plane voxel
dimensions = 3.0 mm X 3.0 mm.

Participants were asked to lie quietly in the scanner with eyes
closed during the acquisition of 300 images. The first four EPI
images were discarded to account for T1 equilibration effects,
resulting in a series of 296 images, of which the first 256 images
were used to estimate wavelet correlations.

Functional MRI data preprocessing
The images were corrected for motion and registered to the
standard stereotactic space of the Montreal Neurological Institute
EPI template image using an affine transform (Suckling et al,,
2006). Time series were then extracted using a whole brain, high
resolution, regional parcellation of the images, implemented in
the following manner; see Figure 1A. First, a binarized version
of a commonly used template image (Tzourio-Mazoyer et al.,
2002) was used as a broad grey matter mask. Second, each 8 mm’
voxel in this mask was downsampled by a factor of 4 such that
each equally sized region in the parcellation comprised 4 X 4 X 4
voxels of the original image. This initial parcellation included
some regions of the image which were not largely representa-
tive of grey matter: these were excluded from further analysis
by applying the criteria that each region must be at least 50%
overlapping with the grey matter mask and must contain at least
80% voxels having BOLD signal (defined operationally as mean
signal intensity >50). To be included in the definitive parcella-
tion scheme (which comprised 1808 regional nodes), a region
had to satisfy these two inclusion criteria for every individual
dataset in the sample.

The mean time series of each region was extracted and wave-
let-filtered using Brainwaver R package' (Achard etal., 2006;
Achard and Bullmore, 2007). The wavelet correlation coefficient

'http://cran.r-project.org/web/packages/brainwaver/index.html
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FIGURE 1 | Methods. (A) Downsampled template. Starting from a binary
version of the AAL template (left), the downsampling procedure will produce a
template of small (64 voxels), equal size regions covering the original template
(right). (B) lllustration of the Louvain method on a simple hierarchical graph. The
algorithm starts by assigning a different module to each node (16 modules of
single nodes). The method then consists of two phases that are repeated
iteratively. The first phase is a greedy optimization (GO) where nodes adopt the
community of one of their neighbours if this action results in an increase of
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modularity (typically, the community of the neighbour for which the increase is
maximal is chosen). The second phase builds a meta-network (MN) whose
nodes are the communities found in the first phase. We denote by “pass” a
combination of these two phases. The passes are repeated until no
improvement of modularity is possible and the optimal partition is found. When
applied on this graph, the algorithm first finds a lowest non-trivial level made of
four communities. The next level is the optimal level and is made of two
communities.

was estimated for each of four wavelet scales between each pair
of nodes, resulting in a {1808 x 1808} association matrix, or fre-
quency-dependent functional connectivity matrix, for each wavelet
scale in the overall frequency range 0.25-0.015 Hz. In what follows,
we will focus on results at wavelet scale 3, subtending a frequency
interval of 0.06-0.03 Hz.

This choice of frequency interval was guided by the fact that
prior work on resting-state fMRI functional connectivity has found
that the greatest power in connectivity occurs in frequency bands
lower than 0.1 Hz (Cordes et al., 2001). However, analysing very
low frequency scales in limited time series such as those acquired
with fMRI can reduce precision in estimating inter-regional wave-
let correlations (Achard et al., 2006). So scale 3 was chosen for
the focus of this study as representing a reasonable compromise
between retaining sufficient estimation precision while measuring
low frequency network properties.

Each association matrix was thresholded to create an adjacency
matrix A, the a, th element of which is either 1, if the absolute value
of the wavelet correlation between nodes i and j» w., exceeds a
threshold value 7; or 0, if it does not. We have chosen here to take
a high threshold, leading to very sparse networks comprising 8000
edges, i.e. with a connection density of 0.5% of all possible edges
in a network of this size. Modularity of neuroimaging networks is
typically greater (Meunier et al., 2009), and computational costs
are lower, when the networks are more sparsely thresholded. Up
to 10% of nodes were disconnected from the rest of the network
at this threshold.

GRAPH THEORETICAL ANALYSIS

Hierarchical modularity

In recent years, many methods have been proposed to discover
the modular organization of complex networks. A key step was
taken when Girvan and Newman popularized graph-partitioning
problems by introducing the concept of modularity. Modularity is
by far the most widespread quantity for measuring the quality of a

partition P of a network. In its original definition, an unweighted
and undirected network that has been partitioned into communi-
ties has modularity (Newman and Girvan, 2004):

-3 3[4 0

2m g ee

where A is the adjacency matrix of the network; m is the total
number of edges;and k,; = X, A, is the degree of node i. The indices
iand jrun over the N nodes of the graph. The index Cruns over
the modules of the partition P. Modularity counts the number
of edges between all pairs of nodes belonging to the same com-
munity or module, and compares it to the expected number of
such edges for an equivalent random graph. Modularity therefore
evaluates how well a given partition concentrates the edges within
the modules.

A popular method for discovering the modules of a network
consists in optimizing modularity, namely in finding the partition
having the largest value of (). However, it is typically impossible
computationally to sample modularity exhaustively by enumer-
ating all the possible partitions of a network into communities.
Several heuristic algorithms have therefore been proposed to pro-
vide good approximations, and so to allow for the analysis of large
networks in reasonable times. The computational expediency of
the algorithm has become a crucial factor due to the increasing size
of the networks to be analysed.

More recently, methods to study hierarchical modularity, also
called nested modularity, have been introduced (Sales-Pardo et al.,
2007; Arenas et al., 2008; Rosvall and Bergstrom, 2008). In this
case, each module obtained at the partition of the highest level
can further be decomposed into sub-modules, which in turn can
be decomposed into sub-submodules, and so on. Here, we will use
a multi-level method which was introduced very recently in order
to optimize modularity (Blondel et al., 2008); see Figure 1B. The
primary advantages of this method are that it unfolds a complete
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hierarchical community structure for the network and outperforms
previous methods with respect to computation time. This so-called
“Louvain method” takes advantage of the hierarchical organization
of complex networks in order to facilitate the optimization. The
algorithm starts by assigning a different module to each node of the
network. The initial partition of the network is therefore made of
N communities. It then consists of two phases that are repeated itera-
tively. The first phase consists in a greedy optimization where nodes
are selected sequentially in an order that has been randomly assigned.
When anode is selected, it may leave its community and adopt a com-
munity which is in its direct neighbourhood, but only if this change
of community leads to an increase of modularity (GO on Figure 1B).
The second phase builds a new network whose meta-nodes are the
communities found in the first phase (MN on Figure 1B). Let us
denote by “pass” a combination of these two phases. These passes
are repeated iteratively until a maximum of modularity is attained
and an optimal partition of the network into communities is found.
By construction, the meta-nodes, or intermediate communities, are
made of more nodes at subsequent passes. The optimization is there-
fore done in a multi-scale way: among adjacent nodes at the first pass,
among adjacent meta-nodes at the second pass, etc. The output of
the algorithm is a set of partitions, one for each pass. The optimal
partition is the one found at the last pass. It has been shown on sev-
eral examples that modularity estimated by this method is very close
to the optimal value obtained from slower methods (Blondel et al.,
2008). Intermediate partitions can also be shown to be meaningful
and to correspond to communities at intermediate resolutions (see
Section “Discussion”). In the following, we will call “lowest non-
trivial level” the partition found after the first pass.

Node roles

Once a maximally modular partition of the network has been iden-

tified, it is possible to assign topological roles to each node based on

its density of intra- and inter-modular connections (Guimera and

Amaral, 2005a,b; Guimera et al., 2005; Sales-Pardo et al., 2007).
Intra-modular connectivity is measured by the normalized

within-module degree,

g = (2)

where K, is the number of edges connecting the ith node to other
nodes in the nth module, K, is the average of k, over all nodes in
the module n,and o, is the standard deviation of the intra-modular
degrees in the nth module. Thus z will be large for a node that has
a large number of intra-modular connections.

Inter-modular connectivity is measured by the participation
coefficient,

P,-=1—i(i"‘] 3)

wherek,, is the number of edges linking the ith node to other nodes
in the nth module, and k. is the total degree of the ith node. Thus
P will be close to 1 if the ith node is extensively linked to all other
modules in the community and 0 if it is linked exclusively to other
nodes in its own module.

The two-dimensional space defined by these parameters, the
{P, z} plane, can be partitioned to assign categorical roles to the
nodes of the network. Contrarily to our previous study (Meunier
et al., 2009), where we used a simplified definition of node roles,
the higher number of nodes examined in the current study allowed
us to adopt the original definitions of node roles as described for
large metabolic (Guimera et al.,2005) and transportation networks
(Guimera and Amaral, 2005b):

+ The hubness of a node can be defined by its within-module
degree: If a given node i has a value of z,> 2.5. It is classified as
a hub, otherwise as a non-hub.

« The limits for the participation coefficient are different
for hubs and non-hubs. For non-hubs, if a given node
has value 0< P,<0.05, the node is classified as an ultra-
peripheral node, 0.05 < P,<0.62 corresponds to a peripheral
node, 0.62 < P <0.80 corresponds to a connector node, and
0.80 < P,< 1.0 is a kinless node. For hubs, 0 < P,<0.30 corre-
sponds to a provincial hub, 0.30 < P,<0.75 corresponds to a
connector hub, and 0.75 < P, < 1.0 is a kinless hub.

These different categories allowed us to classify the nodes
according to their topological functions in the network. For
example, a provincial hub is a hub with greater intra- vs inter-
modular connectivity, thus having a pivotal role in the function
realized by its module, whereas a connector hub will play a central
role in transferring information from its module to the rest of
the network.

The results of modular decomposition were visualized in ana-
tomical space using Caret software for cortical surface mapping?,
and in topological space using Pajek software”’.

Similarity measure

To compare the different modularity partitions obtained at differ-
ent hierarchical levels in the same subject, or at the same hierar-
chical level in different subjects, we used the normalized mutual
information, as defined in Kuncheva and Hadjitodorov (2004).
For two given partitions A and B, with a number of communities
denoted C, and Cy;:

Ca Cs

—22 er‘j log (15—;3”)

I(A,B)= —— (4)

y [
ZN,._ 10g(i’," ) + ZN.]. log(%)
i=1 j=1

where N, is the number of nodes in common between modules i
and j, the sum over row i of matrix N is denoted N, and the sum
over column jis denoted N . If the two partitions are identical then
I(A,B) takes its maximum value of 1. If the two partitions are totally
independent, I(A,B) = 0.

The initial application of this quantity was to evaluate different
modularity partition algorithms (Danon et al., 2005). The similar-
ity index was used to compute how closely the partitions obtained

*http://brainmap.wustl.edu/register.html
*http://vlado.fmf.uni-lj.si/pub/networks/pajek
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from different algorithms matched the “target” partition of a given
test network, i.e. a network whose modular structure was known
a priori. Here the application was different, since we wanted to
compare partitions obtained for different subjects in a group. Since
the equation is symmetric in A and B, it is however possible to use
the index without a target partition.

The networks constructed for each individual had the same
number of nodes N, so the partitions of each subject have the same
number of nodes. However, due to the high threshold applied
to construct the adjacency matrix, the number of disconnected
nodes in the networks can be different for each subject. One solu-
tion is to consider each disconnected node as a single module. In
this case, each node (disconnected or not) of the network will be
in the set of modules of each subject. However, it introduces artifi-
cially high values in the similarity values, especially if the networks
of two subjects have similar sets of disconnected edges. So we have
chosen to remove the disconnected nodes from the partitions
and study only the partitions obtained on the giant component
of each network, but keeping the value of N in the equation as
the total number of nodes. This leads to a value of similarity
slightly lower than if the disconnected nodes were included in
the partitions, but is more representative of the relevant set of
connected modules.

RESULTS

SIMILARITY AND VARIABILITY OF MODULAR DECOMPOSITIONS

It was possible to define a hierarchical modular decomposition
for each of the 18 subjects in the sample. At the highest hierarchi-
cal level, the mean brain functional network modularity for the
group was 0.604, with SD = 0.097. By comparison, modularity
at the highest level for 18 random networks with an equivalent
number of nodes (1808) and edges (8000) was 0.303 (SD = 0.003).
There was a significant increase in brain network modularity com-
pared to random network modularity (Kolmogorov—Smirnov test,
D=1,P~27").

The similarity of network community structure between each
pair of subjects, at each level of the hierarchy, was calculated
using Eq. 4. The resulting similarity matrices for level 3 (the
highestlevel) and level 1 (the lowest non-trivial level) are shown
in Figure 2.

The average pairwise similarity was 0.57 at level 3 and 0.63 at
level 1, indicating a reasonable degree of consistency between sub-
jects in modular organization of functional networks. The similarity
between subjects was highly correlated over levels of the modular
hierarchy: for example, if a pair of networks had a similar modular
partition at the highest level, the sub-modular organization at lower
levels was also similar.

Simply by summing the pairwise similarity scores for each row
of the similarity matrix, it was possible to identify the individual
subject (number 2) that was most similar to all other subjects in
the sample, i.e. the most representative subject, and the subject (4)
that was least similar to the rest of the sample. In what follows, we
will focus attention on the modular decomposition of the most
representative subject.

HIERARCHICAL MODULARITY

The hierarchical modular decomposition of the most representa-
tive subject’s brain functional network is shown in Figure 3. At
the highest level of the hierarchy (level 3), there were eight large
modules, each comprising more than 10 nodes. At the lowest level
of the hierarchy (level 1), there were 57 sub-modules. The largest
five modules (with putative functional interpretations) and their
sub-modular decomposition are briefly described below; some
additional details are provided in Table 1.

+ Central module (somatosensorimotor): The largest high level
module comprised extensive areas of lateral cortex in premo-
tor, precentral and postcentral areas, extending inferiorly to
superior temporal gyrus, as well as to premotor and dorsal cin-
gulate cortex medially. At a lower hierarchical level, medial and

A Similarity Matrix — Level 3 B Similarity Matrix — Level 1 C Correlation between levels
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; ; [ | r= 0906, p < 10e-22 -
3 3 o
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FIGURE 2 | Variability and similarity of brain functional network
community structure between 18 different subjects. (A) Matrix showing
the between-subject similarity measure for community structure at the
highest level of the modular hierarchy. The pairwise similarity scores for the
most representative subject are highlighted by a black rectangle. (B) Matrix

Similarity — Level 3

showing the between-subject similarities for community structure at the
lowest level of the modular hierarchy. (C) Scatter plot showing strong
correlation of between-subject similarities at high and low levels of the
modular hierarchy. Red points are similarities for the most
representative subject.
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FIGURE 3 | Hierarchical modularity of a human brain functional network. cortex on the left of the panel and the occipital cortex on the right of the panel.
(A) Cortical surface mapping of the community structure of the network at the Intra-modular edges are coloured differently for each module; intermodular edges
highest hierarchical level of modularity, showing all modules that comprise more are drawn in black. (C) Sub-modular decomposition of the five largest modules
than 10 nodes. (B) Anatomical representation of the connectivity between nodes (shown centrally) illustrates that the medial occipital module has no major sub-

in colour-coded modules. The brain is viewed from the left side with the frontal modules whereas the fronto-temporal modules has many sub-modules.

Table 1 |The five largest modules of the human brain functional network in a representative normal volunteer, indicating the number and type of
nodes and sub-modules.

Module description #Nodes Connector nodes Provincial hubs Connector hubs Sub-modules Size of sub-modules
Central (sensorimotor) 239 8 1 4 N 115,96, 8,4,3(2),2(5)
Parieto-frontal (default/attention) 138 10 1 0 10 115,3(5), 2 (4)

Medial occipital (primary visual) 132 0 0 1 132

Lateral occipital (secondary visual) 101 7 0 1 1 101

Fronto-temporal (symbolic) 89 2 3 24 19,8,6,5(2),4,3(6),2(12)

lateral cortex were segregated in different sub-modules and, < Parieto-frontal module (default/attentional): This module
within lateral cortex, precentral and postcentral areas were comprised medial posterior parietal and posterior cingulate cor-
segregated from superior temporal cortex. tex, extending to medial temporal lobe structures inferiorly, and
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areas of inferior parietal and dorsal prefrontal cortex laterally.

+ Medial occipital module (primary visual): This module
comprised medial occipital cortex and occipital pole, inclu-
ding primary visual areas.

+ Lateral occipital (secondary visual): This module comprised
dorsal and ventral areas of lateral occipital cortex, including
secondary visual areas.

+ Fronto-temporal module (symbolic): This module comprised
dorsal and ventral lateral prefrontal cortex, medial prefrontal cor-
tex, and areas of superior temporal cortex. It was less symmetrically
organized than most of the other high level modules and was
decomposed to a larger number of sub-modules at lower levels.

Note that most high level modules are bilaterally symmetrical,
comprise both lateral and medial cortical areas, and tend to be spa-
tially concentrated in an anatomical neighbourhood. Sub-modular
decomposition sometimes resulted in a dominant sub-module,
comprising most of the nodes in the higher level module, with some
much smaller sub-modules each comprising a few peripheral nodes.
For example, this was the pattern for the occipital modules. An
alternative result was a more even-handed decomposition of a high
level module into multiple sub-modules; this was the pattern for the
prefronto-temporal module. In Simon’s terminology, the number of
sub-modules into which a module can be decomposed is its span of
control, and so we can describe occipital modules as having a greater
span of control than, say, the fronto-temporal module.

NODE ROLES

On the basis of the highest level (level 3) of modular decomposi-
tion, we assigned topological roles to each of the regional nodes.
A node was defined as a hub or non-hub (more or less highly con-
nected) with a provincial, connector or kinless role (depending on
its balance of intra- vs inter-module connectivity). Provincial hubs
will play a key role in intra-modular processing; connector hubs
will play a key role in inter-modular processing.

Figure 4 displays an example of the node roles obtained from the
most representative subject. Figure 4A shows the participation coef-
ficient (P, our measure of inter-modular connectivity) vs the intra-
modular degree (z, our measure of hubness) for each regional node
in the network. Most nodes (416, 53%) have no inter-modular con-
nections P = 0, but some (28,4%) have a high proportion of inter-
modular connections, qualifying for connector status. Figure 4B
is a spatial representation of the node roles, the locations of the
nodes corresponding to their position in three-dimensional stere-
otactic space. Figure 4C is a topological representation obtained
by applying the Fruchterman—Reingold algorithm (Fruchterman
and Reingold, 1991) to the network displayed in Figure 4B. In this
representation, the distances between the nodes are not related to
their spatial location, but to how strongly linked connected they
are to their neighbours. The main idea is to start from an initial
random placement of the nodes, and replace the edges by springs,
letting the equivalent mechanical system evolve until it reaches a
stable mechanical state. Thus, this representation locates nodes with
similar connectivity patterns closer together in space.

We can see that most nodes (743, i.e. 95% of the nodes) have
either the role of ultra-peripheral nodes or peripheral nodes and
a small minority (39, i.e. 5% of the nodes) have the topologically

important roles of hubs and/or connector status. Inter-modular
connections, and the connector nodes and hubs which mediate
them, are most numerous in posterior modules containing regions
of association cortex; the fronto-temporal module is sparsely con-
nected to other modules and the medial occipital module also has
relatively few connector nodes.

METHODOLOGICAL ISSUES

This work is a first attempt to uncover the hierarchical organiza-
tion of brain functional networks and to compare the stability of
hierarchical modular decompositions across individuals. There are,
however, three possible weaknesses in our analysis that we would
like to address in this section.

Validation of the algorithm

A first consideration concerns the choice of the Louvain method
(LM) in order to uncover nested modules in the brain networks.
LM was first proposed in order to uncover optimal partitions of a
graph by maximising modularity. This is a greedy method which is
known to be very fast and very precise (Blondel et al., 2008), albeit
less precise than much slower methods such as simulated annealing
(SA). It is interesting to note, however, that this lack of precision
may be an advantage, in practice, as it may avoid some of the pitfalls
of modularity analysis such as its resolution limit (Fortunato and
Barthélemy, 2007). For instance, it has been recently shown that LM
performs much better than SA when applied to benchmark networks
with unbalanced modules comprising different numbers of nodes
(Lancichinetti and Fortunato, 2009). We therefore believe that there
is good evidence that the top level partitions uncovered by LM are
valid. The validity of the intermediate hierarchical levels identified
by the algorithm is, however, more arguable, as it has not been stud-
ied in detail yet. In order to show the validity of these intermediate
levels, we need to verify that the method uncovers all the significant
partitions present in the network and only those.

To do so, we have tested LM on a benchmark network with
known hierarchical structure (Sales-Pardo et al., 2007); Figure 5A).
This benchmark network is made of 640 nodes with three levels
of organization: small modules comprising 10 nodes, medium-
size modules comprising 40 nodes and large modules comprising
160 nodes. The cohesiveness of the hierarchy between levels is tuned
by a single parameter G, i.e. the larger the value of G, the more dif-
ficultitis to find the sub-modules. When applied on this benchmark
network, the algorithm finds with an excellent precision the first
two levels (16 modules and 64 modules), but does not uncover the
partition into 4 modules. This result is to be expected because this
partition into four modules is sub-optimal in terms of modularity
and can therefore not be uncovered by an aggregative method. This
shows that the method can at best uncover the partition optimis-
ing modularity and finer partitions. In order to uncover coarser
partitions, one needs to decrease the resolution of the method,
which can be done by following Reichardt and Bornholdt (2006),
or Sales-Pardo et al. (2007), for instance.

On the same benchmark network, the algorithm typically finds
two levels (one corresponding to 64 modules and one corresponding
to 16 modules) but it may occasionally find three levels (one level
corresponding to 64 modules and two levels similar to the partition
into 16 modules). When ¢ = 1.0, for instance, over 100 realizations
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FIGURE 4 | Topological roles of network nodes in intra- and inter-modular
connectivity. (A) All nodes are plotted in the {P — z} plane of intra-modular
degree zvs participation coefficient P; the solid lines partition the plane
according to criteria for hubs vs non-hubs and connector, provincial, peripheral
or kinless nodes. (B) Anatomical representation of the provincial hubs
(circles), connector hubs (large squares) and connector nodes (small squares)

A 5
B
5 4| .
S 3 [ X ]
3 { °® * " 3
Eoz. o @ ‘..‘ > oy -
g 1 oo & moco "’3:‘ 2,50 e
—= \ &V 3 el ® e
| %R 000 e o0
gO éﬂoﬁrf 58° (%
D 2,0 8o F%e%y &
_E-l; o o !t . o
£
0.2 0.4 0.6 0.8 1
Participation Coeff

of each of each of the five largest modules at the highest level of the
modular hierarchy. (C) Topological representation of the network in using
Fruchterman-Reingold algorithm (Fruchterman and Reingold, 1991) to
highlight topological proximity of highly connected nodes; colour and shape
of the nodes represent their modular assignment and topological role as
above and in Figure 2.

of the graph, the algorithm finds two levels on 86 realizations,
and three levels on 14 realizations. This result is encouraging as it
suggests that the algorithm only produces significant partitions.
However, it is possible to find situations where it is not the case,
e.g. random graphs. It is therefore still necessary to verify the sig-
nificance of intermediate partitions, as we will discuss below.

Comparison with a random graph

A second consideration concerns the comparison of the partition
of the original network with randomized data, as the algorithm
also gives a hierarchical decomposition for randomly generated
networks. To show that the representative brain network under
study (subject ID 2) displays a non-random hierarchical modular
structure, we have randomized the original data and processed

the hierarchical structure of randomized networks, with two kind
of randomization. First, by computing 100 randomizations of the
time points in the original time-series (in green on Figure 5B) and,
second, by randomising the original adjacency matrix 100 times (in
blue on Figure 5B). Note that the two kinds of randomization lead
to networks with different sizes: in the randomized time-series net-
works, almost all the nodes are connected, thus leading to networks
with 1808 nodes and 8000 edges. Whereas starting from the original
adjacency matrix leads to networks of 844 nodes and 8000 edges.
The modularity obtained for the lowest and highest partitions of
the original network are displayed in Figure 5B. The modularity
values are clearly reduced in the randomized networks, relative to
the original data, indicating that our results on real brain networks
are not trivially reproduced in random networks.
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FIGURE 5 | Methodological issues in analysis of hierarchical modularity. simulations show an excellent agreement as mutual information is above 0.95
(A) Validation of the Louvain method for hierarchical decomposition on a for values of p up to 1.5 for the lowest non-trivial and intermediate levels.
benchmark network defined in Sales-Pardo et al. (2007). The network is naturally  (B) Modularity values at the highest and lowest levels of hierarchical community
made of 64, 16 and 4 modules of 10, 40 and 160 nodes respectively. The structure in a representative brain network (Subject ID 2, in red) and for
separability of different levels of the benchmark network is controlled by the networks obtained from 100 randomizations of the original time-series (in
parameter p. e calculate the normalized information between the lowest non- green), and for networks obtained by 100 randomizations of the original
trivial level partition and the natural partition of 64 modules (solid curve), and adjacency matrix. (C) Similarity measures between highest level partitions (left)
between the second level partition and the natural partition of 16 modules and non-trivial lowest level partitions (right) obtained by thresholding the original
(dashed curve). After averaging over 20 different realizations of the network, our network to retain different number of highest correlations as edges.

In order to show that the intermediate levels considered in this
paper are significant, we have followed the argument that significant
partitions should be robust, in the sense that they should only be
weakly altered by a modification of the optimization algorithm. As
argued by Ronhovde and Nussinov (2009), comparing the optimal
partitions found by the algorithm for different orders of the nodes
is a way to test their robustness and therefore their validity. We
have therefore optimized the modularity of the representative brain
network 100 times by choosing the nodes in a different order, and
focused on the first non-trivial partition found by the algorithm.
The mutual information between pairs of partitions obtained for
each different order is then computed. The average mutual infor-
mation among those pairs is very high (0.89) compared to what is
obtained for a comparable random network (0.44), thereby sug-
gesting that partitions obtained at the lowest non-trivial levels are
relevant for the network under study.

Dependence on the number of edges

A third consideration concerns the number m of edges that we have
chosen in order to map the correlation matrices onto unweighted
graphs. This is a known problem when dealing with fMRI data and
building brain networks. If mis too small, i.e. keeping the top most
significant links, the network will be so sparsely connected that it
will be made of several disconnected clusters. If 7 is too large, in
contrast, the network will be very densely connected, but mainly
made of unsignificant links. In these two extremes, the network
structure is a bad representation of the correlation matrix. This
is still an open problem that requires the right trade-off between
these two competing factors. In order to show the robustness of
our results, we propose to look at the resilience of the hierarchi-
cal modular organization under the tuning of the value of m.
Meaningful values of m are identified by intervals over which the
structure of the network is preserved. We have applied this scheme
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to the optimal partitions of the most representative subject (Subject
2), over a wide range of threshold (2000-14000 edges, with a step
of 200 edges). Our results show that partitions are very similar
(in terms of mutual information) over the range (6000-11000)
for both highest level (left on Figure 5C) and non-trivial lowest
level (right on Figure 5C), indicating our results are robust to the
specific choice of threshold.

DISCUSSION

In this study, we have applied recently developed tools for char-
acterizing the hierarchical, modular structure of complex systems
to functional brain networks generated from human fMRI data
recorded under no-task or resting state conditions. Where previ-
ous comparable work was limited by the computational expense
of available modularity algorithms, meaning that only one or a
few relatively low resolution networks (comprising 10 s of nodes)
could be analysed, here we were able to obtain modular decom-
positions on a larger number of higher resolution networks (each
comprising 1000s of nodes). In addition, we used an information-
based measure to quantify the similarity of community structure
between two different networks and so to find a principled way
of focusing attention on a single network that is representative
of the group.

HIERARCHICAL MODULARITY

There was clear evidence for hierarchical modularity in these
data and the community structure of the networks at all levels
of the hierarchy was reasonably similar across subjects (I~ 0.6),
suggesting that brain functional modularity is likely to be a rep-
licable phenomenon. This position is further supported by the
qualitative similarity between the major modules identified at the
highest level of the hierarchy in this study and the major modules
or functional clusters identified in comparable prior studies on
independent samples (Salvador et al., 2005; Meunier et al., 2009).
As previously, the major functional modules comprised function-
ally and/or anatomically related regions of cortex and this pattern
was also evident to some extent at sub-modular levels of analysis.
For example, the central module comprising areas of somatosen-
sorimotor and premotor cortex was segregated at a sub-modular
level into a medial component, comprising supplementary motor
area and cingulate motor area, and a lateral component, com-
prising precentral and postcentral areas of primary motor and
somatosensory cortex.

Another plausible aspect of the results was the clear evidence
for a symmetrical posterior-to-anterior progression of cortical
modules. This was seen most clearly on the medial surfaces of
the cerebral hemispheres in terms of their division into medial
occipital, parieto-frontal and central modules. A posterior-to-ante-
rior organization of cortical modules in adult brain functional
networks is arguably compatible with the abundant evidence from
neurodevelopmental studies which have shown rostro-caudal
modularity of the spinal cord, brain stem, hind brain and dien-
cephalon defined by segmented patterns of gene expression (Redies
and Puelles, 2001). This speculative link between the topological
modularity of adult brain networks and the embryonic modular-
ity of the developing nervous system presents an interesting focus
for future studies.

NODE ROLES IN INTER-MODULAR CONNECTIVITY

One important potential benefit of a modular analysis of complex
networks is that it allows us to be more precise about the topo-
logical role of any particular node in the network. For example,
rather than simply saying that a particular region has a high
degree we may be able to say that it has a disproportionately
important role in transfer of information between modules,
rather than within a module. In these data, the location of con-
nector nodes and hubs with a prominent role in inter-modular
communication was concentrated in posterior areas of associa-
tion cortex. The fronto-temporal module, on the other hand,
was rather sparsely connected to other modules. One possible
explanation for these anatomical differences in inter-modular
communication may relate to the stationarity of functional con-
nectivity between brain regions. Our measure of association
between brain regions (the wavelet correlation corresponding
to a frequency interval of 0.03—-0.06 Hz) provides an estimate
of functional connectivity “on average” over the entire period of
observation (8 min 35 s). If there is significant variability over
time in the strength of functional connections between modules
this may be manifest in terms of reduced connectivity on aver-
age over a prolonged period. Thus one possible explanation for
the sparser inter-modular connections of the fronto-temporal
module is that the interactions of this system with the rest of
the brain network may be more non-stationary or labile over
time. This interpretation could be tested by future studies using
time-varying measures of functional connectivity, such as phase
synchronization (Kitzbichler et al., 2009).

DEALING WITH MORE THAN ONE SUBJECT

One of the challenges in analysis of network community struc-
ture is the richness of the results (every node will have a modular
assignment and a topological role) and the difficulties attendant
on properly managing inter-individual variability in such novel
metrics. In previous work, we estimated a functional connectivity
matrix for each subject, then thresholded the group mean associa-
tion, and explored the community structure of the group mean
network. This allows us to focus attention on a single network but it
neglects between-subject variability and, like any use of the mean in
small samples, it is potentially biased by one or more outlying values
for the functional connectivity. Here we have explored an alterna-
tive approach, using an information-based measure of similarity to
quantify between subject differences in network organization and
to identify the most representative subject in the sample. One can
imagine that this measure could be combined with resampling based
approaches to statistical inference in order to estimate, for example,
the probability that the community structure identified in a single
patient is significantly dissimilar to a reference group of brain net-
works in normal volunteers. However, it fair to say that there are a
number of technical challenges to be addressed in using modularity
measures for statistical comparisons between different groups.

RETURNING TO SIMON'S HYPOTHESIS

As this is the first study to attempt a hierarchical modular decompo-
sition of human brain functional networks, there is little guidance
in the existing literature as to what the correct structure of the net-
work should resemble. Our results are encouraging in that they have
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been able to identify well defined neuroanatomical systems, but
they remain empirical and require further validation in appropriate
animal models. However, our analysis of simulated data (Section
“Discussion”) indicates that our algorithm does indeed identify the
correct structure of a hierarchical, modular network, which lends
confidence to our results.

In Simon’s theoretical analysis, near-decomposability was con-
sidered to be a ubiquitous property of complex systems because it
conferred advantages of adaptive speed in response to evolutionary
selection pressures as well as shorter-term developmental or envi-
ronmental contingencies. In relation to the modularity of human
brain systems, this view prompts a number of questions. Perhaps the
most immediately addressable, at least by functional neuroimaging,
is the question of how the modularity of brain network organization
relates to cognitive performance and the capacity to shift attention
rapidly between different stimuli or tasks. According to Simon’s the-
ory, this key aspect of the brain’s cognitive function should depend
critically on modular or sub-modular components and the rapid
reconfiguration of inter-modular connections between them. Future
studies, applying graph theoretical techniques to modularity analysis
of fMRI data recorded during task performance (rather than in no-

CONCLUSION

We have described graph theoretical tools for analysis of hierarchical
modularity in human brain functional networks derived from fMRIL
Our main claims are that these techniques are computationally fea-
sible and generate plausible and reasonably consistent descriptions
of the brain functional network community structure in a group
of normal volunteers. The potential importance theoretically of
this analysis has been highlighted by reference to Simon’s seminal
theory of hierarchy and decomposability in the design of informa-
tion processing systems.
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