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Timing of sleep and its relationship with the endogenous 
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While much research has investigated the effects of exogenous melatonin on sleep, less is 
known about the relationship between the timing of the endogenous melatonin rhythm and the 
sleep–wake cycle. Significant inter-individual variability in the phase relationship between sleep 
and melatonin rhythms has been reported although the extent to which the variability reflects 
intrinsic and/or environmental differences is unknown. We examined the effects of different 
sleeping schedules on the time of dim light melatonin onset (DLMO) in 28 young, healthy 
adults. Participants chose to maintain either an early (22:30–06:30 h) or a late (00:30–08:30 h) 
sleep schedule for at least 3 weeks prior to an overnight laboratory visit. Saliva samples were 
collected under dim light (<2 lux) and controlled posture conditions to determine salivary DLMO. 
The 2-h difference between groups in the enforced sleep–wake schedule was associated with 
a concomitant 1.75-h delay in DLMO. The mean phase relationship between sleep onset and 
DLMO remained constant (∼2 h). The variance in DLMO time, however, was greater in the late 
group (range 4.5 h) compared to the early group (range 2.4 h) perhaps due to greater effect of 
environmental influences in delayed sleep types or greater intrinsic instability in their circadian 
system. The findings contribute to our understanding of individual differences in the human 
circadian clock and have important implications for the diagnosis and treatment of circadian 
rhythm sleep disorders, in particular if a greater normative range for phase angle of entrainment 
occurs in individuals with later sleep–wake schedules.
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 prolonged sleep latencies, reduced sleep efficiency, and decreased 
total sleep time (Dijk and Czeisler, 1995; Wyatt et al., 1999). 
Exogenous melatonin, particularly when administered during the 
biological day when endogenous levels of the hormone are low, 
increases sleep efficiency (for review, see Rajaratnam et al., 2009).

Given the strong association between the timing of the endog-
enous melatonin rhythm and the sleep–wake cycle, sleep onset time, 
sleep midpoint, and wake time have all been found to be associated 
with the timing of dim light melatonin onset (DLMO), a reliable 
marker of circadian phase, although the strength of the association 
may vary depending on the sleep schedule (Martin and Eastman, 
2002; Burgess et al., 2003; Burgess and Eastman, 2005). The timing 
of DLMO relative to habitual bedtime shows considerable inter-
individual variability (up to 5 h) even after maintenance of a fixed 
sleep–wake schedule (Wright et al., 2005).

A number of factors appear to influence the phase angle 
between sleep and circadian phase. For example, the ability to 
predict the relationship between DLMO and sleep timing is 
lower when an individual does not select their own sleep sched-
ule (Martin and Eastman, 2002; Burgess and Eastman, 2005). 
When permitted, individuals would be likely to select a schedule 
that reflects their endogenous circadian phase (Duffy et al., 1999; 
Baehr et al., 2000; Bailey and Heitkemper, 2001), and this may 

IntroductIon
In a society where many aspects of contemporary life conflict with 
our biological adaptation to the 24-h cycle of light and darkness 
(Rajaratnam and Arendt, 2001), an understanding of the relation-
ship between the sleep–wake cycle and the endogenous circadian 
system is of considerable importance to promote good health, 
safety, and productivity. Sleep disorders that are characterized by 
misalignment of endogenous circadian rhythms with the desired 
or required time for sleep are referred to as circadian rhythm sleep 
disorders (CRSDs; American Academy of Sleep Medicine, 2005; 
Reid and Zee, 2009). These disorders are prevalent and are associ-
ated with reduced quality of life (Okawa and Uchiyama, 2007).

The well established standard for assessing circadian phase in 
humans is the endogenous melatonin rhythm. The timing of mela-
tonin secretion is associated with increased sleep propensity in 
sighted (Dijk and Cajochen, 1997; Shochat et al., 1997) and blind 
(Lockley et al., 1997) individuals. Typically, the timing of the sleep–
wake cycle closely follows the endogenous circadian melatonin 
rhythm given the strong circadian control of sleep–wake timing 
(Czeisler et al., 1980). Prolonged and consolidated sleep is only 
possible when sleep occurs during a particular range of circadian 
phases coinciding with the biological night in humans (Dijk and 
Czeisler, 1995). Attempting to sleep outside this range results in 
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MaterIals and Methods
PartIcIPants
Twenty-eight participants (14 males, 14 females) aged 22.2 ± 2.6 
(mean ± SD) years completed the study. Participants were healthy, 
as determined by physical examination, blood biochemistry and 
hematology, and electrocardiography, with a body mass index (BMI) 
between 18.7 and 29.0 kg/m2, and reported not taking illicit drugs 
for at least 12 months. Participants were excluded if they were smok-
ers or consumed high amounts of caffeine (>300 mg/day) or alcohol 
(>14 units/week). Participants reported that they were not working 
regular night shifts and had not traveled across more than two time 
zones in the previous 3 months. All reported habitual bedtime 
between 9:00 pm and 2:00 am, habitual wake time between 5:00 am 
and 10:00 am, and habitual sleep duration of 7–9.5 h. Diurnal 
preference was measured using the Morningness–Eveningness 
Questionnaire (MEQ: Horne and Ostberg, 1976) and individu-
als with extreme scores (below 30 or above 70) were excluded. 
Written informed consent was obtained from each participant prior 
to commencement of the study. The protocol was approved by the 
Monash University Human Research Ethics Committee and The 
Alfred Human Research Ethics Committee.

Pre-laboratory assessMent
For at least 3 weeks preceding the sleep laboratory visit, partici-
pants were required to maintain an 8:16 h sleep:wake schedule. 
Participants selected either an early schedule of sleep, from 22:30 
to 06:30 h, or a late schedule of sleep, from 00:30 to 08:30 h. 
Compliance with these schedules was monitored for 3 weeks via 
calls to a time-stamped answering machine immediately upon 
waking and prior to going to bed each day, completion of sleep 
diaries, and for at least 10 days preceding the sleep laboratory visit, 
via wrist actigraphy.

From the 10-day period during which complete sleep–wake data 
were obtained for all participants, data from the first nine nights 
prior to the laboratory visit were used to calculate mean scheduled 
sleep onset and wake times. The final sleep at home on the night 
prior to the laboratory visit was excluded from the calculation of 
scheduled sleep onset and wake times because participants were 
required to delay their bedtime. Participants delayed their bedtime 
to 3 h later than their scheduled bedtime, and woke at their regular 
time. This sleep restriction was required as part of the larger study. 
The aim of the larger study was to examine the effects of light 
exposure on alertness and neurobehavioral performance follow-
ing sleep restriction. Here we report data collected prior to the 
light intervention. During the period of sleep restriction in the last 
evening, participants were instructed to remain in dim light (i.e., 
no overhead lighting). Participants wore a light logger around their 
neck (HOBO, OneTemp Pty Ltd, Melbourne, Australia) to ensure 
compliance in maintaining low light levels.

Habitual weekday and weekend sleep times reported in pre-study 
questionnaires were used to calculate a weighted average of habitual 
bedtime and wake time for each participant {e.g., weighted habitual 
bedtime = [(weekday bedtime × 5) + (weekend bedtime × 2)]/7}. 
Throughout the study, participants were asked to avoid prescription 
and non-prescription drugs, including alcohol. Participants were 
required to abstain from caffeine for 4 days prior to the laboratory 
phase of the study.

reduce variability in the phase relationship between DLMO and 
the sleep episode. The inability to sleep when preferred changes 
the circadian phase at which sleep is attempted and alters the cir-
cadian pattern of light–dark exposure, thereby shifting circadian 
phase. Forced displacement of sleep either 3 h earlier or later for 
three consecutive nights, for example, will cause the melatonin 
rhythm to advance or delay, respectively (Gordijn et al., 1999) 
due to the change in the pattern of light–dark exposure (Duffy 
et al., 1996; Zeitzer et al., 2000; Khalsa et al., 2003; Revell and 
Eastman, 2005).

Recent evidence suggests that the phase angle between 
sleep and circadian phase (often assessed as diurnal prefer-
ence as a proxy marker for intrinsic circadian phase; Bailey 
and Heitkemper, 2001; Duffy et al., 2001) may be influenced 
in-part by polymorphisms in core clock genes such as CLOCK, 
PER1, PER2, and PER3, although not in all cases (Katzenberg 
et al., 1998; Archer et al., 2003; Carpen et al., 2005, 2006). Some 
of these associations do not persist with age (Jones et al., 2007) 
and are not apparent when individuals are selected by genotype 
(Viola et al., 2007), suggesting that genetic factors cannot fully 
explain the diurnal preference phenotype. Sleep homeostasis – 
the determination of sleep propensity due to prior sleep or wake 
duration – also affects the timing of sleep. Therefore diurnal 
preference reflects the interaction between the circadian and 
homeostatic processes rather than either process exclusively. For 
example, those people who tend to sleep and wake early (morn-
ing types) may either have a circadian clock that cycles faster 
than those who tend to sleep and wake later (evening types) 
(Duffy et al., 2001, 2002; Wright et al., 2005) and/or may have 
greater propensity to sleep early due to more rapid accumula-
tion of homeostatic sleep pressure (Mongrain et al., 2008) or to 
wake early due to more rapid dissipation of homeostatic sleep 
pressure (Mongrain et al., 2005, 2006). Finally, evening types 
are reported to sleep and wake at an earlier circadian phase than 
morning types (Kerkhof and Van Dongen, 1996; Duffy et al., 
1999; Baehr et al., 2000).

The assessment of circadian phase and its relationship with 
the timing of sleep is important for the diagnosis and treatment 
of CRSDs (Lack and Wright, 1993; Jones et al., 1999; Shibui 
et al., 1999; Uchiyama et al., 2000; Lockley, 2005; Mundey et al., 
2005). Further work is required to understand the relationship 
of DLMO with sleep–wake behavior given the extensive use of 
DLMO as a phase marker. Importantly, while on average there is 
a good association between the phase of the melatonin rhythm 
and sleep timing (Gordijn et al., 1999), the degree of variability 
and the factors affecting this variability are not well known. One 
approach to test the extent to which variations in the timing of 
sleep are associated with differences in circadian phase is to com-
pare individuals maintained on fixed self-selected sleep–wake 
schedules that vary substantially. The aims of the present study 
were (1) to test the hypothesis that individuals maintained on a 
late sleep–wake schedule show delayed DLMO time compared 
to individuals on an early sleep–wake schedule; (2) to test the 
hypothesis that individuals on the late sleep schedule would sleep 
and wake at an earlier circadian phase than morning types; and 
(3) to examine the variability in circadian phase in relation to 
sleep–wake time.
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results
Significant differences were revealed between the two groups for 
habitual sleep and wake times and MEQ scores. Mean MEQ score 
for the late sleepers was significantly lower than the early sleepers 
[t(21.4) = 4.28, p < 0.001], indicating greater eveningness tendency. 
Participants in the late sleep group had significantly later average 
habitual sleep and wake times than those in the early sleep group 
as assessed with pre-study questionnaires. No difference was found 
between the early (n = 11) and late (n = 17) sleepers for duration 
of habitual time in bed, or time in bed during the scheduled sleep 
episode, age or BMI (p > 0.05, Table 1).

During the night of the laboratory visit, the time of DLMO for par-
ticipants in the early group ranged from 19:51 to 22:14 h (21:00 ± 0:41 h; 
mean ± SD; range 2.4 h). DLMO times for participants in the late group 
ranged from 20:29 to 01:01 h (22:43 ± 01:21 h; range 4.5 h; Figure 2A). 
There was a significant difference in DLMO time between the early and 
late groups, t(24.8) = −4.42, p < 0.001. Levene’s test revealed that the 
variance in DLMO for individuals in the late group was significantly 
larger than the variance in the early group (F = 5.98, p < 0.05).

The phase angle between DLMO and scheduled sleep time was 
calculated by subtracting DLMO time from the participants’ mean 
actigraphic sleep onset time during the 9 days prior to the laboratory 
visit. The early group had an average phase angle of 1.85 ± 0.50 h 
(0.94–2.77 h), and the late group had a phase angle of 1.98 ± 1.25 h 
(−0.13 to 4.14 h) (Figure 2B). Therefore, in both groups, sleep onset 
occurred on average approximately 2 h after melatonin onset. No 
difference in phase angle of entrainment was found between groups 
(p > 0.05), but again the variance in phase angle of entrainment was 
significantly greater in the late group compared to the early group 
(F = 8.94, p < 0.01). Variance in sleep onset time during the sched-
uled sleep period was significantly smaller for individuals in the late 
group than for individuals in the early group (F = 7.25, p < 0.05).

Regression analysis revealed that time of DLMO was associated 
with habitual sleep times (R = 0.48, p < 0.05), and habitual wake 
times (R = 0.39, p < 0.05). MEQ scores significantly predicted habit-
ual sleep time (R = 0.52, p < 0.01), habitual wake time (R = 0.70, 
p < 0.001), and time of DLMO (R = 0.44, p < 0.05).

laboratory Protocol
The laboratory phase of the study was conducted at the Monash 
University Sleep Laboratory. Participants arrived 7.5 h before 
their scheduled bedtime and provided a urine sample immedi-
ately for screening for drugs of abuse. The in-laboratory proce-
dure for the early and late sleep groups was identical except that 
each task was performed 2 h later for participants in the late 
group (Figure 1).

Ambient light conditions were dimmed to <2 lux (36 W PL-L 
840 fluorescent lamps, 4000 K, Philips Lighting, Eindhoven, The 
Netherlands; Lee neutral density filters, Lightmoves Pty Ltd, 
Melbourne, Australia) 5.75 h before the scheduled pre-laboratory 
bedtime. Saliva samples were collected 5.5 and 5 h before scheduled 
pre-laboratory bedtime, then hourly until 5 h after scheduled bed-
time. Twelve saliva samples were collected in total for each partici-
pant. Samples were collected using a Salivette (Sarstedt, Nümbrecht, 
Germany) and immediately stored at −20°C. For 20 min prior to 
the collection of each sample, participants remained seated and did 
not consume any food or beverages within 10 min of each sample. 
Participants were required to remain seated and awake throughout 
the saliva sampling period. Sleep was permitted immediately after 
the last sample was collected, 5 h after their scheduled bedtime.

Saliva samples were analyzed for melatonin concentration via 
radioimmunoassay (Voultsios et al., 1997) with a limit of detection 
of 1 pg/ml. The inter-assay CVs were 19% at 3.7 pg/ml and 5% at 
29.7 pg/ml. DLMO was determined as the time that melatonin 
concentrations crossed and remained above a threshold of 10 pM 
(or 2.3 pg/ml), as described previously (Klerman et al., 2002).

statIstIcal analysIs
Independent samples t-tests were performed to compare habitual 
and scheduled sleep parameters, MEQ score, and DLMO between 
the early and late sleep groups. For all participants (both groups 
combined), linear regression was used to test the relationships 
between DLMO and habitual sleep times, MEQ and habitual sleep 
times, and MEQ and DLMO. Statistical analysis was conducted with 
SPSS version 17.0 (SPSS Inc., Chicago, IL, USA).

Figure 1 | Protocol for the laboratory phase of the study for the early 
sleepers and late sleepers. Saliva samples (closed circles) began 5.5 h before 
scheduled pre-laboratory bedtime (dashed line) and continued until 5 h after 
scheduled bedtime for each group. Ambient light levels were maintained at 

<2 lux during the saliva sampling period (gray bars) and participants remained 
awake in a controlled posture. Black bars illustrate the 3-h sleep period 
permitted after collection of the final saliva sample, as part of the 
larger protocol.
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Table 1 | Age, BMi, habitual and scheduled sleep characteristics, and DLMO of early and late sleepers.

 early sleep (n = 11) Late sleep (n = 17) p*

Age (years) 22.23 ± 2.23 (19.29–28.53) 22.12 ± 2.57 (18.44–26.96) 0.92

Body mass index (kg/m2) 21.21 ± 2.30 (18.66–25.85) 22.56 ± 2.83 (18.95–29.00) 0.18

Habitual bed time (h) 23:41 ± 0:57 (22:23–01:47) 00:42 ± 0:51 (22:55–01:55) <0.01

Habitual wake time (h) 07:22 ± 0:55 (06:12–9:17) 08:51 ± 0:43 (07:38–10:12) <0.001

Habitual time in bed (h) 7.69 ± 0.71 (6.28–8.78) 8.14 ± 0.82 (7.00–9.97) 0.14

Sleep onset time (h) during scheduled sleep 22:51 ± 0:15 (22:28–23:13) 00:41 ± 0:08 (00:28–00:58) <0.001

Wake time (h) during scheduled sleep 06:16 ± 0:08 (06:00–06:24) 08:12 ± 0:14 (07:38–8:27) <0.001

Time in bed (h) during scheduled sleep 7.42 ± 0.29 (6.92–7.93) 7.53 ± 0.28 (6.98–7.85) 0.34

MEQ score 58.09 ± 5.61 (47–65) 48.82 ± 5.57 (38–56) <0.001

DLMO (h) 21:00 ± 0:41 (19:51–22:14) 22:43 ± 01:15 (20:29–0:52) <0.001

Mean ± SD (range) is shown for each parameter.
*Independent samples t-test, two-tailed.

Figure 2 | (A) Individual participants’ melatonin onset (circles) during the first 
night in the laboratory for the early (n = 11) and late (n = 17) sleep groups. 
Triangles represent the mean melatonin onset time for each group. Horizontal 
bars represent the mean sleep period recorded for each group during the final 

9 days of the pre-laboratory period. (B) Timing of melatonin onset (circles) 
relative to scheduled sleep onset (dashed line) (phase angle of entrainment) for 
each participant in the early (n = 11) and late (n = 17) sleep groups. Triangles 
represent the mean melatonin onset time for each group.

dIscussIon
The present study examined the relationship between timing of 
sleep and endogenous circadian phase, as defined by the timing of 
the melatonin rhythm (DLMO). Typical studies of this kind have 

examined this relationship with maintenance of an investigator-
determined fixed sleep schedule, or with subjects free to choose 
sleep time. In the current study, however, we allowed participants 
to self-select only one of two sleep schedules in order to compare 
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We found a large degree of variability in the time of DLMO 
and phase angle of entrainment between individuals, particularly 
in the late group (4.5 h). These results confirm a previous finding 
of ∼5-h range in the phase relationship between habitual sleep 
times and DLMO (Wright et al., 2005). Others have also reported 
inter-individual variability in phase angle of entrainment, with 
standard deviations of at least 1 h (Sack et al., 1992; Lewy et al., 
1995; Duffy et al., 2002; Martin and Eastman, 2002; Burgess et al., 
2003). This variability may be due to endogenous differences in the 
cycle of the circadian clock that are resistant to entrainment by an 
enforced sleep–wake/light–dark cycle (Kerkhof, 1985; Wright et al., 
2005), perhaps due to differences in intrinsic period (Duffy et al., 
2001; Lewy et al., 2001; Wright et al., 2001). Some (Katzenberg 
et al., 1998; Archer et al., 2003; Carpen et al., 2005, 2006) but 
not all (Katzenberg et al., 1999; Robilliard et al., 2002; Pedrazzoli 
et al., 2007) have found evidence to suggest that diurnal preference 
(a proxy for circadian phase) is genetically determined (Carpen 
et al., 2006; Pedrazzoli et al., 2007; von Schantz, 2008; Nolan and 
Parsons, 2009). To some extent behavioral and lifestyle variables 
appear to moderate the genetic determinants of circadian phase 
(Burgess and Fogg, 2008).

An unexpected finding of the present study was the difference 
in variability in phase angle within the two groups who maintained 
different sleep schedules. The variability in phase angle was consider-
ably larger for the late sleepers (range ∼4.5 h) compared to the early 
sleepers (range ∼1.8 h), with a 2.7-fold difference between groups in 
the standard deviation. This difference does not appear to be due to 
differences in variability of wake times or variability in diurnal pref-
erence, as similar differences in variance were not observed in these 
measures. Although the variability in sleep onset time was different 
between the two groups, the earlier group showed larger variability. 
We hypothesize that the variability in DLMO may be related to the 
impact of environmental influences, in particular greater variability 
in light exposure patterns. This hypothesis should to be tested, partic-
ularly in view of previous work showing differences in light exposure 
patterns in older compared to younger individuals (Scheuermaier 
et al., 2010), in adolescents and adults (Roenneberg et al., 2003; 
Wright et al., 2005) and in relation to the variability in adaptation 
in shiftworkers (Dumont et al., 2001). Alternatively, the increased 
variability in phase angle of entrainment in late sleepers may be due 
to increased instability in intrinsic mechanisms underlying the circa-
dian system. Although we did not assess genotype, previous studies 
have shown more robust associations between melatonin and sleep 
timing outcomes in individuals with the PER35/5 polymorphism com-
pared to those with the PER34/4 polymorphism (Archer et al., 2008). 
Interestingly the PER35/5 polymorphism is associated with morn-
ingness tendency. It should be noted that alterations in the phase 
relationship between sleep and more strongly endogenous circadian 
rhythms may have clinical implications. In seasonal affective disorder 
patients, the degree of misalignment between the sleep–wake cycle 
(mid-sleep) and the melatonin rhythm (DLMO) is associated with 
increasing depression ratings (Lewy et al., 2006).

The large range we observed in phase angle of entrainment raises 
the possibility that sleep duration and efficiency will be reduced for 
some individuals due to the phenomenon referred to as social jet lag 
(Wittmann et al., 2006). In other words, while an individual may sleep 
at the normal clock time within a particular time zone, their circadian 

how preference due to social or habitual factors might affect phase 
angle. The findings of the current paper confirm results of previous 
studies that there is a significant association between sleep onset 
time and the timing of melatonin onset (Martin and Eastman, 
2002; Burgess et al., 2003; Burgess and Eastman, 2005). While 
on average the association was found to be consistent across the 
groups – DLMO occurred on average ∼2 h prior to bedtime as 
previously shown (Duffy et al., 2002; Burgess et al., 2003; Wright 
et al., 2005) – our study also confirms the large variation in phase 
angle, up to 5 h, between individuals maintaining the same sleep–
wake schedule (Wright et al., 2005).

The results of the present study are consistent with those of 
Gordijn et al. (1999), who found that, in healthy individuals, the 
melatonin rhythm was closely associated with the sleep–wake cycle 
such that the average time of DLMO was later if the scheduled sleep 
time occurred later. Sleep onset time during the scheduled sleep dif-
fered between groups by 1 h 50 min and DLMO differed by a similar 
amount – 1 h 43 min – as expected, given that the phase angle of 
entrainment to the light–dark cycle (Daan and Pittendrigh, 1976) 
is gated by the wake–sleep pattern, respectively, in humans (Dijk 
and Lockley, 2002). Therefore, although the late sleep group went 
to sleep at a later clock time than the earlier group, sleep occurred 
on average at a similar circadian time in both groups.

The experimental manipulation we imposed was intended to 
minimize day-to-day variability in sleep–wake times while still 
allowing individuals to maintain a sleep schedule that reflected 
their habitual schedule before the study began. From the compari-
sons we made of habitual sleep parameters of individuals in the 
early and late groups, we found that the imposed sleep schedule did 
reflect their habitual sleep habits. Participants who chose the later 
schedule reported significantly later habitual sleep and wake times 
before the study began as compared to participants who chose the 
early schedule. Participants who chose the later schedule also had 
a significantly later diurnal preference than those who chose the 
earlier schedule.

Differences in diurnal preference are associated with endog-
enous circadian phase differences (Duffy et al., 1999; Bailey and 
Heitkemper, 2001). Evening types are reported, however, to sleep 
and wake at an earlier circadian phase than morning types (Kerkhof 
and Van Dongen, 1996; Duffy et al., 1999; Baehr et al., 2000). It is 
likely that sleep occurs earlier than evening types prefer due to work 
or study commitments demanding an earlier morning rise time. 
In contrast, in the current study the late sleep group did not show 
earlier phase angle of entrainment despite this group reporting on 
average later diurnal preference. The inconsistency between studies 
may be because in the present study, bed time and wake time were 
scheduled, and therefore the impact of social factors on sleep–wake 
times was minimized. The similar phase angle between our early 
and late sleep groups supports a recent comparison of phase angle 
in participants with delayed sleep phase disorder (DSPD) and age-
matched controls (Chang et al., 2009). Although DSPD patients 
demonstrated later sleep timing and later circadian phase compared 
to controls, the relationship between circadian phase (DLMO and 
core body temperature nadir) and sleep (onset and offset) did not 
differ and sleep quality was similar. Therefore when subjects are 
permitted to select the schedule, the circadian phase at which sleep 
occurs is maintained and sleep quality is not compromised.
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ing the phase relationship between sleep onset and DLMO time 
in healthy individuals on two common sleeping schedules. These 
preliminary results suggest that in a situation where individuals’ 
sleep and wake times are imposed rather than entirely self-selected, 
a greater normative range for phase angle of entrainment may be 
expected in individuals with a preference for later sleep–wake times. 
The phase angle of waking influences the time-course of day-time 
functioning (Lockley et al., 2008) and therefore understanding the 
phase angle may permit better diagnosis and treatment of day-time 
complaints associated with sleep phase angle disorders.

The present findings may also inform the treatment of CRSDs. 
One method of treating CRSDs is by synchronizing the endogenous 
circadian rhythms of CRSD patients with their desired or required 
sleep–wake cycle (Lu and Zee, 2006; Barion and Zee, 2007). This can 
be achieved by creating a routine for the patient’s timing of expo-
sure to, and avoidance of, light (Barion and Zee, 2007; Gooley, 2008; 
Bjorvatn and Pallesen, 2009). Appropriately timed administration of 
melatonin may also be used to shift the timing of the circadian clock 
(Okawa et al., 1998; Skene et al., 1999; Arendt and Rajaratnam, 2008). 
To determine the ideal time to administer melatonin or to expose a 
patient to light, the clinician must determine the direction and mag-
nitude of the desired phase shift (Minors et al., 1991; Lewy et al., 1992; 
Khalsa et al., 2003; Revell and Eastman, 2005; Burgess et al., 2008). 
Knowledge of the normal phase relationship between the sleep–wake 
cycle and the melatonin rhythm may therefore guide clinicians in 
applying circadian rhythm treatment approaches. Such knowledge 
would also be important in differentiating cases of  internal circadian 
phase misalignment from those involving mismatch between circa-
dian phase and the external environment. Given the range in DLMO 
and phase angle demonstrated in the current study for the late par-
ticipants in particular, it is apparent that determining the timing of 
melatonin and/or light treatment according to their respective PRCs 
on the basis of sleep times alone is not likely to be accurate, at least 
in some cases. If, for example, sleep onset time was used to estimate 
circadian phase in individuals participating in our study, the circadian 
phase at which treatment is administered could vary by up to 2.4 
and 4.5 h in early and late sleepers, respectively. Determination of 
circadian phase, such as by measuring DLMO, is therefore crucial to 
accurately time treatments that have phase-dependent properties.
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clock may be set to a time that deviates by several hours from local 
time. To put the 5-h range into context, it is equivalent to having two 
people living in New York with the same circadian phase but with one 
of them sleeping on London time, with large potential differences to 
the quality and structure of sleep (Dijk and Czeisler, 1995). It is also 
likely that such social jet lag brings with it similar adverse sleep–wake 
and metabolic consequences of circadian misalignment to the actual 
jet lag condition (Rajaratnam and Arendt, 2001).
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tating sleepiness during the night by inhibiting a central nervous 
system wakefulness-generating system has been suggested (Lavie, 
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(Arendt et al., 1985; Rajaratnam et al., 2003, 2004). These findings 
suggest that endogenous melatonin may play a role in the timing 
of the sleep–wake cycle.

A potential limitation of the present study is that on the night 
prior to the laboratory visit, participants delayed their sleep time by 
3 h as a requirement of the larger study protocol. This delay in sleep 
time and the resultant increased exposure to light may have delayed 
the melatonin rhythm. We note, however, that participants in both 
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selected schedule. They were asked to remain in dim light during this 
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