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Cells in the locus coeruleus (LC) constitute the sole source of norepinephrine (NE) in
the brain and change their discharge rates according to vigilance state. In addition to its
well established role in vigilance, NE affects synaptic plasticity in the postnatal critical
period (CP) of development. One form of CP synaptic plasticity affected by NE results
from monocular occlusion, which leads to physiological and cytoarchitectural alterations in
central visual areas. Selective suppression of rapid eye movement sleep (REMS) in the CP
kitten enhances the central effects of monocular occlusion. The mechanisms responsible
for heightened cortical plasticity following REMS deprivation (REMSD) remain undeter-
mined. One possible mediator of an increase in plasticity is continuous NE outflow, which
presumably persists during extended periods of REMSD. Tyrosine hydroxylase (TH) is the
rate-limiting enzyme in the synthesis of NE and serves as a marker for NE-producing cells.
We selectively suppressed REMS in kittens for 1 week during the CP. The number and
size of LC cells expressing immunoreactivity to tyrosine hydroxylase (TH-ir) was assessed
in age-matched REMS-deprived (RD)-, treatment–control (TXC)-, and home cage-reared
(HCC) animals. Sleep amounts and slow wave activity (SWA) were also examined relative
to baseline. Time spent in REMS during the study was lower in RD compared to TXC ani-
mals, and RD kittens increased SWA delta power in the latter half of the REMSD period.
The estimated total number ofTH-ir cells in LC was significantly lower in the RD than in the
TXC kittens and numerically lower than in the HCC animals.The size of LC cells expressing
TH-ir was greatest in the HCC group. HCC cells were significantly larger than TH-ir cells
in the RD kittens. These data are consistent with presumed reduction in NE in forebrain
areas, including visual cortex, caused by 1 week of REMSD.
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INTRODUCTION
Located in the mesopontine brainstem, neurons in the locus
coeruleus (LC) are the primary source of cortical norepinephrine
(NE; Jones and Yang, 1985; Gu, 2002). Involvement of the nora-
drenergic neurons of the LC in regulation of the major vigilance
states is well established (Siegel, 2005; Pace-Schott and Hobson,
2002; Fuller et al., 2006). During waking, these cells fire at a high
rate (Jouvet, 1972; Hobson et al., 1975). They increase their wak-
ing firing rate further in response to salient (Aston-Jones et al.,
1991) or noxious stimuli (Abercrombie and Jacobs, 1987), and
electrical stimulation of LC neurons enhances the reactivity of
neocortex (Aston-Jones et al., 1991; Foote et al., 1991). LC cells
therefore appear to participate actively in the mechanisms medi-
ating arousal as well as in the attendant processing of sensory
information (Foote et al., 1991).

Locus coeruleus cells fire more slowly in slow wave sleep
(SWS) than in waking and, by virtue of their active inhibition
by cholinergic inputs to brainstem GABAergic sites, are virtu-
ally silent in rapid eye movement sleep (REMS; Jacobs, 1986;
Pace-Schott and Hobson, 2002). On the other hand, presynap-
tic activation of LC cells induces an increase in the mRNA

of tyrosine hydroxylase (TH) in NE cells. Microdialysis stud-
ies have shown that release of NE in both LC and amygdala
is correlated with activity of the NE cells in LC: greatest in
wake and least in REMS (Shouse et al., 2001a,b; Park, 2002).
This pattern of activity of LC neurons supports the belief that
NE plays a role in a REMS-gating mechanism (Hobson et al.,
1975). During REMS deprivation (REMSD), LC neurons never
stop discharging. Accordingly, during suppression of REMS (and
its associated increase in wake time), NE output never entirely
ceases. This may be true irrespective of how long REMSD
prevails.

Recent evidence in critical period (CP) animals demonstrates
that REMSD amplifies the form of developmentally regulated
synaptic plasticity resulting from monocular occlusion (Hubel and
Wiesel, 1963; Wiesel and Hubel, 1963). Selective elimination of
REMS in CP kittens enhances the physiological and cytoarchi-
tectural alterations in central visual areas caused by monocular
occlusion (Oksenberg et al., 1996; Shaffery et al., 1998). How-
ever, the means by which this plasticity is enhanced has not been
determined. One possible mechanism is an increase in NE expres-
sion in visual cortex. A functional elevation in NE output from
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LC cells may develop as wake time accumulates during REMSD
(Porkka-Heiskanen et al., 1995).

Endogenous production of NE is limited by the synthesizing
enzyme, TH. TH mRNA expression as well as NE concentra-
tion increase in adult rats after 3 days of REMSD carried out by
the small-platform method (Porkka-Heiskanen et al., 1995). A
recent report indicates that pedestal REMSD also increases the
size of TH immunoreactive (TH-ir) cells in LC (Majumdar and
Mallick, 2003). Cytomorphic changes in LC TH-ir cells have not
been described, however, in developing kittens under conditions
of extended REMSD. In the present study, we utilized stereological
methods to obtain non-biased estimates of the number and size
of TH-ir neurons within the LC of CP kittens selectively deprived
of REMS for 1 week by computer-controlled cage-shaking (RD
group). We evaluated the findings relative to a treatment–control
(TXC) group and to a cohort of non-treated, home cage-reared
(HCC) animals.

MATERIALS AND METHODS
Procedures were carried out in conformity with NIH guidelines
and were approved by the local Internal Review Board for the Care
and Use of Animals. Every effort was made to minimize animal
suffering. We used the smallest number of animals needed for
statistically reliable data. The study animals were the offspring of
pregnant, random-source cats (of wild-type genetics) that were
obtained by the University of Mississippi’s Laboratory Animal
Facility. Seven kittens from two litters were assigned randomly
to the RD (n = 4) or TXC (n = 3) conditions. In one RD animal,
the LC could not be recovered and is not included in the stereol-
ogy results but was evaluated for sleep stages. Age-matched kittens
from two additional litters were reared with their mothers and
selected for the HCC group (n = 6), which received no sleep treat-
ment during the experimental period. Several kittens used in this
study had been monocularly deprived. Effects of REMSD on visual
system development in these kittens will be described in a separate
report (Shaffery et al., in preparation).

All treated kittens were housed with their mothers and were
on a 12:12-h light–dark schedule until surgery on postnatal day
(PN) 34 or 35. The surgical procedure was carried out according
to previously published protocols described here briefly (Oksen-
berg et al., 1996; Shaffery et al., 1998; Hogan et al., 2001). Animals
were anesthetized with pentobarbital (40 mg/kg i.p.) or isoflurane
(1.0%) anesthesia and implanted under sterile conditions with an
array of standard sleep-recording electrodes. Three stainless-steel
screws were tapped into the skull to record the electrocorticogram
(ECoG). Two small-gage, multi-stranded, stainless-steel wire elec-
trodes were inserted and sutured bilaterally into the trapezius
muscle to obtain a nuchal electromyogram (EMG). The electrodes
were routed to a plastic connector and fixed to the skull with den-
tal acrylic. The scalp was sewn in place to surround the connector.
After recovery from surgery, all animals were monitored until able
to move about on their own. They were then returned to their
home cages in the company of their mothers for 5–6 days until
randomized to a treatment group. During the surgical procedure,
four animals (two from each of the TXC and RD groups) had an
opaque PVC occluder, shaped as a contact lens, placed between
the skin and muscle of the right eyelid (Spiro and Kolbert, 1974).

The remaining animals were not visually manipulated. Inasmuch
as monocular occlusion is not known to affect LC unit activity, we
did not anticipate any effect upon LC TH-ir.

In the PN40–49 period, animals were housed in individ-
ual sleep-monitoring cages (45 cm × 35 cm × 30 cm) in separate,
temperature-controlled, soundproofed, video-monitored record-
ing chambers (1 m × 1 m × 3 m). To control for light experience
in the wake state, the cage-shaking protocol was conducted in total
darkness. Following our previously reported protocol, each of the
seven days of the REMSD period (which was also the shaker-
control period) contained three 1.33 h “wake–break” intervals
(Oksenberg et al., 1996; Shaffery et al., 1998). During these breaks,
animals were removed from the recording chambers, allowed free
movement, and remained awake under normal room light (2000
lux). As a result, every animal received exactly 4 h of waking-light
experience per day independent of individual differences in their
total sleep and wake times in the dark. Four hours of light approx-
imates the spontaneous, average waking-light exposure of kittens
at this age in a laboratory setting (Jouvet-Mounier et al., 1970;
McGinty et al., 1977; Ursin and Sterman, 1981). Electrophysiolog-
ical recording in the dark chambers was conducted continuously
during two 5-h periods and one 10-h period. Each of the three,
daily recording sessions was followed by a wake–break interval.
Water was always accessable, but food and social interaction with
littermates were available only during the non-recording times.

In the sleep-monitoring cage within each chamber, an animal’s
electrodes were attached through a connector on its head. The
connector wires led to a slip-ring commutator (Airflyte, Bayonne,
NJ, USA) counterbalanced by a swing-arm and from there to a
shielded electrical cable that terminated at the recording- and
REMSD-actuating equipment in an adjacent room. The first day,
PN40, was devoted to a 24-h adaptation period in the record-
ing chambers. The kittens remained on their home cage 12L/12D
schedule during the adaptation day. The next day, PN41, con-
stituted a baseline day in a stationary cage. Undisturbed sleep–
wake electrophysiology was recorded on the experimental sched-
ule described above. The kittens were then subjected to either
the systematic REMSD or TXC experimental protocols during
the period from PN42 through 49 (see below). Early on day
PN50, kittens were sacrificed under deep pentobarbital anesthe-
sia (80 mg/kg, i.p.). Each animal was perfused transcardially, first
with cold physiological saline and then with 4% paraformalde-
hyde with 0.1 M l-lysine and 0.01 M sodium periodate in 0.1 M
phosphate buffer, pH 7.4 (McLean and Nakane, 1974). The brains
were removed and processed for immunohistochemistry (see
Immunohistochemistry, below).

Our computer-controlled system for detection as well as depri-
vation of REMS was modified from a previously reported tech-
nique (Shaffery et al., 1990; Hogan et al., 2001). The system
reliably identifies REMS on the basis of individually determined,
minimum-amplitude threshold criteria configured from each kit-
ten’s digitized ECoG and EMG recordings. Pursuant to standard-
ized scoring criteria, 3 s of minimum amplitudes on the ECoG
and EMG channels signal onset of REMS. The computer imme-
diately activates the motor of a horizontally and rotary-moving
shaker-platform that supports the attached recording cage. The
cage moves at about 6 Hz for 0.5–1.5 s. The sudden agitation of
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the cage quickly awakens the sleeping animal, abruptly terminating
REMS. Following these provoked arousals, animals typically fall
back into SWS after short but variable intervals of wake time.
Stage REMS spontaneously reappears generally after 10–30 min of
SWS.

Each REMSD kitten is quasi-yoked to a TXC kitten in a sep-
arate chamber. The TXC animal receives the same number and
intensity of shakes (spaced 3–4 s apart) experienced by the experi-
mental kitten in a given half-hour. The “control” shakes, however,
are delivered only within the last 5 min of the half-hour. In our ear-
lier REMSD protocol, which utilized a fully yoked-control design,
REMS in the shaker-control animals was found to be reduced to
62% of baseline values (Shaffery et al., 1990). In contrast, the quasi-
yoked protocol used in this study permitted REMS and SWS times
in the shaker-control animals to remain at baseline percentages.

SEYLE’S STRESS INDICATORS
At sacrifice (PN49–50), body weight was obtained. Spleen, thymus,
and adrenal glands were removed and stored in formalin fixative
until weighed to furnish an index of stress. Single factor ANOVA
(p < 0.05) determined group differences in final body weight and
in the weights of the individual organs across the groups (Selye,
1936, 1950).

SLEEP STAGE ANALYSIS
Digitized ECoG and EMG recordings were visually scored in 15 s
epochs (by standard criteria, adapted for kittens in this laboratory
from published criteria for adults (Ursin and Sterman, 1981)) as
either Wake, REMS, or SWS (non-REMS). Time in each state was
tabulated for every hour of every study day. Statistical analyses of
sleep and wake state amounts were performed on four, 24-h peri-
ods: baseline day (PN40), and first (PN42), middle (PN44–45),
and final (PN48) days of the sleep-perturbation period.

POWER SPECTRAL ANALYSIS
Power spectral analysis was carried out on 10, targeted, 15-s epochs
of digitized SWS ECoG data from all recorded kittens on each of
the analyzed days (c.f. Joho et al., 1999). Five, 15-s epochs of SWS
were taken on days P41, P45, and P48 from the second hour of
sleep-recording after both morning and evening “wake–breaks.”
Each set was constituted from the first, five, artifact-free, 15-sec
epochs encountered that consisted solely of SWS. Epochs imme-
diately preceded or followed by an epoch exhibiting a state-change
were omitted from the analyses. A subset of 30, non-overlapping,
4 s periods, drawn equally from morning and afternoon tracings,
was selected from each day’s 10 epochs of uncontaminated SWS.
These 4 s periods were subjected to a Fast Fourier Transform (FFT)
algorithm (Microcal Origin 6.1; Hamming window) to generate
their power spectra at 0.25 Hz resolution. For each animal, a mea-
sure of SWS slow wave activity (SWA) was calculated as the mean
absolute power density (in μV2/Hz) in the delta frequency band
(0.7–4.4 Hz) from the mean of power densities in all 0.25 Hz bins
divided by 4 to express power as μV2/Hz.

IMMUNOHISTOCHEMISTRY
After perfusion, brains were rapidly removed, blocked, cryopro-
tected in 30% sucrose in phosphate buffered saline (PBS), frozen

in powdered dry ice, and stored at −80˚C until processing. Brains
were serially sectioned on a cryostat microtome into 60 μm
coronal slices through the entire brainstem.

Every fifth section of LC was selected and processed for TH
expression, using diaminobenzidine (DAB) immunohistochem-
istry. Free-floating sections were quenched in 0.3% hydrogen
peroxide for 30 min at room temperature, washed in 0.3% Tri-
ton X-100/PBS (3 × 10 min), and incubated in 5% normal goat
serum (NGS) in PBS. Sections were then incubated overnight
in polyclonal rabbit anti-TH primary antibody (1:3000 dilution,
Chemicon, Temecula, CA, USA) for 16–24 h at 4˚C. The following
day, sections were washed in 0.3% Triton X-100/PBS (3 × 10 min)
and incubated for 2 h with goat anti-rabbit biotinylated IgG anti-
body (1:400 Vector Laboratories, Burlingame, CA, USA). Fol-
lowing another rinse in 0.3% Triton X-100/PBS, sections were
incubated for 2 h in Avidin–Biotin Complex, rinsed in PBS, and
stained with nickel chloride-enhanced DAB until a strong color
reaction was observed. Tissues were finally rinsed, mounted, air-
dried, and cover-slipped with Permount (Fisher Scientific, Atlanta,
GA, USA).

NON-BIASED, QUANTITATIVE STEREOLOGY
We used the optical fractionator method, which systematically
samples regions of histological interest, as published previously
(Gundersen, 1988; Gundersen et al., 1988; Long et al., 1998; Mou-
ton et al., 2002). Estimates of the number of TH-immunopositive
cells on both sides of the entire LC were derived from cell counts
in every fifth serial section following a first, randomly chosen,
section. Counting frames and sampling-grid sizes were deter-
mined to accomplish counting a minimum of 200 cells in each
half of the LC, employing magnification from a 60× objective
(1.4 numerical aperture). The bilateral values were averaged for
each individual for final analysis. All data collection, employing
Stereo Investigator software (MicroBrightfield, Inc., Colchester,
VT, USA), was carried out under double-blind conditions. The
system hardware included an X–Y–Z motorized stage; Optron-
ics color-video camera interfaced to a Nikon E800 microscope;
high-resolution video card; focus-measurement encoder (pro-
viding 0.25 μm resolution of absolute, microscope-stage, focus
position); and personal computer and monitor. This system gen-
erates an unbiased estimate of the number of cells within the LC.
Concurrent use of the Nucleator method furnishes unbiased esti-
mates of cell size. The cell size estimate is based upon the mean
lengths (measured by the software) of four, randomly orientated
radii extending from a visualized nucleolus to the edge of the cell
body (Gundersen, 1988; Gundersen et al., 1988; Kroustrup et al.,
1988).

STATISTICS
Statistical analyses were performed with commercially avail-
able statistical software, SPSS (SPSS, Inc., Chicago, IL, USA). A
repeated-measures, multivariate ANOVA model that employed
Recording Day and State as within-subject variables and treatment
group (RD vs. TXC) as the between-subjects variable, analyzed
treatment effects in terms of amounts of the several vigilance
states across discrete days in the experimental sequence. Detec-
tion of significant interaction effects was followed by univariate
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ANOVAs that defined recording day as the within-subject variable
and a priori specific contrast to determine differences in the course
of the protocol. Results were considered significant at p < 0.05.

To detect changes in delta spectral power during the record-
ing period, we analyzed delta power values during the baseline,
middle, and end days. Two-factor, repeated-measures ANOVAs
were employed, with treatment group as the between-subjects and
recording day as the within-subject factors. We adopted a 95% con-
fidence level criterion for significance (p < 0.05). Significance in
the two-way ANOVA was pursued with one-way ANOVAs to assess
differences in delta power in each group independently across
the three analyzed days. Post hoc analyses included Bonferroni
corrected t -tests to determine directional relationships between
the means on the days when one-way ANOVAs were significant
(p < 0.05).

RESULTS
REM SLEEP DEPRIVATION
During baseline, percent time in all three vigilance states was
similar in TXC and RD animals (Figure 1). Repeated-measures
ANOVA of group-by-day effects for each of the vigilance states
demonstrated a difference in REMS proportions in the two groups,
but no significant SWS or WAKE differences were uncovered

(REMS, F = 604.8, p = 0.0001; WAKE, F = 2.25, NS; SWS, F = 0.2,
NS). The RD group experienced a reduction in REMS to 2%
of recording time on the first day and to 11% on the sixth day
(Figure 1). REMS was reduced overall by 80% from baseline val-
ues in the RD animals. Early in the REMSD period, the amount
of lost REMS tended to be replaced by WAKE. Toward the end of
REMSD, the trend in the direction of compensatory WAKE time
progressively gave way to a non-significant increase in SWS.

SLOW WAVE ACTIVITY
Rapid eye movement sleep deprivation affected SWA (delta fre-
quency band, 0.7–4.4 Hz) power during SWS. No difference in
delta power was present in the baseline recordings of the two
shaker groups (RD and TXC). Tests for specific contrasts deter-
mined that by the end of the study both groups displayed
cumulative changes in SWA (Figure 2) but in opposite direc-
tions (F = 10.58, df = 1.5, p = 0.028). SWA trended higher in
the RD group on the third day of REMSD and elevated signif-
icantly by the sixth day relative to baseline (F = 7.13, df = 2.10,
p = 0.012). Shaker-control animals showed only a slight reduc-
tion in SWA that did not achieve statistical significance at any
point in the cage-shaking period (Figure 2). Differences between
the two groups serially increased on the third and sixth days,

FIGURE 1 | Proportion of time spent in each of three vigilance

states is graphed for the four 24 h periods analyzed within the

8-day experimental protocol (baseline day and 7 shaker days). On
each graph, the percent times spent in REMS, rapid eye movement

sleep; SWS, slow wave sleep, and waking (WAKE) are plotted.
RD = green bars; TXC = yellow bars; ∗∗significantly different from
corresponding TXC mean; p = 0.001 (Bonferroni corrected post hoc
t -tests).
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but the disparities did not reach significance on either day
(p = 0.051; p = 0.058, respectively; Bonferroni corrected, post hoc
t -tests).

TH-ir STEREOLOGICAL DATA
Stereological analysis furnished unbiased estimates of total area
and volume of the LC as well as of size, number, and density of
TH-ir cells within the nucleus (Figure 3). The effect of REMSD
on these measures reached significance for total number of TH-
ir cells (Figure 4, F = 4.3, df = 2.9, p = 0.049),indicating that RD
animals had fewer TH-ir cells than TXC animals (post hoc Bonfer-
roni corrected t -tests, p = 0.05). Cell number in the HCC group

FIGURE 2 | Changes in ECoG delta power by group. Average delta power
during 30 artifact-free, 4 s periods of SWS is plotted for each group on the
baseline day and shaker days 3 and 6. The DAY by GROUP interaction is
significant (F = 7.13, df = 2.10, p = 0.012). The RD group (green bars)
successively increases delta power whereas the TXC group (yellow bars)
first shows slightly decreased delta power that later levels off. Post hoc
comparisons between the two groups do not reach statistical significance
on any single day, but trended toward differences between each other on
DAY 3 and DAY6 (p = 0.051, p = 0.056, respectively; Bonferroni corrected
post hoc t -tests). The rising delta power in the RD group’s SWS achieved
significance in its difference from baseline on DAY6 (∗p = 0.047).

was numerically larger than in animals subjected to REMSD. The
HCC value, however, did not differ significantly from cell number
in either RD or TXC kittens (Figure 4).

Rapid eye movement sleep deprivation also affected mean size
of TH-ir cells in the LC (F = 4.816, df = 2.9, p = 0.038). Cells were
significantly smaller in the RD group than in the HCC animals
(Bonferroni corrected t -test, p = 0.039). The TXC group’s cells
were almost as large as the cells of the HCC animals, but, unlike
the latter, their mean size could not be significantly differentiated
from the RD group’s soma profile (Figure 5).

SEYLE’S ORGAN-WEIGHT STRESS ASSAY
One-way ANOVA assessed the effects of treatments on adrenal,
thymus, spleen, and whole body weights at the time of sacri-
fice (Table 1). Treatment effects were found for spleen (F = 9.55,
df = 2, 12, p = 0.003), thymus (F = 3.88,df = 2.12, p = 0.05), and
body (F = 8.62, df = 2.12, p = 0.005) weights. The group effect was
not significant for adrenal weight. Post hoc analysis showed that,
although RD and TXC animals did not differ from each other on
any of the weight measures, both groups’ spleen and body weights
(only) could be significantly distinguished from those in the HCC
animals (Bonferroni corrected t -tests, p < 0.05).

DISCUSSION
SLEEP ARCHITECTURE
The computer-based REMSD system effectively and selectively
reduced REMS. The specificity of our current system for REMSD,
which utilizes rotatory shakers is comparable to our previously
described, vertical-action REMSD shakers and considerably qui-
eter (Hogan et al., 2001). During the 7-day, cage-shaking proce-
dure, SWA in the TXC group was slightly, though not significantly,
reduced from baseline levels. RD animals, in contrast, exhib-
ited a significant increase in delta power during SWS epochs as
deprivation proceeded.

Several studies in humans and rats have demonstrated a
gradual reduction in SWA after both total sleep deprivation
and selective REMSD (Beersma et al., 1990; Endo et al., 1997,
1998). The increase in SWA that we found during the course of
REMSD arguably reflects a compensatory (for lost total sleep)

FIGURE 3 | A caudal-to-rostral subset of photomicrographs, taken from

the complete series of midbrain coronal sections, showing darkly

stained cell bodies evenly distributed throughout the medial–lateral

aspect of the locus coeruleus. The low-power (2.5×) insert on each
photomicrograph indicates the caudal-to-rostral level of the higher-power
(10×) enlargement. (A) Higher densities of TH-ir cells are found at the more

caudal sites. The scale bar is the same on three of the photomicrographs and
applies to the high-power (10×) picture. (B) At this level, fewer TH-ir cells are
seen. The insert shows a higher-power (63×) view of a pair of TH-ir cells. Their
location in the 10× section is indicated by the dotted line connecting the two
boxes. (C) The most rostral section has the fewest TH-ir cells. 3v designates
the third ventricle.
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FIGURE 4 | Estimated total number ofTH-ir cells in the locus coeruleus

in the three kitten groups. Values are based on fractionator stereological
probe data, which provide statistically non-biased estimates of total number
of cells in an area of interest. Home cage-reared (HCC)-, shaker-control
(TXC)-, and RD groups are indicated on the abscissa. HCC = red bar;
TXC = yellow bar; RD = green bar; ∗ = different from TXC, p = 0.024
(Bonferroni post hoc corrected t -test).

FIGURE 5 | Mean area ofTH-ir cells measured in the locus coeruleus in

each group. The nucleator probe, utilized in conjunction with the
fractionator, provides the estimated value of cell size. Group designations
are as given in Figure 4. HCC = red bar; TXC = yellow bar; RD = green
bar;∗ = different from HCC, p = 0.039 (Bonferroni post hoc corrected t -test).

SWA-deepening process. This is also indicated by the progressive
increase in SWA in the RD kittens during the latter half of the
sleep-perturbation sequence.

TH-ir CYTOARCHITECTURE
Seven days of REMSD appeared to affect the cytoarchitecture of
TH-ir neurons in kitten LC. Reductions in mean number and size
of LC TH-ir cells were found. Cell number in RD animals was lower

Table 1 | Means (g ± SD) for Seyle’s stress indices.

Index (g ± SD) HCC (n = 8) TXC (n = 3) RD (n = 4)

Spleen 3.19 (0.72) 1.65 (0.91)* 1.57 (0.48)*

Adrenals 0.14 (0.04) 0.07 (0.02) 0.35 (0.43)

Thymus 2.59 (1.27) 1.0 (0.24) 1.25 (0.57)

Whole body 796.0 (143.7) 504.5 (103.5)* 555.0 (73.7)*

∗Significantly different from HCC (Bonferroni corrected t-tests, p < 0.05).

than in the HCC or TXC groups, but only significantly lower than
the latter. (TXC group cell number was not significantly higher
than the number in HCC animals.)

The average size of TH-ir cells also varied across groups. TXC
animals tended to have larger soma profile areas than RD ani-
mals. Only the HCC group showed significantly larger cells than
RD animals, though TXC and HCC cell sizes were not statistically
distinguishable. Our data does not clearly implicate a particular
mechanism mediating the effects of REMSD upon either LC cell
number or size, but different regulation mechanisms affecting cell
size and number are suggested by our findings.

During development in rats, separate subsets of LC cells express
TH-ir, whereas TH-ir is revealed in older rats in only specific por-
tions of LC populated primarily by small cells (Bezin et al., 1994).
Though both TH-ir cell size and number were smaller in our
REMS-deprived kittens, the significant differences in the two mea-
sures varies among the groups. The outcomes generally indicate
that changes in number of LC TH-ir cells accrue from mecha-
nisms distinct from those influencing cell size. Smaller LC cells
expressing TH-ir in REMS-deprived animals could signify either
loss of larger LC cells during REMSD, or, alternatively, reduction
in TH-ir expression in still-extant large cells. A third possibility
is that available TH is ultimately depleted as REMSD progresses,
contributing also to reduced size of TH-releasing cells.

Cell growth within the LC of developing rats is dynamic (Bezin
et al., 1994, 2000). NE cells in rat LC are smallest at birth, reach
maximum size just prior to weaning (PN14), and by PN60 are
only slightly larger than at birth (Bezin et al., 1994; Saito et al.,
1996). Our finding of smaller TH-ir cell size in RD compared to
HCC animals is consistent with the possibility that maturation
and growth of LC cells are developmentally delayed by REMSD.
Previous studies also suggest relative retardation of CNS matura-
tional processes after REMSD (Shaffery et al., 2002, 2006). Our
TXC animals, though frequently perturbed, were not deprived of
REMS, and no delay in size maturation of their TH-ir cells size was
apparent.

Though selective loss of larger cells in RD animals may have
occurred, the greater variability observed in mean LC cell size
in these kittens (Figure 5, see SEMs) suggests that not all of the
large cells were lost; rather, an overall shift toward predominantly
smaller cells still expressing TH-ir may have taken place. This fits
with the observed smaller cell size found after REMSD.

A recent report in adult rats demonstrated that the size of TH-ir
cells in LC is larger in REMS-deprived (single platform-over-water
technique) rats compared to non-treated animals (Majumdar and
Mallick,2003). This evidence is contrary to our finding of small cell
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size after shaker-produced REMSD. We speculate that this appar-
ent inconsistency arises from a number of sources: first, the studies
were in different species and at different ages. Our study is the first,
to our knowledge, to present cytomorphic measurements for TH-
ir cells in kitten LC; second, the two studies did not employ the
same REMSD technique. The shaker system of REMSD has been
shown to be less stressful than the pedestal method. For exam-
ple, animals that are REMS-deprived on pedestals typically lose
or do not gain weight in the course of the deprivation, whereas
shaker RD animals gain weight at the same rate as TXC animals
(see below; Hogan et al., 1998); third, the adult rat study did not
randomize the selection of slides used to obtain the cytomorpho-
metric data. In contrast, we adopted the standard stereological
approach and employed random-regular sampling to choose spe-
cific slides and representative areas to size and count TH-ir cells,
as required to ensure non-biased estimates (Gundersen, 1988;
Gundersen et al., 1988; West et al., 1991; That this difference in
technique accounts in part for the differences in the data is not at
all certain.) Nevertheless, the non-biased stereological approach
strengthens confidence in the validity of our findings. Whether
the species, age, REMSD–stress differences, or other factors explain
the divergent TH-ir cell size findings in the two studies requires
further investigation.

The number of cells expressing TH-ir in our kittens may be
subject to several additional contingencies. REMSD increases time
awake (Oksenberg et al., 1996; Hogan et al., 2001). During waking,
LC cells continue to fire rather than ceasing discharge as in REMS
(Mallick et al., 1990). The cells’ uninterrupted activity during a
7-day REMSD protocol may eventually cause a decrease in firing
rate (Porkka-Heiskanen et al., 1995). This might be reflected in
reduced numbers of cells expressing TH-ir. An earlier report has
afforded evidence that TH expression, measured by blotting tech-
niques, correlates linearly with the number of TH-ir cells in LC
(Debure et al., 1992). Accordingly, differences in mean number
of cells between the experimental groups in our study may have
resulted from depletion of TH-ir in the RD kittens or from an
increase in TH-ir production in the TXC animals. The latter effect
would not be surprising because of increased LC cell activity in the
TXC kittens due to stress induced by the “make-up” shakes during
waking.

Though experimental evidence is presently lacking concern-
ing the influence of protracted periods of REMSD on LC unit
firing, slowing of firing rate of “REM sleep-off” LC cells during

brief REMSD periods has been reported. Such slowing should
eventuate in less expression of TH in some or all LC cells (Mallick
et al., 1990). An extended REMSD period, occasioning long-term,
slowed LC discharge, could account for the smaller number of TH-
ir cells observed in our REMS-deprived animals. The number of
TH-ir cells in the RD group was only significantly lower relative to
the TXC group, which tended to show a larger number than both
other groups.

In the present study, the spleen- and body weight data from
the TXC and RD animals suggest that both groups experienced
some stress. Other observations suggest that the largest cell num-
ber (found in the TXC kittens) may be accounted for by greater
stress than the RD kittens. That stress increases LC cell activity is
well studied (Lehnert et al., 1998; Kawahara et al., 2000; Asbach
et al., 2001; Valentino and Van, 2001), and we have shown, as deter-
mined by preference for saccharine, that shaker-perturbed TXC
animals may experience more stress than shaker-REMS-deprived
animals (Shaffery et al., 2003). In war veterans with post-traumatic
stress disorder (PTSD) who experience extreme stress, a loss of LC
neurons was reported (Bracha et al., 2005). These data in humans
may be affected by chronic disease and intervening medications
but, the cell loss suggests more extreme stress than experienced
during REMSD.

The relative reduction in TH-ir expression we observed in the
LC of REMSD animals (i.e., smaller and fewer observed cells),
we speculate, reflects a progressive decrease in the firing of LC
cells after a period of (probably) increased discharge earlier in the
7-day REMSD sequence. It is reasonable to suppose that greater
recorded wake time due to REMSD-provoked arousals would lead
to an overall increase in NE expression in forebrain sites despite
the relative reduction in LC unit activity (c.f. Mallick et al., 1990).
Inasmuch as NE modulates synaptic plasticity during develop-
ment of visual cortex (Kasamatsu and Pettigrew, 1976; Bear and
Singer, 1986; Imamura and Kasamatsu, 1991; Brocher et al., 1992;
Kirkwood et al., 1999), and suppression of NE curtails develop-
mental plasticity-facilitating effects (Bear et al., 1983; Bear and
Singer, 1986; Brocher et al., 1992), increased cortical NE may be an
important element in the enhanced plasticity of geniculocortical
cells found during monocular occlusion and REMSD (Oksenberg
et al., 1996; Shaffery et al., 1998).
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