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INTRODUCTION

Like many complex dynamic systems, the brain exhibits scale-free dynamics that follow
powerlaw scaling. Broadband power spectral density (PSD) of brain electrical activity
exhibits state-dependent powerlaw scaling with a log frequency exponent that varies
across frequency ranges. Widely divergent naturally occurring neural states, awake and
slow wave sleep (SWS), were used to evaluate the nature of changes in scale-free indices of
brain electrical activity. We demonstrate two analytic approaches to characterizing electro-
corticographic (ECoQG) data obtained during awake and SWS states. A data-driven approach
was used, characterizing all available frequency ranges. Using an equal error state discrim-
inator (EESD), a single frequency range did not best characterize state across data from
all six subjects, though the ability to distinguish awake and SWS ECoG data in individ-
ual subjects was excellent. Multi-segment piecewise linear fits were used to characterize
scale-free slopes across the entire frequency range (0.2-200 Hz). These scale-free slopes
differed between awake and SWS states across subjects, particularly at frequencies below
10 Hz and showed little difference at frequencies above 70 Hz. A multivariate maximum
likelihood analysis (MMLA) method using the multi-segment slope indices successfully
categorized ECoG data in most subjects, though individual variation was seen. In exploring
the differences between awake and SWS ECoG data, these analytic techniques show that
no change in a single frequency range best characterizes differences between these two
divergent biological states. With increasing computational tractability, the use of scale-free
slope values to characterize ECoG and EEG data will have practical value in clinical and
research studies.
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have suggested that these properties can be used as an index of

The brain is a complex dynamic system in which the transient
interaction between spatially segregated neural networks results in
functional responses to both internal and external environments.
These functional interactions produce emergent electrical activity
that can be recorded at multiple levels, from that of individual
neurons to that of more integrated activity recorded at the cor-
tical surface or from the scalp. As shown for a large number of
complex systems, the brain has been characterized both spatially
and temporally by scale-free dynamics (Linkenkaer-Hansen et al.,
2001; Stam and de Bruin, 2004; Bedard et al., 2006; Allegrini et al.,
2009; Freeman and Zhai, 2009; Miller et al., 2009a; Chu-Shore
et al., 2010; He et al., 2010; Safonov et al., 2010; Van De Ville et al.,
2010; He, 2011). The recognition that the human brain electroen-
cephalographic signal exhibits scale-free dynamics has resulted in
reconsideration of the reliance of neural function on broadband,
global frequency activity versus narrow, frequency specific oscil-
latory activity (Miller, 2010). Investigations of global measures of
scale-free behavior using averaged data across multiple electrodes

neural state, and potentially of transitions between states (Free-
man and Zhai, 2009; Chu-Shore et al., 2010; He et al., 2010; Van
De Ville et al., 2010).

While there is a longstanding interest in defining state fluctua-
tions in human neurophysiology on short time scales (microstates,
see Fingelkurts and Fingelkurts, 2010; Van De Ville et al., 2010;
Latchoumane and Jaeseung, 2011), the best defined stable neural
state change is that seen between awake and asleep, where both
clear behavioral and electrophysiological changes have been well
characterized (Hobson and Pace-Schott, 2002; Saper et al., 2005;
McCarley, 2007). This shift in neurobehavioral state is generally
seen as representing a global change in brain state reflected not
only in shifts in electrophysiological signaling, but also in meta-
bolic activity (Braun et al., 1997; Maquet and Phillips, 1998). While
a global shift to a changed neurophysiological state with a reduced
level of metabolic activity is well established in slow wave sleep
(SWS), recent work has shown local variation in sleep state (Dang-
Vu et al., 2010; Mascetti et al., 2011; Vyazovskiy et al., 2011). Of
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the states represented in normal human sleep, the best character-
ized is that of SWS, in which recent studies of spatial dynamics
have shown distinct changes in small-world network connectiv-
ity (Spoormaker et al., 2010; Larson-Prior et al., 2011). Similarly,
investigation of temporal scale-free behaviors has revealed poten-
tially stable shifts in power-law scaling between awake and SWS
states (Freeman and Zhai, 2009; He et al., 2010).

Shifts in scale-free behavior with state can be compared using
log—log plots of the power of brain electrical activity across the
frequency spectrum, which have been shown to exhibit linear
segments across decades of frequency (Linkenkaer-Hansen et al.,
2001; Freeman and Zhai, 2009; Milstein et al.,2009; He et al., 2010).
Fitting log transformed power data with a line provides a measure-
ment of scale-free activity, where the slope is an index of the nature
of the relationship. The power scale exponent provides informa-
tion on the analyzed signal, with white noise having a slope of 0
(indicating no scale-free behavior), and pink noise a slope of neg-
ative one (indicating 1/fscale-free behavior). Measurements using
EEG power have yielded exponent values of less than negative one,
varying between —1 and —4 (Freeman and Zhai, 2009; Milstein
et al., 2009; He et al., 2010). Such a relationship indicates that
with measurements at lower frequencies, electrocorticographic
(ECoG) power rises exponentially, attenuated only by our ability
to both accurately measure low frequency ECoG without artifacts
and to collect ECoG for long enough periods to adequately cap-
ture the lowest frequencies. With human scalp EEG, the ability to
measure high frequency brain activity is also limited. Scalp elec-
trodes measure the electrical field generated by neural activity at
some distance from the cellular generators, through the skull and
other tissues, which filter and attenuate the electrical signal mea-
sured at the scalp. Recording electrical activity directly from the
brain through the placement of subdural electrodes on the corti-
cal surface provides an opportunity for measuring brain activity
closer to the generators, with increased signal amplitude improv-
ing and enabling the resolution of higher frequency brain activity
necessary for optimal characterization of scale-free indices.

As has been noted in previous studies (Miller et al., 2009a) log—
log transformed power-law dynamics in human brain are not well
represented by a single global linear fit. While other investigators
have described shifts in scale-free slopes with state, these changes
have generally been investigated in relatively narrow frequency
ranges rather than across the full measurable scale (Freeman and
Zhai, 2009; He et al., 2010). Here, we report results of investiga-
tion of scale-free behavior across the full frequency range available
to us using electrocorticography data in a pediatric population
undergoing invasive monitoring for surgical evaluation of their
intractable epilepsy. Using a data-driven approach, we examined
the frequency ranges over which scale-free slopes could best dis-
tinguish the awake state from SWS. Exploring and characterizing
the differences in indices of scale-free brain activity between these
states is one approach to the study of fundamental mechanisms of
brain function.

MATERIALS AND METHODS

SUBJECTS AND ECoG DATA

All subjects were consented for participation in this study under a
protocol approved by the Washington University Human Research

Protection Office. Parents gave written consent and the partici-
pants provided written assent. ECoG data from six patients with
intractable epilepsy undergoing evaluation for surgical treatment
of their epilepsy by identifying the site of focal seizure onset
through neurosurgical placement of subdural electrodes according
to clinical needs were used. Data were obtained from clinical ECoG
recordings using subdural electrodes (either in grids or strips)
on the cortical surface. The platinum electrodes (4 mm diameter,
2.3 mm exposed) spaced at 10 mm intervals were obtained from
Ad-Tech (Racine, WI, USA).

Electrocorticographic data were recorded using a clinical EEG
amplifier (Lamont Medical, Madison WI, USA) and Stellate Har-
monie acquisition software (Montreal, Canada). Brain electrical
activity was sampled from between 72 and 116 electrodes at 500 Hz
(each subject had different electrode coverage). Reference and
ground were either placed externally (mastoid) or internally to
an electrode strip placed epidurally facing the skull. The amplifier
had a 0.1 Hz low frequency hardware filter, and no high frequency
filter was enabled.

ECoG PREPROCESSING

Data were collected over several days, providing multiple peri-
ods of both SWS and wakefulness. We use the capitalized “Awake”
and “SWS” terms to represent the ECoG datasets obtained during
clinical and electrographic awake and SWS periods respectively.
SWS was selected out of the sleep data by viewing spectral changes
as the subjects transitioned between sleep states, as well as the
presence of up-down slow wave activity and sleep spindles. Five-
minute sections were extracted from these longer data sets by visual
inspection and chosen to be generally free of artifact and represen-
tative of ECoG from awake and SWS. In one subject a 2-h section
representing the transition from the awake state through to SWS
was extracted. No attempt to constrain motor or cognitive awake
clinical activity was made, other than choosing sections of ECoG
without significant movement artifact.

Analysis programs were implemented in Matlab (The Math-
Works, Inc., Natick, MA, USA) after reading the data with EEG
Lab (Delorme and Makeig, 2004). For a flowchart representing the
ECoG preprocessing pathway see Figure 1A. The ECoG data were
referenced to a common average, after excluding bad electrodes
identified visually. A 30-s data interval was chosen for analysis, as
30s is the standard period for clinical sleep staging (Iber et al.,
2007). Ten consecutive 30s intervals were cut from each 5 min
dataset yielding 10 data sections per electrode for both Awake and
SWS. For each 30-s interval for each electrode, the estimated base-
line, calculated as the average of the signal, was subtracted. This
baseline correction forces the zero-frequency (DC) component of
the continuous Fourier Transform of the signal to zero while leav-
ing the spectrum unchanged at all other frequencies. The effect on
the Discrete Fourier Transform is to force the DC component to
zero, to modify slightly frequencies near DC, and to leave higher
frequencies virtually unchanged.

After baseline correction, 2048 frequency samples from 0.122
to 250 Hz were defined such that their logarithms were equally
spaced. The method of Welch was used to calculate the power spec-
tral density (PSD) at these frequencies (Welch, 1967). Because the
frequency samples were not uniformly spaced, the slower Goertzel
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FIGURE 1 | Analysis steps. (A) Preprocessing steps. (B) Frequency ranges. (C) EESD method. (D) MMLA method.

algorithm (Goertzel, 1958) is used by the pwelch call in the Matlab
analysis scripts.

Least-squares straight-line fits to the logarithm of the PSDs
were computed for each of 183 frequency ranges, the first 12 of
which were “classical” bands and the last 171 of which systemat-
ically partition the overall frequency range, which is taken to be
from 0.2 to 200 Hz, into ranges of varying lengths. Indexes 1-12
represent frequency bands that encompass the “canonical” EEG
bands: 0.5-1.5Hz (up-down), 0.2-4 Hz (delta), 4-7 Hz (theta),
8-12 Hz (alpha), 8-10 Hz (low alpha), 1012 Hz (high alpha), 12—
30 Hz (beta), 12—15 Hz (low beta), 15-18 Hz (intermediate beta),
18-30 Hz (high beta), 30-100 Hz (gamma), and 8-13 Hz (mu).
The remaining 171 frequency ranges are constructed as follows. A
set of 19 frequencies were chosen such that their logarithms are
approximately equally spaced: 0.2, 0.24/2.5,0.5,0.54/2, 1, 14/2, 2,
24/2.5,5,54/2, 10, 10v/2, 20, 204/2.5, 50, 50+/2, 100, 1004/2, and

200 Hz. These frequencies were combined in all (19 x 18)/2=171

ways (indices 13 to 183, inclusive) as the minimum and maximum
values of the frequency ranges. These frequency ranges are shown
in Figure 1B, where the leftmost and rightmost points of each
horizontal line represent the minimum and maximum frequen-
cies included in the frequency range whose index is indicated on
the vertical axis. The frequency range index is a shorthand way of
referring to a range by a single number, primarily for programming
purposes.

EQUAL ERROR STATE DISCRIMINATOR METHOD

Taking the Awake and SWS data as distinct biological and cog-
nitive states, a scheme was devised to determine the frequency
ranges that best distinguished between these states using the 183
frequency ranges, so that no a priori assumptions about the most
important frequency ranges influenced the search through fre-
quency space. A summary of the equal error state discriminator
(EESD) method is listed in Figure 1C. For a given subject, brain
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state, and electrode, the mean and SD of the fitted slopes were
computed to form a histogram approximation to the distribution
of slopes.

Let c € {1, 2} be a class indicator for SWS (¢ =1) and Awake
(¢ =2) data. Histograms of the frequency of occurrence of slopes
were computed, displayed, and found to resemble Gaussian func-
tions. The mean, ., and SD, o, were calculated for each class. The
model probability density functions for the distributions of slopes
are

1
J2To,

Let

P L )

o = o2 + K201
o1+ 03

be a threshold such that if the calculated slope is below x*, then the
estimated brain state would be SWS or Awake, whichever one has
the smallest mean slope, |, and if the calculated slope is above x*
then the estimated brain state would be whichever has the largest
mean slope. This yields an EESD, such that the probability of mis-
categorizing SWS for Awake is the same as miscategorizing Awake
for SWS. The probability of correct state categorization was cal-
culated first for all electrodes and then grouped by large (>20
electrodes) grid.

MULTIVARIATE PIECEWISE LINEAR FITS
Each PSD is partitioned into an arbitrary number, D, of adjacent
linear fit segments which together span the full PSD spectrum. All

unique D-segment combinations are collected (from Figure 1B,
indices 13-183). For each of these unique partitions, p, a fit error,
E,, is computed as the sum of the absolute differences between
piecewise linear fits and the normalized PSD. That is,

S T
Ep =Y > |PSDu(f) — PSDpu(f)|, 0.2 < f < 200 Hz
s=1 t=1

where PSDy; is the normalized PSD for electrodes in time interval
t and PSDypy is the piecewise linear approximation of PSDy; with
regard to partitioning p. The algorithm then selects a frequency
band partition, p, with the lowest value of E}, as the “best fit”. The
full frequency spectrum is always fully covered by some combina-
tion of segments. Figure 2 illustrates the summation of individual
line fit errors used to compute E;,. Each colored line segment rep-
resents the least error fit of a line segment to a given frequency
range of a single channel and 30 s time interval’s PSD. Lines are
colorized to indicate the degree of fit error. The total error for this
partitioning is given by the summation of the error shown by each
of these line segments.

MMLA METHOD

The multivariate maximum likelihood analysis (MMLA) method
uses the log-linear slopes of each fitted line segment over all elec-
trode channels and time intervals for each PSD to determine
an optimal partitioning of class categories (frequency ranges). A
summary of the MMLA method is listed in Figure 1D. Categories
can be modeled by the NxD multivariate feature matrix F, where

max error

min error

10*

Power

Fit Error

A

10° 10

Frequency (Hz)

FIGURE 2 | Four segment piecewise linear fit of scale-free slope for all
electrodes in subject 1 in SWS. Each slope fit line is colored according to
the line fit error, computed as the absolute difference between that line

1

10 10

segment and the electrode specific PSD. The solid line is the global mean
PSD of all electrodes averaged across all electrodes and time intervals. Y axis
is log power. X axis is log frequency.
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each of N observations of segment slope in some class A is rep-
resented as a D element row in F and where D corresponds to
the number of linear segments being considered. Class A is then
modeled as this set of measured instances of the D-segment slope
fit values.

After assigning each distinct state to a class category (Awake,
SWS, etc.), the MMLA method was used to determine a deci-
sion surface in feature space. This decision surface acts as a
category boundary such that each observation of a normally dis-
tributed class density can be identified with a minimum number
of misclassifications.

The Bayes Classifier offers a straightforward method by which
to implement maximum likelihood analysis and optimally parti-
tion class feature data that can be accurately parameterized. An
inspection of slope-value histograms shows normal distribution
of slope values when considering a single line fit segment’s char-
acteristic across electrode channels and time intervals. For this
reason, a Gaussian mixture model was selected to represent class
characteristics in feature space, F. These Gaussian distributions
can be fully specified as mean vector, .., and covariance matrix,
3. for each class category c. It is straightforward to estimate these
parameters as

1 &
MC:EXI:XCi c=1,2,...C
i=

and

N
Y - NL 3 e — wo) (i — 1) "]
¢ =1

for each class c=1... C, where x; represents a D element vec-
tor. This corresponds to a single observation of D line segment
slopes of class ¢. N, is the total number of observations included
in the training set for that class. In this analysis, two classes are
considered, Awake and SWS. It follows from the definition of the
Bayes Classifier with a Gaussian mixture model that a discriminant
function can be computed as

1 B Y 1 Bantc TN
de(x) = P(0) —m gy 20 T & ke
Qm)P2|3 (12

c=1,2,...,C

where P(w,) is the a priori probability of feature vector xbelonging
to class ¢. (The prior probabilities of each class are assumed to be

equal.) The remainder of the equation is simply derived from the
scaled and shifted expression of the multivariate normal density N
(1, X). When presented with a new observation, category assign-
ment is determined by selecting class i for which d;(x) > d(x) for
all i # j. Following this same method, a decision surface which par-
titions feature space can be defined where d;(x) = d;(x) forall i # ;.

RESULTS

SUBJECTS

A characterization of scale-free brain activity in awake and SWS
states was performed with ECoG data from six pediatric (ages 8—
17, two male, all right handed) subjects with intractable partial
epilepsy. ECoG data provides substantially higher signal to noise
ratios across broad frequency ranges compared with standard scalp
EEG, as the brain signal is recorded subdurally on the cortical sur-
face without filtering of the brain electrical signal by the skull. The
higher signal amplitude obtained using ECoG recording allows
investigation of upper gamma ranges not generally accessible in
standard scalp-recorded EEG and improves the resolution of the
brain electrical signal, which is 5-10 times higher amplitude than
EEG recorded through scalp electrodes.

In most of the subjects investigated here, the majority of the
electrodes were located outside the brain area that was surgically
resected. Electrode coverage was determined by clinical needs.
Table 1 provides information on the number and placement of
electrodes for each of the six subjects participating in this study. A
follow-up of greater than two years for all subjects found three are
seizure free and a fourth showed seizure recurrence 4 years after
surgery, exhibiting an extended period of freedom from seizure.

Electrocorticographic data from individual electrodes were
excluded if excessive, non-physiologic noise was present, usually
resulting from lack of ideal positioning on the cortical surface.
No attempt was made to exclude the electrodes overlying the pre-
sumptive seizure onset zones or resected areas, which in all cases
represented a minority of electrodes (all <10%, except in sub-
ject 4 where the resected tissue represented about one-third of the
electrode coverage). Electrode numbers ranged between 72 and
116, and excluded electrodes ranged from 0 to 6, resulting in a
total of 550 (72-114 per subject) electrodes across all subjects.
Each ECoG time course over 5 min was broken into 10 time inter-
vals for a total of 5500 PSD’s generated across all subjects in each
Awake and SWS dataset.

SINGLE SEGMENT LINEAR FITS TO PSD DATA
Power spectral density data from a single 30 s interval from one
subject and a single electrode in SWS (Figure 3) demonstrates the

Table 1 | Subject characteristics.

Subject  Electrode coverage Electrodes  Electrodes excluded Resection Seizure free
1 Left temporal and left frontoparietal 76 0 Left anterior temporal Yes
2 Left temporal and left frontoparietal 100 5 Left anterior temporal Yes
3 Left temporal and left frontoparietal 102 4 Left anterior temporal Yes
4 Right frontoparietal 98 2 Right lateral frontal No
5 Left frontoparietal 72 0 Left lateral frontal Yes
6 Right occipital and right temporal 116 2 Right occipital (multiple seizure onset zones)  No
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PSD

two slope fit (slope = —2).

Frequency (Hz)

FIGURE 3 | Typical PSD plot from subject 3 in SWS from a single 30 s time interval. Y axis is log power. X axis is log frequency. Red line indicates segment

10’ 10

typical behavior seen across all datasets, where a log-log plot can
be fit with a straight line over a range of frequencies (0.5-5Hz
illustrated). These log—log PSD plots, however, do not show the
completely linear behavior expected with truly scale-free processes,
rather they tend to show domains of linear behavior. At the two
frequency extremes, this deviation can be explained by data acqui-
sition conditions. At high frequencies (>200 Hz), where the signal
power is low, the ECoG voltage merges with the noise characteris-
tics of the measurement system (electrode, cabling, and amplifier
noise) and thus includes non-neural signal sources. At low fre-
quencies (<0.5 Hz), the amplifier high pass filter circuit truncates
the rise of sub-1Hz power seen in studies where DC amplifiers
were used (He et al., 2010). Therefore, the frequency range evalu-
ated in this study lies in a broad middle range (0.5-200 Hz) where
the ECoG data represents brain activity rather than measurement
artifacts. These middle frequency ranges include all of the classic
frequency bands (up-down, delta, theta, alpha, beta, and gamma).

As simple single linear fits did not adequately characterize
the ECoG data, we chose to evaluate differences between Awake
and SWS across the full broadband range rather than to focus
on the classical band-limited frequencies or prechosen frequency
ranges. This data-driven approach breaks up the frequency domain
intervals into all possible combinations (171 plus 12 canonical fre-
quency bands), without reflecting any preconceived ideas about
the relative importance of specific frequency ranges.

EQUAL ERROR STATE DISCRIMINATOR

The first analytic strategy, EESD, emphasizes classification based
on equalizing the probability of each type of classification error,
assuming Gaussian models for the distribution of slopes. A sample

histogram from a single subject demonstrating the distribution of
the slope values in Awake and SWS data is shown in Figure 4A and
demonstrates the ability of this method to discriminate between
electrical activities obtained during these two biologically distinct
states. These data were used to calculate x*, which character-
izes the probability of correct classification of the 30-s PSD from
each electrode. An initial analysis was performed using both strip
and grid electrodes (results not shown) with an improvement in
performance seen when grouping by only grids, which samples
more anatomically contiguous data as opposed to the more distant
strip electrodes. The 10 frequency ranges with best discrimination
accuracy (80-90%) are illustrated for each subject in Figure 4B.
While the frequency ranges most useful for correct discrimination
were not consistent across subjects, they tended to cluster within
subjects. Further, those frequencies with greatest utility for catego-
rization were not confined to any of the classical frequency bands
used in staging sleep.

MULTIPLE SEGMENT PIECEWISE LINEAR FITS TO PSD DATA

As our study was motivated by the notable changes in the linear
nature of the log—log power spectral plots across the frequency
spectrum, we chose to evaluate these data as combinations of
piecewise linear fits that do not rely on a priori assumptions
of prespecified frequency ranges. The PSDs were normalized to
total power to emphasize the role of the scale-free slope across all
electrodes. Linear fitting was then done analytically, using an opti-
mization strategy in which adjacent frequency ranges are identified
that minimize the error of fitting all possible combinations of fre-
quency ranges across all the electrodes; each fit is not optimal for
each electrode, but the frequency boundaries chosen are the best
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FIGURE 4 | Equal error state discriminator method. (A) Sample histogram demonstrating histogram data used for characterization of scale-free slope data.
(B) EESD method showing the top 10 frequency ranges associated with best categorization between Awake and SWS states by grid and subject.

across all the electrodes in that state. This strategy identified where
frequency boundaries in scale-free slope transitions occurred in
particular Awake and SWS data.

Initial studies characterized the optimal number (1-8) of
piecewise linear segments which provided the best overall fit to
the data. We found that four segment fits provided, in both
qualitative and quantitative terms (fit error improved less than
10% by including additional segments beyond four), the best

piecewise linear fits. Figure 5 shows a comparison between
optimization across the full frequency range (Figure 5A) rel-
ative to one in which a narrower frequency range (1-100 Hz)
was chosen a priori (Figure 5B). In Figure 5B note that fit-
ting to a prespecified frequency range of interest results in
poor fits to residual frequency ranges. Visual inspection of
these plots shows that the prespecified frequency range pro-
vides a poor fit for frequencies from 10 to 100Hz, which
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are fit separately using the piecewise linear fit optimization
approach.

Across subjects, these plots show several general themes
(Figure 6). A global, normalized PSD is shown for comparison
in blue (Awake) or red (SWS) for comparison. First, the gen-
eral nature of negative slopes in segments two to four is present
in almost all electrodes and segments. Such a general shape is

valuable, as artifact-laden data does not always demonstrate an
orderly progression across frequencies, and deviation from typical
behavior may be a valuable way to exclude intervals of poor data
from quantitative ECoG and EEG analyses. Second, in the low-
est frequency segment (slope segment one), with a low frequency
hardware filter present, the sign of the slopes is either positive-
or negative-note the crossing of the lines indicating that some
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Frequency (Hz)

FIGURE 6 | Four segment piecewise linear fits of PSD slopes by
30s time interval and electrode plotted in green for each subject
(one to six in order A-F, respectively) in both SWS (left column)

Frequency (Hz)

and awake (right column) states. The red (SWS) and blue (awake)
lines are global averages of normalized power averaged across all
electrodes and time intervals.

of the electrode by interval data has positive slope, while other
lines have negative slopes. A positive slope indicates decreas-
ing power at low frequency, which would seem to be at odds
with a scale-free process, where a negative slope with increasing
power at lower frequencies is characteristic. This is certainly due
to the presence of the low frequency hardware filter (for simi-
lar data with a DC coupled EEG amplifier see He et al., 2010)
and the diminution of the low frequency components due to
the baseline correction, but the slope of segment one in Awake

data is still usually negative across all subjects, indicating the dif-
ference is biological and not technical. The presence of higher
power in the up-down frequency band actually pushes the slope
mean from negative to positive in SWS (Figure 7A) and the
percent of electrode-interval data with a positive value in seg-
ment one markedly decreases in the Awake data (Figure 7E).
Such a feature may be helpful in scoring clinical sleep data, as
this slope calculation can be performed with relatively short 30-s
intervals.
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The slope values from all four segments change between Awake
and SWS (Figures 7A-D), though general features are apparent,
even in six subjects. In general, mean slope values become more
negative in progressively higher frequency segments, with slope
segment numbers similar to those reported by others (Freeman
and Zhai, 2009; Manning et al., 2009; Miller et al., 2009a; Milstein
et al., 2009; He et al., 2010). The use of piecewise linear fits using
multiple frequency segments also emphasizes that the values of the
slope are not constant across the entire ECoG frequency spectrum
and thus cannot be described by a single slope value, as typically
seen in many other forms of scale-free data (geophysical, electrical,

economic, geographic), but the general trend is consistent with a
scale-free process. The frequency ranges chosen for the best seg-
ment fits are generally consistent (Figure 7F), indicating the stabil-
ity of the fitting process across ECoG data from multiple subjects.

MULTIVARIATE MAXIMUM LIKELIHOOD ANALYSIS

To explore whether the use of multi-segment piecewise lin-
ear fits could further distinguish between neural states, an
analysis scheme (MMLA) was developed. This method uti-
lizes multivariate analysis with a Bayesian state discriminator to
include slope data from multiple slope segments, adding higher
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dimensionality to the class models. The MMLA method uti-
lizes the maximum likelihood method and non-linear decision
boundaries to distinguish between states. The best perform-
ing MMLA state discriminator to distinguish between Awake
and SWS data for the six subjects utilized segment one and
segment two slope data (Figure 8A). Each point in Figure 8A
shows a 30-s interval from a single electrode. MMLA perfor-
mance was affected by the data from subject 4, which was dif-
ferent than the rest of the subject data (Figure 8B) in that a
larger percentage of electrodes covered abnormal brain tissue.
Nevertheless, SWS and Awake data were correctly distinguished
in this subject.

CONTINUOUS ECoG SLOPE DATA

Though we have focused on a direct comparison of two highly dis-
tinct neural states, the awake and SWS states, these same techniques
can be employed in longer stretches of continuous ECoG data, to
observe the properties of the slopes within states, and across state
transitions. Figure 9 shows the slope calculations across a 2-h

stretch of ECoG data from a single subject where the subject was
initially awake, fell asleep, aroused and awoke, and again fell asleep
with most of this 120 min period in some form of sleep. Note that
these data were calculated with frequency ranges defined using the
MMLA analytic method (Figure 10). In Figure 9B, we provide
data on delta power changes over these state transitions.
Strikingly, there was no systematic relationship between state
and the slope value of the highest frequency ranges despite the
absence of overtly conscious cognitive activity in SWS, though
two increases in slope during sleep were noted. Second, the slope
of the lowest frequency segments one (0.2-1Hz) and two (1-
20 Hz) varied with the presence of the highest degree of 0.5-4 Hz
power which includes up-down oscillations most prominent in
SWS. Representative 10-s epochs of ECoG are also presented
(Figure 9C). Note that the extent of visible ECoG slowing is vari-
able across electrodes, even in the awake state, with clear slowing
present in electrodes over posterior cortex (bottom of Figure 9C).
Concern for this slowing on scalp EEG drove the posterior elec-
trode placement, though the resection was performed far away in
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performance was 0.84. (B) The same scatter plot with points from subject 4
highlighted in different colors. This coloring demonstrates that the subject 4
awake state cluster shows significant separation from the overall awake state
group indicating heterogeneity between subjects.

anterior temporal cortex, and the subject has been seizure free for
greater than two years.

A movie of the slope segment fits linked temporally to the
multi-segment scale-free slope data over the 2-h of ECoG data
illustrated in Figure 9 is present on the Frontiers website (see

Movie S1 in Supplementary Material) to further illustrate the rel-
ative temporal stability and the transitions inherent in the slope
data. Note that the PSD segments are colorized to indicate the fre-
quency ranges, with the actual slopes resulting from the linear fits
time linked in the plot on the right. The similarity across time of
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even short segments (30s) of log—log PSD plots is quite striking
over time, and characteristic of human ECoG (see Figure 2A from
He et al., 2010).

DISCUSSION

Our analysis of a scale-free property of human ECoG has pro-
vided new insight into the characteristic of this property when
the brain changes its state between awake and asleep. By choosing
to allow the data to define the regions over which linear slopes
could be fit to log—log plots of signal power by frequency, we show
that ECoG spectra are not well characterized by a single linear
fit across a defined set of frequencies, but are best described by
a set of discrete linear fits across the full range of available fre-
quencies. In agreement with Freeman and Zhai (2009), we show
that the mean and SD of measured slope change across the entire
frequency spectrum (EESD), are excellent determinants of state
differences. In agreement with others (Miller et al., 2009a), we
find an abrupt slope change at about 75 Hz in most subjects where
the slope shifts to more negative values near —4. While we report
data computed over 30 s intervals in this report, we also examined
changes in shorter (10s) intervals, finding similar behaviors and
lending credence to the characterization of human brain activity
as scale-free.

SCALE-FREE SLOPE DATA AND CHARACTERIZATION OF SWS AND
AWAKE STATES

Clear differences in the scale-free slope values were observed
between awake and SWS states, which allowed categorization of
data from individual electrodes as SWS or awake state ECoG by
two different, yet complementary methods. The EESD method

characterized the frequency ranges that best categorized the data
from the SWS and awake states within the constraint of hav-
ing equal probabilities for each type of miscategorization. This
method does not preselect a frequency range; rather it looks at all
possibilities across the entire frequency range and reveals the most
discriminative frequency ranges. That the ECoG signal, which is
inherently non-stationary, can be described by a scale-free index
shows that truly global measures can be used to analyze state
changes over the entire brain. Scale-free slopes, however, may also
be locally dynamic (He et al., 2010) and thus provide a source
of contrast for utilization by brain—computer interfaces as well as
characterizing local or regional cognitive processes.

The MMLA method emphasizes complete use of the available
ECoG spectrum, optimizing the multi-segment slope fit across all
electrodes and time intervals in a given state. This method com-
pares the slopes of the PSD’s that have been normalized to total
ECoG power. Two interesting features of this analysis emerge. First,
with increasing frequency, the slopes of the segments increased,
from positive to slightly negative in segment one up to more than
negative four at the highest frequency segment. These changes
reflect the fundamental biology of the ECoG PSD broadly across
the brain. Second, the slopes of the highest frequency range, seg-
ment four (generally above 70 Hz), show little difference between
awake and SWS neural states. Modulation of high frequencies
(gamma, high gamma) has been implicated in many studies to be
associated with cognitive processing, but gamma frequency power
remains high in sleep (Valderrama et al.,2012). Although there was
good reason to expect gamma frequency activity in awake states
with ongoing behavior to be different than in SWS, no systematic
differences in slope were present.
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The largest differences between awake and SWS states were seen
in slope segments one and two, the two lowest frequency ranges.
At the lowest frequency values, the interaction of the hardware
filter and the presence of up-down activity in the lowest frequency
range actually flipped the expected negative segment one slope to
a positive value in many electrodes. Since the Awake dataset, which
was recorded under identical conditions as SWS, did not show this
positive slope, the difference reflects the fundamental biology of
the low frequency ECoG across changes in state. Indeed, including
frequency ranges beyond 1-100 Hz provided a superior ability to
distinguish between ECoG from awake and SWS states, indicating
the importance of including frequency ranges beyond 1-100 Hz.

Interestingly, the very highest frequency data used in this study
(up to 200 Hz) was not particularly helpful in distinguishing awake
and asleep ECoG as all of the segment four slopes were around
—4. Indeed, little variation in the slope could be seen with sleep
onset, and transition into SWS. Though the ECoG electrodes are
on the surface of the brain, they are relative macroelectrodes com-
pared with depth electrodes, microwires, or higher density grids
with smaller surface electrodes. Relatively low amplitude changes
in power in discrete high frequency ranges can be resolved during
cognitive tasks with careful recordings using similar subdural elec-
trodes (Gaonaetal.,2011), indicating that the lack of differences in
slopes were not likely due to the inability to record low amplitude
activity. Changes in power in discrete frequency bands that are not
sizable enough to affect scale-free slope, however, may not resolv-
able if the differences are both anatomically local and short-lived,
and reflect change in narrow frequency bands, since the present
analysis emphasized slope changes across wide frequency ranges.

ECoG POWER

Measurement of ECoG power over wide temporal scales, with
transitions through neural states, is non-stationary; the means and
SDs of the power distributions are not stable over time. Indeed,
this non-stationarity of ECoG power is a fundamental characteris-
tic of human ECoG and EEG. For our analysis of scale-free slopes,
total power was normalized in the PSD from each electrode. Nor-
malization limits the ability to see power changes, but represents a
compromise to maximize the characterization of scale-free slope
data. Whether task activity engages discrete frequency bands, or
affects broadband activity through changes in total power remains
an active area of inquiry (Manning et al., 2009; Miller et al., 2009b;
He et al., 2010).

Within-electrode analyses will be needed to characterize possi-
ble power changes across state. Clearly, individual frequency bands
profoundly change with state, best exemplified by the obvious
qualitative difference between the presence of sleep spindles and
up-down states in SWS. The ability to process long stretches of data
available in ECoG studies will hopefully provide future insight into
broadband power changes.

LIMITATIONS

Measurement of brain ECoG, necessarily an integration of syn-
chronized brain activity reflecting the activity of millions of
neurons for a signal to appear on the cortical surface, is currently
limited by mathematical techniques for including the influences of
arrhythmic activity. The foundation of this report and all others

to date relies on the transformation of a time varying signal to
the frequency domain that imposes the mathematical concept
of a rhythmic, time varying signal. Such a measure is likely an
inadequate index of brain activity where arrhythmic activity is a
significant fractional part of ongoing spontaneous brain activity.
Compared to the many other biological, geographical, geological,
economic, and social science examples of scale-free activity, ongo-
ing brain activity also has the special property of cross frequency
coupling, where activity in discrete frequency bands is related to,
and perhaps organizes, activity in other discrete frequency bands
(He et al., 2010). The mechanisms underlying the generation of
scale-free activity is currently a topic of intense investigation in
many scientific disciplines, particularly in neuroscience.

All studies recording ECoG data from patients are limited
by the necessity to provide brain coverage based upon clinical
requirements, and the potential for recording from abnormal brain
regions. In this study, while some data were recorded from elec-
trodes overlying abnormal brain, the majority of the electrodes
were located over brain tissue that was normal based on electro-
physiological features. Thus, we believe that the decision to average
across all electrodes overcame the contribution from those rela-
tively few electrodes over resected brain tissue and over regions
with abnormal activity.

In this report, we did not explore the rich spatial data also
available in ECoG data sets. Others have reported a slight vari-
ation in scale-free slope in the awake state across cortical lobes
(Milstein et al., 2009). In our EESD analysis, the improvement
in performance of state categorization gained by grouping data
from smaller anatomical regions (using the more contiguous
ECoG data recorded separately from grids) may indicate sys-
tematic heterogeneity in the slope characteristics at different
anatomical locations. Further studies will investigate whether
such differences are present in slopes by anatomical location and
across the long stretches of ECoG enabled by the use of clinical
data.

PRACTICAL ISSUES

The ability to use scale-free indices to determine brain state from
ECoG has several attractive properties. The computational effi-
ciency of the creation of PSD’s, even with measurements from
many electrodes, is increasingly tractable with current generation
computers, and the extraction of simple summary statistics may
make classification of ECoG and EEG data more automated and
accurate, as well as being useful in characterizing and identifying
pathological states.

The most compute intensive portion of the overall procedure is
the computation of the PSD plots, which takes several hours for the
entire dataset comprising 1 h total of ECoG data. Our deliberate
choice of frequency samples that are not equally spaced, but whose
logarithms are equally spaced, slows the computation of the PSD
because it disallows the use of fast Fourier transform (FFT) meth-
ods (Welch, 1967) in favor of another method (Goertzel, 1958).
Once the PSD’s are precomputed, the processing time is tens of
minutes for the rest of the analysis across the six subjects. Much
of this data can be processed in parallel, further decreasing com-
putation times. Such improvement in compute times makes this
analysis possible for clinical use.
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These analytic strategies only represent initial attempts at char-
acterization of scale-slopes of broadband ECoG, such techniques
are applicable to clinical studies. The inherent similarity and rela-
tive stability of such data may provide an easy way to distinguish
artifact, as sections of ECoG recordings with artifact often display
substantially different PSD’s. Scale-free slope data is less affected
by narrow band artifacts, and significant deviations from scale-free
behavior may in fact be an excellent method of artifact detection.

The classification of awake and SWS state data has obvious
clinical utility, and the use of scale-free slopes may provide an
additional method for automated state scoring. Future studies will
include trending of continuous data as reported in Figure 9. Such
data may not only provide new methods for characterizing stable
neural states, but also the nature and sharpness of state transitions.
Such transitions could be global or local, with recent reports show-
ing clear local differences in sleep state by region (Mascetti et al.,
2011; Nir et al,, 2011). The higher spatial sampling available in
ECoG recordings may provide additional insight as to whether the
brain performs state transitions globally or locally, in an orderly
anatomic gradient or by brain sub-network.

A general characteristic of these scale-free slope data is its rela-
tive stability, emphasizing the scale-free nature of brain electrical
activity. This general stability suggests that much of ongoing brain
activity can be thought of as a scaffolding upon which cognitive
activity rides, similar to the spontaneous fluctuations observed in
BOLD fMRI (Raichle, 2010). Though such behavior is expected in
truly scale-free processes, such stability is very useful in detecting
when deviation from scale-free behavior might be artifactual, a
key limitation in trying to perform computational studies on both
clinical and research ECoG, or arises specifically from activity of
locally concentrated active cognitive processes.

In exploring the differences between awake and SWS ECoG,
these analytic techniques show that no changes in a single
frequency range best characterizes differences between these two
divergent biological states. Establishing the nature and values of
scale-free slopes in ECoG data from awake and SWS states, the

two most widely divergent neural states seen in normal daily brain
activity, allows us to begin to develop a framework for the devel-
opment of automated state classification using scale-free slopes.
Establishing the extremes and variability in data across anatomic
regions and subjects is necessary for tuning the analytic strategies
for automated classification. The results of the current analysis will
need to be extended to larger numbers of independent datasets
to determine the ultimate value of using scale-free slope indices
for such state classification, particularly across the more subtle
changes in quiet non-REM sleep (stages 1-4), and distinguishing
active sleep (REM) and awake ECoG data.

Many extensions to the current analytic methods are easily
added. The current MMLA approach categorized single electrode
data from single 30s time intervals and does not integrate the
information across all electrodes at a particular time point for a
global state assignment. In addition, state assignments could be
tuned using knowledge of the states surrounding the current time
as changes in slope-free indices across state transitions shown in
Figure 10 are better understood. Such potential additions would
further improve performance of an automated state classifier. In
the present report, however, our goal was to demonstrate the util-
ity of characterizing awake and SWS brain activity using scale-free
indices across the available frequency spectrum.
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The Movie S1 for this article can be found online at
http://www.frontiersin.org/Sleep_and_Chronobiology/10.3389/
fneur.2012.00076/abstract

Movie S1 | Scale-free properties of ECoG Movie.AVI. Animation of PSD plots
across 120 min of consecutive data during with separated into 5 min sections
from start (S00) to finish (S24) during which subject 1 falls asleep (awake to
several epochs of SWS illustrated in Figure 10). Colors in PSD data show
frequency ranges linked to plot on right showing the segment slope values.
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