ORIGINAL RESEARCH ARTICLE
published: 21 December 2012
doi: 10.3389/fneur.2012.00177

{frontiers in
NEUROLOGY

Acute blast injury reduces brain abeta in two rodent
species

Rita De Gasperi'?3, Miguel A. Gama Sosa’?3, Soong Ho Kim*, John W. Steele*®, Michael C. Shaughness?®,
Eric Maudlin-Jeronimo®, Aaron A. Hall®, Steven T. DeKosky’, Richard M. McCarron®,
Madhusoodana P Nambiar®, Sam Gandy?**°, StephenT. Ahlers® and Gregory A. Elder?**°#

" Research and Development Service, James J. Peters Department of Vieterans Affairs Medical Center, Bronx, NY, USA
2 Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA

3 Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA

4 Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA

® Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA

¢ Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, USA

7 Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA

8 Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
9 Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA

Edited by:
Cameron Bass, Duke University, USA

Reviewed by:

William D. Watson, Uniformed
Services University, USA

Karin A. Rafaels, Army Research
Laboratory, USA

*Correspondence:

Gregory A. Elder, Neurology Service
(3E16), James J. Peters Veterans
Affairs Medical Center, 130 \West
Kingsbridge Road, Bronx, NY 10468,
USA.

e-mail: gregory.elder@va.gov

Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality
in the conflicts in Irag and Afghanistan. How the primary blast wave affects the brain is not
well understood. In particular, it is unclear whether blast injures the brain through mecha-
nisms similar to those found in non-blast closed impact injuries (nNbTBI). The p-amyloid (AB)
peptide associated with the development of Alzheimer’s disease is elevated acutely follow-
ing TBI in humans as well as in experimental animal models of nbTBI. We examined levels
of brain A following experimental blast injury using enzyme-linked immunosorbent assays
for A 40 and 42. In both rat and mouse models of blast injury, rather than being increased,
endogenous rodent brain AB levels were decreased acutely following injury. Levels of the
amyloid precursor protein (APP) were increased following blast exposure although there
was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike
the findings in nbTBI animal models, levels of the B-secretase, p-site APP cleaving enzyme
1, and the y-secretase component presenilin-1 were unchanged following blast exposure.
These studies have implications for understanding the nature of blast injury to the brain.
They also suggest that strategies aimed at lowering Ap production may not be effective for
treating acute blast injury to the brain.

Keywords: abeta, amyloid precursor protein, -site APP cleaving enzyme 1, blast, mouse, presenilin-1, rat, traumatic

brain injury

INTRODUCTION
Blast-induced brain injury has been of longstanding interest in
military head trauma (Jones et al., 2007). Recently, there has been
renewed interest in blast related traumatic brain injury (TBI)
because of the frequency of blast injury in the conflicts in Iraq and
Afghanistan (Elder et al., 2010). How the primary blast wave itself
affects the brain (as differentiated from the deceleration injury
where the brain is injured by a person hitting an object, such as
a wall or the ground) is not well understood (Cernak and Noble-
Haeusslein, 2010). Direct tissue damage, bleeding, and diffuse
axonal injury (DAI) are the best known pathophysiological mech-
anisms associated with the type of blunt impact injuries that occur
in most non-blast closed impact injuries (nbTBI; Gennarelli and
Grahm, 2005). However, whether blast injures the brain through
mechanisms similar to those found in nbTBI is unknown.
Several proteins associated with neurodegenerative diseases
accumulate in brain following nbTBI, including a-synuclein, tau,
the amyloid precursor protein (APP), and its product the f-
amyloid (AP) protein (Uryu et al., 2007). Accumulation of AB

protein is most associated with the development of Alzheimer’s
disease (AD), and there has been much interest in whether its
upregulation following TBI may explain the epidemiological asso-
ciation between a history of prior TBI and the subsequent devel-
opment of AD (DeKosky et al., 2010; Johnson et al., 2010). Indeed,
changes in AB occur rapidly after acute TBI; diffuse cortical AB
deposits and increased levels of soluble AB have been observed
in humans as early as 2 h after a severe TBI (Ikonomovic et al.,
2004; DeKosky et al., 2007, 2010; Johnson et al., 2010). There is
also a well-documented synergy between TBI and outcome of TBI
in carriers of the apolipoprotein E €4 allele (Mayeux et al., 1995;
Zhou et al., 2008), a connection that suggests some role for Ap in
TBI outcome.

Elevations of AP have also been seen acutely in many (Smith
et al., 1998; Abrahamson et al., 2009; Loane et al., 2009, 2011; Tran
et al., 2011; Tian et al., 2012; Yu et al.,, 2012; Zhang et al., 2012)
although not all (Schwetye et al., 2010) experimental animal mod-
els of nbTBI, along with increased expression of components of
the y-secretase complex as well as p-site APP cleaving enzyme 1
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(BACEL), the principal B-secretase (Blasko et al., 2004; Chen et al.,
2004; Nadler et al., 2008; Loane et al., 2009; Zohar et al., 2011).
These observations are all consistent with increased processing of
APP (producing increased AB) after TBI. Studies in nbTBI animal
models also consistently reveal increased APP expression acutely
following TBI (Murakami et al., 1998; Van Den Heuvel et al., 20005
Ciallella et al., 2002; Chen et al., 2004).

All prior studies examining AP levels in experimental animals
have been performed using models that mimic the types of con-
tusional and diffuse brain injuries associated with nbTBI closed
impact head injury (Abrahamson et al., 2009; Loane et al., 2009,
2011; Schwetye et al., 2010; Tran et al., 2011; Tian et al., 2012; Yu
et al., 2012; Zhang et al., 2012). Whether blast TBI activates pri-
mary and secondary cascades similar to those activated in nbTBI
is unknown. In ongoing studies we have been examining the acute
effects of blast in rat and mouse models (Wang et al., 2011; Ahlers
et al., 2012; Elder et al., 2012). During the course of these studies
frozen brain tissue was collected across a range of blast exposures
corresponding to a spectrum of mild to severe TBI in the rat and
severe TBI in the mouse. Here we took advantage of the availability
of this tissue to examine levels of brain AP following experimental
blast injury.

MATERIALS AND METHODS

ANIMALS

Adult male Long Evans Hooded rats (250—350 g; 10—12 weeks age;
Charles River Laboratories International, Inc., Wilmington, MA,
USA) or C57BL/6 mice (8—10 weeks old; 22-26 g; Jackson Labo-
ratories, Bar Harbor, ME, USA) were used as subjects. All studies
were approved by the Institutional Animal Care and Use Commit-
tees of the Naval Medical Research Center, the Walter Reed Army
Institute of Research (WRAIR), and the James J. Peters VA Medical
Center.

BLAST OVERPRESSURE EXPOSURE

Rats were subjected to overpressure exposure using the WRAIR
shock tube which simulates the effects of air blast exposure under
experimental conditions. The shock tube hasa 12” circular diame-
ter and is a 19.5-ft long steel tube divided into a 2.5-ft compression
chamber that is separated from a 17-ft expansion chamber. The
compression and expansion chambers are separated by polyeth-
ylene Mylar™sheets (Du Pont, Co., Wilmington, DE, USA) that
control the peak pressure generated (Chavko et al., 2007; Elder
etal., 2010). The peak pressure at the end of the expansion cham-
ber was determined by piezoresistive gages specifically designed for
pressure-time (impulse) measurements (Model 102M152, PCB,
Piezotronics, Inc., Depew, NY, USA).

Individual rats were anesthetized using an isoflurane gas anes-
thesia system consisting of a vaporizer, gas lines and valves, and
an activated charcoal scavenging system adapted for use with
rodents. Rats were placed into a polycarbonate induction cham-
ber, which was closed and immediately flushed with 5% isoflurane
mixture in air for 2 min. Rats were placed into a cone shaped
plastic restraint device and then placed in the shock tube. Move-
ment was further restricted during the blast exposure using 1.5 cm
diameter flattened rubber tourniquet tubing. Three tourniquets
were spaced evenly to secure the head region, the upper torso,

and lower torso while the animal was in the plastic restraint cone.
The end of each tubing was threaded through a toggle and run
outside of the exposure cage where it was tied to firmly affix the
animal and prevent movement during the blast overpressure expo-
sure without restricting breathing. Rats were assigned randomly
to sham or blast condition without any body shielding, result-
ing in full body exposure to the blast wave with the head, upper
torso, and lower torso fixed in a plastic restraint cone. Two body
orientations were tested — with the rat’s head facing toward or
sideways (at a right angle to the wave, counterbalanced left and
right) to the blast wave. Blast exposed animals received single
36.6 (n=15), 74.5 (n=26), or 116.7 (n=19) kilopascal (kPa)
exposures. Sham exposed animals (1 =9) were treated identically
except that they did not receive a blast exposure. Mice (1 = 6 blast
and 6 control) were treated in a similar manner and received
a single 147 kPa blast exposure with the head perpendicular to
the direction of the blast wave in a prone position (Wang et al.,
2011).

ENZYME-LINKED IMMUNOSORBENT ASSAYS FOR ABETA

Animals were euthanized by CO, narcosis or decapitation after
isoflurane anesthesia and the brains were quickly removed, frozen,
and stored at —80°C until use. Triton X-100 fractions from one
hemisphere in the case of rats, or whole brain in the case of mice,
were prepared using a protocol adapted from that described in
Kawarabayashi et al. (2001) and described in more detail by Steele
et al. (2009). The tissues were homogenized with a hand held
homogenizer in 50 mM Tris-HCl buffer, pH 7.4, 150 mM NacCl, 1%
Triton X-100 buffer supplemented with a protease/phosphatase
inhibitor cocktail (Sigma Aldrich, St. Louis, MO, USA) at a con-
centration of 0.2 mg fresh tissue/ml of buffer. The homogenates
were centrifuged at 100,000 x g for 1 h at 4°C. The supernatants
were decanted and AP 40 and 42 levels were determined by
Enzyme-linked immunosorbent assays (ELISAs) using a commer-
cially available kit that detects rodent AR (Wako, Richmond, VA,
USA). The pellets were then extracted in the above buffer contain-
ing 0.25% Na deoxycholate and 0.5% SDS, centrifuged and the
supernatant saved (SDS extract).

WESTERN BLOTTING

Protein samples (Triton X-100 extracts for APP and BACEL; SDS
extracts for presenilin-1) were separated by SDS-PAGE and blot-
ted onto polyvinylidene difluoride (PVDF) membranes (Millipore
Corporation, Billerica, MA, USA). The primary antibodies utilized
were a mouse monoclonal anti-APP (1:1500; Mab348, Millipore
Corp.), a rabbit polyclonal anti-BACE1 (1:1500; Millipore Corp.),
arabbit polyclonal anti-B-tubulin antibody (1:4000; Abcam, Cam-
bridge, UK) and the mouse monoclonal antibody 33B10 against
the C-terminal fragment of presenilin-1 (1:2000; gift of Dr. Niko-
laos Robakis, Mount Sinai School of Medicine, New York, NY,
USA). The membranes were probed with the appropriate HRP-
conjugated secondary antibodies (GE Life Sciences, Piscataway,
NJ, USA), and the protein bands were visualized with the ECL
Prime reagent (GE Life Sciences). For reprobing, the membranes
were treated with Re-Blot Plus strong stripping solution (Millipore
Corp.) according to the manufacturer’s instructions. Quantifi-
cation was performed using Image Quant TL software (GE Life
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Sciences). Levels of the target proteins were normalized to levels
of B-tubulin.

IMMUNOHISTOCHEMISTRY

Rats were perfused with 4% paraformaldehyde in phosphate
buffered saline (PBS). The brains were dissected and cut into
50 um thick sections using a Vibratome (Leica, Wetzlar, Ger-
many). Immunohistochemical staining was performed as previ-
ously described (Gama Sosa et al., 2010) using a rabbit anti-APP
antibody APP369 (1:700), which recognizes the APP C-terminus
and detects full-length APP and C-terminal fragments of APP
(Keilani et al., 2012) and SMI-31, a mouse monoclonal antibody
that recognizes phosphorylated epitopes on the mouse mid-sized
and heavy neurofilament proteins (1:500; Covance, Denver, PA,
USA).

STATISTICAL ANALYSIS

Depending on the experiment, statistical tests employed uni-
variate or factorial analysis of variance (ANOVA), or unpaired
t-tests. Equality of variance was first assessed using the Levene test.
When the Levene test was not significant (comparisons yielding
p > 0.05), between-group comparisons were made using unpaired
t-tests (Student’s), and univariate or factorial ANOVA. Post hoc
comparisons following univariate ANOVA were performed using
Dunnett’s test with sham exposed controls treated as the refer-
ence group. When the Levene statistic was significant (p < 0.05),
unpaired f-tests were employed using the Welch correction for
unequal variances. Statistical tests were performed using SPSS
20.0 (SPSS, Chicago, IL, USA) or GraphPad Prism 5.0 (GraphPad
Software, San Diego, CA, USA).

RESULTS
DECREASED LEVELS OF AB IN RATS EXPOSED TO BLAST
OVERPRESSURE INJURY
We utilized a rat model of TBI in which adult male rats received
single 36.6, 74.5, or 116.7 kPa exposures. The physical character-
istics of the blast wave have been previously described (Ahlers
et al,, 2012) and a representative tracing of a 36.6 kPa blast wave
exposure is shown in Figure 1. Two body orientations were tested
with the rats facing toward or sideways (counterbalanced left and
right) to the blast wave with the head and body fixed in a plastic
restraint cone to restrict movement. Rats were sacrificed either 24 h
or 1 week after receiving the blast exposure and Triton X-100 frac-
tions were prepared from one hemisphere using a protocol adapted
from Kawarabayashi etal. (2001). In preliminary studies we found
that most rat Ap 40 and 42 were found in the Triton X-100 sol-
uble fraction, compared to the Tris buffered saline and formic
acid-extractable fractions (Figure Al in Appendix). Therefore, for
these studies, the Triton X-100 fraction was analyzed.

Initially we examined all body orientations to blast together
in one pooled analysis. A univariate ANOVA showed that Af 42
levels were significantly different from controls (Fg,¢, =5.911;
p <0.001). The effect of acute blast exposure on brain Af lev-
els at each blast level is shown in Figure 2 and Table 1. Compared
to sham exposed controls, the 36.6 kPa exposure at 24 h (p = 0.002,
Dunnett’s test) and 1week (p=0.005) as well as the 74.5kPa
exposure at 24h (p=0.002) resulted in significantly lower lev-
els of AB 42. In the 74.5kPa exposure at 1week, the level of
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FIGURE 1 | A representative tracing of a 36.6 kPa blast wave exposure
is shown. The red line indicates dynamic pressure and the blue line static
pressure. The blast overpressure duration (ms) was 4.1 £+ 0.3 (SEM) and the
overpressure integral (kPa*ms) was 75.2 +4.5. Characteristics of the 74.5
and 116.7 kPa blast waves can be found in Ahlers et al. (2012).

AP 42 was decreased when compared to the control using an
unpaired ¢-test (p =0.02) although this decrease did not reach
statistical significance when multiple comparisons were corrected
for using Dunnett’s test (p=0.067). By contrast, the highest-
level exposure (116.7kPa) did not affect levels of brain Ap 42
at 24h and affected AP 42 at 1 week only if multiple statistical
comparisons were ignored (Table 1). While a univariate ANOVA
indicated that AR 40 was also affected following blast exposure
(Fe,61 =4.936; p <0.001), pairwise comparison of each experi-
mental blast condition to a matched control revealed that only the
74.5 exposure at 1 week was significantly lower than the control
(p=0.006 Dunnett’s test).

NO EFFECT OF ORIENTATION TO THE BLAST WAVE ON Ap LEVELS IN
RATS EXPOSED TO BLAST OVERPRESSURE INJURY

Since orientation to the blast wave might affect the brain’s response
due to alignment of long tracts or structural discontinuities, we
compared both frontal and side/lateral/perpendicular exposures
(Figure 3). A two-way ANOVA using blast exposure and orien-
tation as fixed variables did not reveal any interaction effect of
wave direction and orientation for either AB 40 (F4, 44 =0.979;
p=0.42) or 42 (F4,45=1.102; p=10.36). Pairwise comparisons
(unpaired t-tests) revealed no differences between the frontal and
side (lateral) orientations at any of the blast pressures tested, for
either AB 40 or 42. Thus, head/skull orientation to the blast wave
does not appear to affect the AP response in brain.

INCREASED LEVELS OF APP BUT NO EVIDENCE FOR ABNORMAL APP
STAINING OF AXONS IN RATS EXPOSED TO BLAST OVERPRESSURE
INJURY

Levels of APP expression increase acutely after experimental TBI
in rodents (Loane et al., 2009; Tian et al., 2012; Zhang et al., 2012).
To determine whether blast affects expression of APP, we examined
APP levels by quantitative Western blotting. Since the most consis-
tent changes in AB 42 were in the 36.6 kPa exposures, we compared
36.6 kPa blast exposure to their paired (non-blast exposed) con-
trols. We found APP levels were higher in blast exposed animals
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FIGURE 2 | Enzyme-linked immunosorbent assays for Ag 40 (A,B)
and 42 (C,D) were performed on Triton X-100 brain extracts from rats
that were subjected to blast exposures of 36.6, 74.5, or 116.7 kPa and
harvested at 24 hours (24 h) or 1 week (1 wk) post-blast exposure.
Controls consisted of sham exposed rats harvested at 24 h (n=4) or

1 week (n=05) post-exposure. Because neither Ap 40 (p=0.29, unpaired
t-test) nor 42 (p =0.84) levels differed between the controls harvested at
24 h and 1 week, the two groups were pooled and treated as a single

B AB 40

%

control group (n=9). Numbers of samples in each group are indicated in
Table 1. Values are presented + the SEM. Asterisk indicates values that
were significantly different from controls based on Dunnett's test. Note
the decrease in AB 42 in rats exposed to a 36.6 kPa blast at 24 h and

1 week post-exposure as well as 74.5 kPa exposed rats at 24 h. By
contrast A 40 was decreased in only the 74.5kPa exposed rats at

1 week. Further statistical comparisons are discussed in the text and
presented in Table 1.

both 24h (p=0.05, unpaired ¢-test) and 1week post-exposure
(p=0.01; Figure 4). Thus, blast exposure increased APP levels
despite reductions in AB 42.

Amyloid precursor protein accumulation in axons is widely
used as a marker of axonal injury in both humans and experimen-
tal animal models of nbTBI (Gentleman et al., 1993; Sherriff et al.,
1994; Lewen et al., 1995; Pierce et al., 1996; Stone et al., 2000).
To determine whether abnormal axonal staining was present we
performed APP immunostaining on tissue harvested from blast
exposed rats at 24 h following a 74.5 kPa exposure comparing these
to sham exposed controls. Neither controls nor blast exposed rats
showed any evidence of axonal staining with APP (Figure 5).

UNCHANGED LEVELS OF BACE1 AND PRESENILIN-1 IN RATS EXPOSED
TO BLAST OVERPRESSURE INJURY

In experimental animal models of nbTBI, BACE1 (Blasko et al,,
2004; Chen et al., 2004; Loane et al., 2009; Zohar et al., 2011) along
with presenilin-1 (Chen et al., 2004; Nadler et al., 2008; Loane
et al., 2009), a component of the y-secretase complex, have been

reported to be increased (Blasko et al., 2004; Chen et al., 2004;
Nadler et al., 2008; Loane et al., 2009; Zohar et al., 2011). However,
we did not find any changes in levels of either BACE1 (Figure 6)
or presenilin-1 (Figure 7) by Western blotting in rats subjected to
36.6 kPa blast exposures at 24 h or 1 week after exposure.

ACUTE DECREASES IN LEVELS OF Ag IN MICE EXPOSED TO BLAST
OVERPRESSURE INJURY

We next determined whether similar changes might be found in
another rodent species. C57BL/6 mice were subjected to a single
147 kPa exposure, and the brains were harvested 24 h after expo-
sure. Both AB 40 (p < 0.001, unpaired ¢-test) and AR 42 (p < 0.001)
were significantly decreased in blast exposed mice, thus showing
that lowering of AP is likely a general response in rodent species
to acute blast (Figure 8).

DISCUSSION

Epidemiological studies support an association between single
incident severe TBI and the later development of AD (DeKosky
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Table 1| Levels of abeta 40 and 42 in blast exposed rats.

N Mean SEM SD Dunnett’s test Unpaired t-test
vs. control vs. control
AB 40
Control 9 635.5 28.27 84.82 NA NA
36.6kPa-24 h 5 6070 31.88 71.28 0.99 0.53
36.6 kPa-1 week 10 676.6 28.00 88.54 0.88 0.31
74.5kPa-24 h 18 564.2 31.83 135.0 0.32 0.16
74.5 kPa-1 week 468.1 31.04 8779 0.006 0.001
116.7 kPa-24 h 9 684.3 36.37 109.1 0.80 0.30
116.7 kPa-1 week 9 625.8 11.78 35.35 1.00 0.75
AB 42
Control 9 37.03 1.437 431 NA NA
36.6kPa-24h 5 26.84 1.273 2.846 0.002 0.0005
36.6 kPa-1 week 10 29.29 2.096 6.627 0.005 0.008
74.5kPa-24 h 18 29.46 1.086 4.606 0.002 0.0004
74.5 kPa-1 week 8 31.13 1.828 5.174 0.067 0.02
116.7 kPa-24 h 9 3744 1.698 5.095 1.00 0.85
116.7 kPa-1 week 10 32.81 1.146 3.623 0.24 0.03
N, number; NA, not applicable; SEM, standard error of the mean; SD, standard deviation.
A 36.6 kPa (1wk) B 74.5kPa (24h) C 745 kPa (1lwk) D 116.7 kPa (24h) E 116.7 kPa (1wk)
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FIGURE 3 | Results of Ap 40 (A-E) and 42 (F-J) ELISAs onTriton X-100 the pair wise comparisons (unpaired t-tests) demonstrating that orientation to
brain extracts are presented for rats exposed to frontal or side blast the blast had no effect on levels of AB 40 or 42. Further statistical tests are
exposures of 36.6 (A,F), 74.5 (B,C,G,H), or 116.7 kPa (D,E,l,J) harvested at discussed in the text. Sample sizes were: (A,F) (6 frontal and 4 side), (B,G) (8
24 hours (24 h) or 1week (1wk) post-blast exposure. Values are presented  frontal and 10 side), (C,H) (3 frontal and 5 side), (D,l) (5 frontal and 4 side), and
+ the SEM. There were no statistically significant differences between any of (E,J) (4 frontal and 5 side).

etal.,2010; Johnson et al., 2010). A variety of studies in humans as
well as experimental animals have documented the rapid appear-
ance of AP deposits and increased A levels in the setting of acute
TBI (Ikonomovic et al., 2004; DeKosky et al., 2007; Abrahamson
et al., 2009; Loane et al., 2009, 2011; Tran et al., 2011; Tian et al.,
2012; Yu et al., 2012; Zhang et al., 2012) although none of these
studies have included subjects with blast injuries.

In this series of studies we determined effects of blast injury
on AP levels in rodent brain, using both rat and mouse mod-
els of blast-induced brain injury. Three blast levels in rats were
tested. Importantly prior studies using these models established
that exposures up to 74.5 kPa, while representing a blast level that
is transmitted to brain (Chavko et al., 2007), lead to no persistent
neurological impairments (Ahlers et al., 2012), nor result in gross
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FIGURE 4 | Western blotting was performed on hemi brain Triton
X-100 extracts from sham exposed (controls) or rats exposed to
36.6 kPa blast injury harvested at 24 h (A) or 1 week post-blast
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B-tubulin (B-tub) as a loading control. Levels of APP are expressed as the
ratio of APP to B-tubulin (+SEM) for the experiments in (A) in (C,D) and
for (B) in (E,F). Asterisk indicates p=0.05 or less vs. control (unpaired
t-test). Note the increase in APP levels at both 24 h and 1 week
post-blast exposure.

neuropathological effects or lung pathology (Ahlers et al., 2012).
Thus, exposures of 36.6 or 74.5 kPa are consistent with those types
of blast that might be associated with mild TBI or subclinical
blast exposure. By contrast, moderate to severe TBIs are associated
with evident neuropathology as well as significant neurological
deficits and indeed 116.7 kPa blast exposures were often associ-
ated with transient loss of the righting reflex — which is believed
to approximate loss of consciousness in rodents as well as impair-
ment of motor and cognitive function (Ahlers et al., 2012). In
addition, approximately 30% of 116.7 kPa blast exposed animals
had gross cerebral and subdural hemorrhages as well as contu-
sions (Ahlers et al., 2012) and 116.7 kPa exposures also resulted in
significant lung pathology (Chavko et al., 2006, 2007; Ahlers et al.,
2012).

In our studies we showed that, in both rats and mice, blast
injury leads to diminished levels of AB 42 in rats and decreased
levels of both AB 40 and 42 in mice. Interestingly, the effect on Af
42 was most prominent in rats exposed to the lower blast expo-
sures (36.6 and 74.5 kPa), while there were no effects on AP 42 at
the 116.7 kPa exposure level. In mice, only a single blast exposure
of 147 kPa was tested. While it is difficult to directly compare blast
exposures in mice and rats, in mice this exposure is typically asso-
ciated with increased righting reflex time, weight loss, production
of reactive oxygen species, motor dysfunction and occasionally
mild cerebral hemorrhages and other neuropathology making it
more equivalent to a severe TBI (Wang et al., 2011). Such higher
blast pressures are also typically associated with lung pathology
that may worsen aspects of blast-associated brain injury by effects
mediated through the autonomic nervous system (Cernak, 2010).
Although, the converse may also be true, in that blast exposure to
the brain may contribute to lung pathology (Cernak, 2010).

Although prior studies have shown that a frontal orientation to
the blast wave is associated with more acute behavioral effects

(Ahlers et al., 2012), there was no effect of a frontal vs. lat-
eral (side) orientation on A levels. There were also no con-
sistent effects on AP 40 levels in rats, with only the 74.5kPa
exposure showing diminished levels 1 week post-exposure. While
AB 40 was also decreased by ~15% in the one mouse expo-
sure, this decrease was much less than the ~50% decline
seen in AP 42, suggesting that in both species the effect
of blast is much greater on AP 42 levels than on Af 40
levels.

Why A typically increases acutely following TBI is not entirely
clear. The AP peptide itself is derived from processing of APP,
the larger precursor protein. In AD, the 39-42 amino acid AB
peptide deposits in senile plaques (Gandy, 2005). Many in vitro
and in vivo studies have demonstrated that in particular the
longer AP 42 species can be neurotoxic and that shunting of
APP processing toward AP 42 production sets off a chain of
pathological events (Gandy, 2005). Multiple studies in experi-
mental animals have found that APP expression increases acutely
following TBI (Murakami et al., 1998; Van Den Heuvel et al,
2000; Ciallella et al., 2002; Chen et al., 2004). Simultaneously
there is increased expression of BACEL as well as elements of
the y-secretase complex (Blasko et al., 2004; Chen et al., 2004;
Nadler et al., 2008; Loane et al., 2009; Zohar et al., 2011) — all
of which would predict that there would be increased process-
ing of APP toward AP leading to great interest in the possi-
bility that similar neurotoxic mechanisms might be operative
in both AD and TBI. However, this would not explain the
results here since, despite increased APP levels, in rats sub-
jected to the 36.6kPa blast exposure levels of AB 42 were
reduced.

The paradoxical elevation of APP in the setting of reduced Af
production might be explained by accumulation of unprocessed
APP in axons, and indeed, accumulation of APP in axons is used
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Control
D

Control

FIGURE 5 | Rats were exposed to 74.5 kPa or control (i.e., sham)
conditions and were sacrificed 24 h later. Sections from control
(A-C,G-1) and blast exposed (D-FJ-L) were immunostained with the
rabbit anti-APP antibody 369 (A,D,G,J) directed against the APP
C-terminus (green) and SMI-31 (B,E,H,K) a mouse monoclonal antibody
which recognizes phosphorylated epitopes on the mouse mid-sized and
heavy neurofilament proteins that are found mostly in axons (red).
Sections counterstained with a DAPI nuclear stain (blue) are shown in

(C,FLL). Staining in the corpus callosum (A-F) and layer 2 of the piriform
cortex (G-L) is shown. Note the lack of APP staining in the corpus
callosum (CC) in either blast exposed or control and the fine axonal
staining with SMI-31 which is indicated by arrows in (B,E,H,K) that is
present in both blast and control. Staining of neurons (arrows) in layer 2
of the piriform cortex is shown as a positive control for staining with the
anti-APP antibody (G,J). The margins of layer 2 are indicated by broken
lines in (l,L). Scale bar: 10 um.

widely as a marker of axonal injury in both humans and exper-
imental animal models of TBI (Gentleman et al., 1993; Sherriff
et al., 1994; Lewen et al., 1995; Pierce et al., 1996; Stone et al.,
2000). However, while one study has reported APP accumulation
in axons following blast exposure (Kuehn et al., 2011), others have
not (Garman et al., 2011; Pun et al., 2011; Risling et al., 2011;
Ahlers et al., 2012). Risling et al. (2011), for example, noted no
APP accumulation in axons of rats exposed to 130 and 260 kPa
exposures. Garman et al. (2011) studied rats exposed to greater
than 240 kPa (35 psi) blast exposures and found widespread evi-
dence of DAI by silver staining. However, despite evidence of

extensive axonal injury by silver staining, APP-stained sections
typically showed only minimal axonal staining, except for rats
studied at 24 h post-exposure where some mild axonal staining
was evident within the deep cerebellar white matter and adja-
cent to some foci of acute neuronal degeneration. Interestingly,
Pun et al. (2011) although not commenting on axonal staining
did note more APP positive cells in the white matter of rats
at 1 day following blast exposures of 48.9 or 77.3 kPa which are
quite similar to those studied here. However, in the present stud-
ies we did not observe any axonal staining with APP or any
obvious alteration in perikaryal staining in blast exposed rats.
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FIGURE 6 | Western blotting was performed on hemi brain Triton reprobed for B-tubulin (B-tub) as a loading control. Levels of BACE1
X-100 extracts from sham exposed (controls) or rats exposed to are expressed as the ratio of BACE1 to p-tubulin (+=SEM) for the
36.6 kPa blast injury harvested at 24 h (A) or 1 week post-blast experiments in (A) in (C,D) and for (B) in (E,F). Note the lack of
exposure (B). The top panel in each set shows blotting with an change in BACE1 levels in rats exposed to a 36.6 kPa blast at either
antibody that recognizes BACE1. In the lower panels the blots were 24 h or 1 week.
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FIGURE 7 | Western blotting was performed on hemi brain SDS extracts
from sham exposed (controls) or rats exposed to 36.6 kPa blast injury
harvested at 24 h (A) or 1 week post-blast exposure (B). Blotting was
performed with an antibody that recognizes presenilin-1 (PS1) and the blots

were reprobed for B-tubulin (B-tub). Levels of presenilin-1 are expressed as the
ratio of presenilin-1 to B-tubulin (SEM) for the experiments in (A) in (C,D)
and for (B) in (E,F). Note the lack of change in PS1 levels in rats exposed to a
36.6 kPa blast at either 24 h or 1 week.
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FIGURE 8 | Enzyme-linked immunosorbent assays for A 40 (A,B) and 42
(C,D) were performed on total brain extracts from mice exposed to blast
injuries of 147 kPa and harvested at 24 h post-blast exposure. Controls
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consisted of sham exposed mice. Values are presented the £SEM. Asterisk
indicates values that were significantly different from controls (unpaired
t-tests). Note the reduction in A 40 and 42.
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Thus pure blast exposure does not appear to induce accumu-
lation of APP in axons in the consistent fashion apparent in

nbTBIL

Future studies will be needed to elucidate the mechanism
underlying the acute effects of blast exposure on AP production.
These studies have practical implications for the treatment of acute
blast injury, since blocking AB production by a variety of phar-
macological or genetic means has been reported to reduce tissue
damage acutely and improve outcome following controlled corti-
cal impact injuries (CCI) in mice (Abrahamson et al., 2009; Loane

REFERENCES

Abrahamson, E. E., Ikonomovic, M. D.,
Dixon, C. E., and Dekosky, S. T.
(2009). Simvastatin therapy prevents
brain trauma-induced increases in
beta-amyloid peptide levels. Ann.
Neurol. 66,407-414.

Ahlers, S. T., Vasserman-Stokes, E.,
Shaughness, M. C., Hall, A. A,
Shear, D. A., Chavko, M., et al.
(2012). Assessment of the effects
of acute and repeated exposure
to blast overpressure in rodents:
toward a greater understanding
of blast and the potential ram-
ifications for injury in humans
exposed to blast. Front. Neurol. 3:32.
doi:10.3389/fneur.2012.00032

Blasko, I, Beer, R., Bigl, M., Apelt, J.,
Franz, G., Rudzki, D., et al. (2004).
Experimental traumatic brain injury
in rats expres-
sion, production and activity of
Alzheimer’s disease beta-secretase
(BACE-1). J. Neural Transm. 111,
523-536.

Cernak, 1. (2010). The importance
of systemic response in the
pathobiology  of  blast-induced
neurotrauma. Front. Neurol. 1:151.
doi:10.3389/fneur.2010.00151

Cernak, I., and Noble-Haeusslein, L.
J. (2010). Traumatic brain injury:
an overview of pathobiology with
emphasis on military populations.
J. Cereb. Blood Flow Metab. 30,
255-266.

Chavko, M., Koller, W. A., Prusaczyk,
W. K., and McCarron, R. M. (2007).
Measurement of blast wave by a
miniature fiber optic pressure trans-
ducer in the rat brain. J. Neurosci.
Methods 159, 277-281.

Chavko, M., Prusaczyk, W. K., and
McCarron, R. M. (2006). Lung
injury and recovery after exposure
to blast overpressure. J. Trauma 61,
933-942.

Chen, X. H., Siman, R., Iwata, A,
Meaney, D. E, Trojanowski, J. Q.,
and Smith, D. H. (2004). Long-term
accumulation of amyloid-beta, beta-
secretase, presenilin-1, and caspase-
3 in damaged axons following brain
trauma. Am. J. Pathol. 165, 357-371.

stimulates the

Ciallella, J. R., Ikonomovic, M. D.,
Paljug, W. R., Wilbur, Y. 1., Dixon,
C. E., Kochanek, P. M., et al. (2002).
Changes in expression of amyloid
precursor protein and interleukin-
1beta after experimental traumatic
brain injury in rats. J. Neurotrauma
19, 1555-1567.

DeKosky, S. T., Abrahamson, E. E., Cial-
lella, J. R., Paljug, W. R., Wisniewski,
S.R., Clark, R. S., et al. (2007). Asso-
ciation of increased cortical soluble
abeta42 levels with diffuse plaques
after severe brain injury in humans.
Arch. Neurol. 64, 541-544.

DeKosky, S. T., Ikonomovic, M. D., and
Gandy, S. (2010). Traumatic brain
injury: football, warfare, and long-
term effects. N. Engl. J. Med. 363,
1293-1296.

Elder, G. A., Dorr, N. P, De Gasperi,
R., Gama Sosa, M. A., Shaughness,
M. C., Maudlin-Jeronimo, E., et al.
(2012). Blast exposure induces post-
traumatic
traits in a rat model of mild trau-
matic brain injury. J. Neurotrauma
29, 2564-2575.

Elder, G. A., Mitsis, E. M., Ahlers,
S. T, and Cristian, A. (2010).
Blast-induced mild traumatic brain
injury. Psychiatr. Clin. North Am. 33,
757-781.

Gama Sosa, M. A., Gasperi, R. D,
Rocher, A. B., Wang, A. C., Janssen,
W. G., Flores, T., et al. (2010). Age-
related vascular pathology in trans-
genic mice expressing presenilin 1-
associated familial Alzheimer’s dis-
ease mutations. Am. J. Pathol. 176,
353-368.

Gandy, S. (2005). The role of cerebral
amyloid beta accumulation in com-
mon forms of Alzheimer disease. J.
Clin. Invest. 115,1121-1129.

Garman, R. H., Jenkins, L. W., Switzer,
R. C. III, Bauman, R. A., Tong, L.
C., Swauger, P. V., et al. (2011). Blast
exposure in rats with body shield-
ing is characterized primarily by dif-
fuse axonal injury. J. Neurotrauma
28, 947-959.

Gennarelli, T. A., and Grahm, D. L
(2005). “Neuropathology,” in Text-
book of Traumatic Brain Injury, eds J.

stress  disorder-related

etal., 2009, 2011). However, the studies reported here suggest that
such strategies may not be applicable to treatment of acute blast

injuries.

ACKNOWLEDGMENTS

This work was supported by grant 1101RX000179-01 from the
Department of Veterans Affairs. JWS is a trainee in the Integrated
Pharmacological Sciences Training Program supported by grant
T32GM062754 from the National Institute of General Medical
Sciences. We thank Dr. Nikolaos Robakis for gift of antibodies.

M. Silver, T. W. McAllister, and S. C.
Yudofsky (Arlington, VA: American
Psychiatric Publishing, Inc.), 27-50.

Gentleman, S. M., Nash, M. J., Sweet-
ing, C.J., Graham, D. L, and Roberts,
G. W. (1993). Beta-amyloid precur-
sor protein (beta APP) as a marker
for axonal injury after head injury.
Neurosci. Lett. 160, 139-144.

Ikonomovic, M. D., Uryu, K., Abra-
hamson, E. E., Ciallella, J. R., Tro-
janowski, J. Q., Lee, V. M., et al.
(2004). Alzheimer’s pathology in
human temporal cortex surgically
excised after severe brain injury. Exp.
Neurol. 190, 192-203.

Johnson, V. E., Stewart, W., and Smith,
D. H. (2010). Traumatic brain injury
and amyloid-beta pathology: a link
to Alzheimer’s disease? Nat. Rev.
Neurosci. 11, 361-370.

Jones, E., Fear, N. T., and Wessely,
S. (2007). Shell shock and mild
traumatic brain injury: a histori-
cal review. Am. J. Psychiatry 164,
1641-1645.

Kawarabayashi, T., Younkin, L. H.,
Saido, T. C., Shoji, M., Ashe, K.
H., and Younkin, S. G. (2001). Age-
dependent changes in brain, CSF,
and plasma amyloid (beta) protein
in the Tg2576 transgenic mouse
model of Alzheimer’s disease. J. Neu-
rosci. 21, 372-381.

Keilani, S., Lun, Y., Stevens, A. C.,
Williams, H. N., Sjoberg, E. R.,
Khanna, R., et al. (2012). Lyso-
somal dysfunction in a mouse
model of Sandhoff disease leads to
accumulation of ganglioside-bound
amyloid-beta peptide. J. Neurosci.
32,5223-5236.

Kuehn, R., Simard, P. E, Driscoll, 1.,
Keledjian, K., Ivanova, S., Tosun, C.,
etal. (2011). Rodent model of direct
cranial blast injury. J. Neurotrauma
28,2155-2169.

Lewen, A., Li, G. L., Nilsson, P., Ols-
son,Y.,and Hillered, L. (1995). Trau-
matic brain injury in rat produces
changes of beta-amyloid precursor
protein immunoreactivity. Neurore-
port 6,357-360.

Loane, D. J., Pocivavsek, A., Moussa,
C. E,, Thompson, R., Matsuoka, Y.,

Faden, A. L, et al. (2009). Amyloid
precursor protein secretases as ther-
apeutic targets for traumatic brain
injury. Nat. Med. 15, 377-379.

Loane, D. J., Washington, P. M., Var-
danian, L., Pocivavsek, A., Hoe, H.
S., Duff, K. E., et al. (2011). Mod-
ulation of ABCA1 by an LXR ago-
nist reduces beta-amyloid levels and
improves outcome after traumatic
brain injury. J. Neurotrauma 28,
225-236.

Mayeux, R., Ottman, R., Maestre,
G., Ngai, C,, Tang, M. X,, Gins-
berg, H., et al. (1995). Synergistic
effects of traumatic head injury and
apolipoprotein-epsilon 4 in patients
with Alzheimer’s disease. Neurology
45, 555-557.

Murakami, N., Yamaki, T., Iwamoto, Y.,
Sakakibara, T., Kobori, N., Fushiki,
S., et al. (1998). Experimental brain
injury induces expression of amy-
loid precursor protein, which may
be related to neuronal loss in the
hippocampus. J. Neurotrauma 15,
993-1003.

Nadler, Y., Alexandrovich, A., Grigori-
adis, N., Hartmann, T., Rao, K. S,
Shohami, E., et al. (2008). Increased
expression of the gamma-secretase
components presenilin-1 and nicas-
trin in activated astrocytes and
microglia following traumatic brain
injury. Glia 56, 552-567.

Pierce, J. E., Trojanowski, J. Q., Gra-
ham, D. 1., Smith, D. H., and McIn-
tosh, T. K. (1996). Immunohisto-
chemical characterization of alter-
ations in the distribution of amy-
loid precursor proteins and beta-
amyloid peptide after experimental
brain injury in the rat. J. Neurosci. 16,
1083-1090.

Pun, P. B, Kan, E. M., Salim, A., Li,
Z., Ng, K. C., Moochhala, S. M., et
al. (2011). Low level primary blast
injury in rodent brain. Front. Neurol.
2:19. doi:10.3389/fneur.2011.00019

Risling, M., Plantman, S., Angeria,
M., Rostami, E., Bellander, B. M.,
Kirkegaard, M., et al. (2011). Mecha-
nisms of blast induced brain injuries,
experimental studies in rats. Neu-
roimage 54(Suppl. 1), S89-S97.

www.frontiersin.org

December 2012 | Volume 3 | Article 177 | 9


http://dx.doi.org/10.3389/fneur.2012.00032
http://dx.doi.org/10.3389/fneur.2010.00151
http://dx.doi.org/10.3389/fneur.2011.00019
http://www.frontiersin.org
http://www.frontiersin.org/Neurotrauma/archive

De Gasperi et al.

Blast exposure reduces brain abeta

Schwetye, K. E., Cirrito, J. R., Esparza,
T. J., Mac Donald, C. L., Holtz-
man, D. M., and Brody, D. L. (2010).
Traumatic brain injury reduces sol-
uble extracellular amyloid-beta in
mice: amethodologically novel com-
bined microdialysis-controlled cor-
tical impact study. Neurobiol. Dis. 40,
555-564.

Sherriff, E E., Bridges, L. R., and Sival-
oganathan, S. (1994). Early detec-
tion of axonal injury after human
head trauma using immunocyto-
chemistry for beta-amyloid precur-
sor protein. Acta Neuropathol. 87,
55-62.

Smith, D. H., Nakamura, M., McIntosh,
T. K., Wang, J., Rodriguez, A., Chen,
X. H,, et al. (1998). c. Am. J. Pathol.
153, 1005-1010.

Steele, J. W., Kim, S. H., Cirrito, J. R.,
Verges, D. K., Restivo, J. L., West-
away, D., et al. (2009). Acute dos-
ing of latrepirdine (Dimebon), a
possible Alzheimer therapeutic, ele-
vates extracellular amyloid-beta lev-
els in vitro and in vivo. Mol. Neu-
rodegener. 4, 51.

Stone, J. R., Singleton, R. H., and
Povlishock, J. T. (2000). Antibod-
ies to the C-terminus of the beta-
amyloid precursor protein (APP): a
site specific marker for the detection

of traumatic axonal injury. Brain
Res. 871, 288-302.

Tian, L., Guo, R, Yue, X,, Lv, Q., Ye,
X.,Wang, Z., et al. (2012). Intranasal
administration of nerve growth fac-
tor ameliorate beta-amyloid deposi-
tion after traumatic brain injury in
rats. Brain Res. 1440, 47-55.

Tran, H. T., Laferla, F. M., Holtzman,
D. M., and Brody, D. L. (2011).
Controlled cortical impact trau-
matic brain injury in 3xTg-AD mice
causes acute intra-axonal amyloid-
beta accumulation and indepen-
dently accelerates the development
of tau abnormalities. J. Neurosci. 31,
9513-9525.

Uryu, K., Chen, X. H., Martinez, D.,
Browne, K. D., Johnson, V. E., Gra-
ham, D. L, et al. (2007). Multiple
proteins implicated in neurodegen-
erative diseases accumulate in axons
after brain trauma in humans. Exp.
Neurol. 208, 185-192.

Van Den Heuvel, C., Blumbergs, P,
Finnie, J., Manavis, J., Lewis, S.,
Jones, N., et al. (2000). Upregula-
tion of amyloid precursor protein
and its mRNA in an experimental
model of paediatric head injury. J.
Clin. Neurosci. 7, 140—145.

Wang, Y., Wei, Y., Oguntayo, S., Wilkins,
W., Arun, P, Valiyaveettil, M., et

al. (2011). Tightly coupled repeti-
tive blast-induced traumatic brain
injury: development and character-
ization in mice. J. Neurotrauma 28,
2171-2183.

Yu, E, Zhang, Y., and Chuang,
D. M. (2012). Lithium reduces
BACE] overexpression, beta amyloid
accumulation and spatial learning
deficits in mice with traumatic brain
injury. J. Neurotrauma 29, 362-374.

Zhang, Q. G., Laird, M. D, Han,
D., Nguyen, K., Scott, E., Dong,
Y., et al. (2012). Critical role of
NADPH
oxidative damage and microglia
activation  following  traumatic
brain injury. PLoS ONE 7:¢34504.
doi:10.1371/journal.pone.0034504

Zhou, W., Xu, D., Peng, X., Zhang,
Q., Jia, J., and Crutcher, K. A.
(2008). Meta-analysis of APOE4
allele and outcome after traumatic
brain injury. J. Neurotrauma 25,
279-290.

Zohar, O., Lavy, R, Zi, X., Nelson, T.
J., Hongpaisan, J., Pick, C. G, et
al. (2011). PKC activator therapeu-
tic for mild traumatic brain injury
in mice. Neurobiol. Dis. 41, 329-337.

oxidase in neuronal

Conflict of Interest Statement: The
authors have no competing financial

interests. The views expressed in this
article are those of the authors and do
not necessarily reflect the official pol-
icy or position of the Department of the
Navy, Department of Defense, nor the
U.S. Government.

Received: 23 August 2012; accepted: 02
December 2012; published online: 21
December 2012.

Citation: De Gasperi R, Gama Sosa MA,
Kim SH, Steele JW, Shaughness MC,
Maudlin-Jeronimo E, Hall AA, DeKosky
ST, McCarron RM, Nambiar MP, Gandy
S, Ahlers ST and Elder GA (2012) Acute
blast injury reduces brain abeta in two
rodent species. Front. Neur. 3:177. doi:
10.3389/fneur.2012.00177

This article was submitted to Frontiers in
Neurotrauma, a specialty of Frontiers in
Neurology.

Copyright © 2012 De Gasperi, Gama
Sosa, Kim, Steele, Shaughness, Maudlin-
Jeronimo, Hall, DeKosky, McCarron,
Nambiar, Gandy, Ahlers and Elder. This
is an open-access article distributed under
the terms of the Creative Commons Attri-
bution License, which permits use, distri-
bution and reproduction in other forums,
provided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Neurology | Neurotrauma

December 2012 | Volume 3 | Article 177 | 10


http://dx.doi.org/10.1371/journal.pone.0034504
http://dx.doi.org/10.3389/fneur.2012.00177
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neurotrauma
http://www.frontiersin.org/Neurotrauma/archive

De Gasperi et al.

Blast exposure reduces brain abeta

APPENDIX
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FIGURE A1 | Non-blast exposed control rats were sacrificed and
hemibrains were fractioned into Tris buffered saline soluble, Triton
X-100 soluble, and formic acid-extractable fractions. Levels of AB 40
(A,B) were determined by ELISA. Values are presented the =SEM.
Univariate ANOVA indicated that A 40 levels differed between the fractions
(F, 1, =4.936; p <0.001). Post-test comparisons between the groups are
indicated (Tukey's multiple comparisons test). NS indicates not significant.
Note that most AB 40 is found in the Triton X-100 soluble fraction.
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