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Tau misfolding and aggregation leads to the formation of neurofibrillary tangles (NFTs),
which have long been considered one of the main pathological hallmarks for numerous
neurodegenerative diseases known as tauopathies, including Alzheimer’s Disease (AD)
and Parkinson’s Disease (PD). However, recent studies completed both in vitro and in vivo
suggest that intermediate forms of tau, known as tau oligomers, between the monomeric
form and NFTs are the true toxic species in disease and the best targets for anti-tau thera-
pies. However, the exact mechanism by which the spread of pathology occurs is unknown.
Evidence suggests that tau oligomers may act as templates for the misfolding of native
tau, thereby seeding the spread of the toxic forms of the protein. Recently, researchers
have reported the ability of tau oligomers to enter and exit cells, propagating from disease-
affected regions to unaffected areas. While the mechanism by which the spreading of
misfolded tau occurs has yet to be elucidated, there are a few different models which
have been proposed, including cell membrane stress and pore-formation, endocytosis and
exocytosis, and non-traditional secretion of protein not enclosed by a membrane. Coming
to an understanding of how toxic tau species seed and spread through the brain will be
crucial to finding effective treatments for neurodegenerative tauopathies.
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TAU OLIGOMERS ARE THE TOXIC TAU SPECIES IN
NEURODEGENERATIVE TAUOPATHIES
The formation of tau aggregates and neurofibrillary tangles (NFTs)
is one of the main pathological hallmarks of numerous diseases
termed tauopathies, including the two most common neurodegen-
erative diseases, Alzheimer’s Disease (AD) and Parkinson’s Disease
(PD) (1, 2). However, it is evident that cell death occurs initially
prior to NFT formation in AD (3–6) suggesting that NFTs are
not the pathogenic species responsible for the spread of the dis-
ease. Recent evidence points to the presence of multimeric tau
species which are intermediates between tau monomers and NFT –
known as tau oligomers – as the toxic species inducing synap-
tic dysfunction and cell death in neurodegenerative tauopathies
(7–12).

Numerous researchers have investigated tau pathology using
animal models, yielding a better understanding of the toxicity of
different tau structures. A study in aged mice expressing native
human tau (htau mice) found that while NFT formation occurred
as animals aged, there was no correlation between the presence
of tau filaments and cell death (13). Additionally, a study exam-
ining the P301S mouse model, which expresses mutant human
tau, found that hippocampal synaptic dysfunction occurred prior
to NFT formation (14). Studies using the rTg4510 mouse model,
which conditionally expresses P301L mutant tau, found that cell
death occurred prior to NFT formation and that cell loss and
behavioral impairments could be suppressed by inhibiting tau
expression without removing NFTs or preventing their contin-
ued accumulation (7, 15). In accordance with this finding, it has
been shown that NFTs are protective in the same mouse model

(16), and only pro-aggregate human tau mice (TauRD) show
behavioral deficits (17). Another study in the same mouse model
characterized tau oligomers biochemically that appeared early and
correlated with cognitive deficits (8, 12). Similar results have also
been seen in Drosophila AD models, where expression of mutant
tau causes neurodegeneration, synaptic dysfunction, and axonal
transport deficiencies in the absence of NFTs (18, 19). Usage of the
protein nicotinamide mononucleotide (NAD) adenylyl transferase
(NMNAT) was shown to decrease behavioral and morphological
deficiencies in a frontotemporal dementia Drosophila model by
decreasing levels of tau oligomers (20).

Biochemical analysis of human AD brain tissue has also
yielded results suggesting that tau oligomers may initiate toxic-
ity, rather than NFTs. When compared to control brains, levels
of tau oligomers were found to be significantly increased in AD
brains early in the disease, prior to when NFTs appear and clin-
ical symptoms are evident (9, 21–23). In addition to correlative
evidence for the importance of tau oligomers to toxicity, treat-
ment with tau oligomers has also been shown to cause adverse
effects in animals. Isolated tau oligomers, but not monomers
or NFTs, induced memory impairments, synaptic dysfunction,
and mitochondrial dysfunction when given intracerebrally to
wild-type mice (24). Therefore, it is possible that NFTs are
actually neuroprotective, sequestering toxic forms of tau into
large aggregates with less flexibility and surface area to inter-
act with cells. All of these studies form the framework for the
model of the progression of neurodegenerative tauopathies begin-
ning with the seeding and propagation of toxic tau oligomers
(Figure 1).

www.frontiersin.org July 2013 | Volume 4 | Article 93 | 1

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/about
http://www.frontiersin.org/Neurodegeneration/10.3389/fneur.2013.00093/abstract
http://www.frontiersin.org/people/JuliaGerson/101356
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RakezKayed&UID=51558
mailto:rakayed@utmb.edu
http://www.frontiersin.org
http://www.frontiersin.org/Neurodegeneration/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gerson and Kayed Propagation of oligomeric soluble tau aggregates

FIGURE 1 | Schematic illustrating the central role of tau oligomers in
tauopathies. Tau intermediate soluble aggregates (tau oligomers) are
the toxic tau entities and initiators of tau pathology and propagation in
tauopathies, rather than monomeric tau or hyperphosphorylated NFTs

(p-NFTs). Sonication of fibrillar tau generates toxic tau oligomers. Thus,
tau oligomers represent the ideal target for anti-tau therapeutic
approaches. AFM images are of brain-derived tau oligomers and NFT
(72, 138).

TAU OLIGOMERS ARE SEEDS FOR THE PROPAGATION OF
PATHOLOGICAL TAU
Recently, researchers have begun to make comparisons between the
spread of neurodegenerative disease and prion disease, as studies
suggest that misfolded protein templating, known as seeding, may
underlie the progression of disease (25). Understanding how tau
seeds pathological forms of the protein which propagate to differ-
ent brain regions is critical to devising a solution to stop the spread
of disease. There are two main models for the formation and
seeding of pathological tau, oligomer-nucleated conformational
induction – based upon the mechanism of action of prion pro-
tein, Sup35 (26) and amyloid β (Aβ) (27) – and template-assisted
growth. Template-assisted growth proposes that tau fibrils act as
template molecules for unfolded monomers. When monomers
come in contact with filaments, they are integrated into the fila-
ment in organized, parallel stacked β sheets, optimizing hydrogen
bonding for stabilization (28). It has been difficult, however, to
find spontaneous tau aggregation which occurs experimentally.
When fibrils are cleaved, leaving only three microtubule bind-
ing repeats, the fragments aggregate spontaneously in vitro (29).
However, on its own, tau will not polymerize in vitro without

the addition of certain reagents, post-translational modifications,
such as phosphorylation, or induction of mutations.

In order for aggregation to occur, tau must be released from
microtubules to reach a high concentration of free cytosolic tau,
conformational changes must occur to allow for aggregation, pos-
sibly by increasing β sheet content, and dimerization must occur
(30, 31). The addition of polyanions, such as heparin or RNA can
induce fibrillization of tau (32), causing a conformational change
from random coil structure to β sheet structure (33). Free fatty
acids, such as arachidonic acid can also increase aggregation (34,
35) due to the presence of an alkyl chain, which induces micel-
lization, and a negatively charged head group on the fatty acid to
create a negatively charged surface on the micelle. In the presence
of tau, the critical concentration for micelle formation is greatly
decreased, allowing anionic micelles to attract tau to the negatively
charged surface and thereby compensate for positive charges in tau
and enable tau aggregation (36,37). Phosphorylation may also play
a role in fibrillization. Paired helical filaments (PHF) and straight
filaments (SF), which make up the NFTs found in the brains of
patients with AD, are comprised of hyperphosphorylated tau (38,
39). Phosphorylated tau has a higher tendency toward aggregation
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than unphosphorylated tau and kinases involved in the phospho-
rylation of these sites in tau have been shown to be altered in
AD (40). Hyperphosphorylated tau has been shown to aggregate
in vitro, possibly due to the addition of negative charge which
would increase aggregation, similarly to the addition of polyan-
ions and free fatty acids. Furthermore, this process can be inhibited
by dephosphorylation (41, 42). Phosphorylation may also induce
aggregation by reducing the interaction of tau with microtubules
and allowing it to interact instead with unphosphorylated tau
and form aggregates (43–45). Mutations, such as those that lead
to frontotemporal lobar degeneration (FTLD), can increase tau
aggregation through different mechanisms. Many mutations lead
to a decrease in microtubule assembly kinetics, which could lead
to more free cytosolic tau and increase aggregation (46–49). Some
mutations lead to a decrease in the dissociation constants (K d)
for dimer and filament formation, while others increase the rate
of nucleation without affecting K d (30). Mutations that cause
increased formation of β-sheets lead to heightened aggregation
due to an increase in hydrophobic interactions, deviating from
the highly hydrophilic native tau protein (50, 51). Fibrillar tau can
thereby be recognized by dyes which interact with β-sheets, such as
Congo Red and thioflavin S (52). However, at high concentrations,
these dyes can induce fibrillization due to an attraction between
positive charges formed in the core of PHFs and negative charges
of the anionic dyes (53–55).

In amyloid proteins in which seeding has been well-established,
such as prion proteins and Aβ, oligomers have been shown to
be the most potent seeds (56, 57), working by way of oligomer-
nucleated conformational induction (26, 27). Due to the increased
interest in the toxicity of tau oligomers, evidence has emerged
in support of the oligomer-nucleated conformational induction
model as more studies have begun to explore the importance of tau
oligomers in the initialization of tauopathies. Oligomer-nucleated
conformational induction entails oligomers or conformational
changes irreversibly stabilizing the highest energy protein states,
known as the nucleus, allowing stable monomers to aggregate
into oligomeric structures. Oligomers are driven to further elon-
gation to form lower energy, stable filaments (58). As opposed to
template-assisted growth, monomers are not incorporated directly
into fibrils, but are instead entirely aggregated into oligomers prior
to filament formation (59). Tau dimerization increases the ten-
dency to aggregate and can be induced by oxidation (60), which
suggests that tau oligomerization may be an important step in
the fibrillization pathway. The appearance of oligomeric species
of other amyloid proteins has been observed on the path to fibril
formation (61–63).

While the addition of reagents and mutations used to induce
fibrillization has been integral to understanding how tau aggrega-
tion occurs, it does not explain how fibril formation may occur
spontaneously in sporadic disease. The mechanism by which tau
aggregation occurs physiologically has not yet been elucidated,
however there have been some advances in the understanding of
how certain steps in the process may occur. Release of tau from
microtubules may occur following post-translational modifica-
tions, such as phosphorylation (43, 44). Localization to anionic
surfaces, alternative splicing, and post-translational modifications
stabilizing aggregated conformations may all act as enhancers to

increase speed of nucleation (64). Under physiological conditions,
nucleating cofactors can induce tau aggregation in a similar fash-
ion to agents used in vitro. There is evidence that polyanionic
species, such as tubulin, RNA, and α-synuclein can increase the
tendency of tau to aggregate (65–67) The formation of disulfide
bridges is critical for the initial creation of dimers from monomers,
as well as intermolecular crosslinking of the microtubule bind-
ing domain independent of cysteine to continue oligomerization
of three-repeat tau (68). Prior to monomer aggregation into
oligomers, the free energy of solvation decreases, causing a shift
in preference for peptide-solvent interactions toward peptide–
peptide interactions, as water is evacuated due to poor interaction
with the peptide backbone and sidechains. Water release increases
entropy of the solvent, thereby balancing the loss in conforma-
tional entropy caused by aggregation. The interaction of side
chains with the backbone in the form of hydrogen bonding leads
to the creation of β-sheet structure and aggregate stabilization.
While oligomers form a similar structure to fibrils, they are not
as ordered, which likely increases their toxicity (69). Proteolytic
processing by endogenous proteases has also been shown to create
self-aggregating fragments, which nucleate and co-aggregate with
full-length protein effectively enough for a small amount of frag-
ment to seed PHFs (70). Direct interactions between misfolded
tau and native protein may be the underlying mechanism of seed-
ing as experiments have shown tau protein–protein interactions
occur when tau aggregates enter cells containing native tau (71).

Tau oligomers – identified with the tau oligomer-specific anti-
body, T22, which does not recognize monomers or fibrils (59) –
which have been seeded with oligomers derived from brain tissue
have been shown to be highly toxic (23, 72). When tested with Bis-
ANS, which recognizes exposed hydrophobic patches, oligomers
had higher affinity for Bis-ANS than PHFs, which may under-
lie toxicity. The toxic effects of tau oligomers formed by seeding
recombinant tau with oligomeric seeds, however, can be prevented
when pre-treated with T22 (23, 72).

Some tauopathies, such as progressive supranuclear palsy
(PSP), only have one pathogenic species involved in disease pro-
gression (1). However, most tauopathies contain other amyloid
proteins in addition to tau, such as Aβ in AD and α-synuclein in
PD. In such diseases, cross-seeding of heterologous protein species
is an additional mechanism which is important for tau seeding (59,
67, 73–77).

TAU OLIGOMERS PROPAGATE FROM AFFECTED BRAIN
REGIONS TO UNAFFECTED REGIONS
Aβ has been shown to propagate from affected brain areas to
unaffected areas in mice over-expressing Aβ precursor protein
that have been injected with Aβ isolated from the brains of AD
patients and AD transgenic mice (78, 79), suggesting that perhaps
tau could spread in a similar fashion. A few years later, a similar
mechanism was demonstrated for the propagation of tau. When
tau extracted from P301S mice was injected into the brains of
mice over-expressing wild-type human tau (ALZ17 mice), which
do not form tau aggregates, tau pathology was observed to have
spread from the injection site to neighboring brain regions (80).
Additionally, in transgenic mice which differentially express patho-
logical tau in the entorhinal cortex, where tau pathology is first
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observed in AD, human tau has been shown to spread to both
neighboring and synaptically connected neurons which do not
express human tau mRNA. Translocated human tau was able to
seed mouse tau misfolding (81, 82). However, these studies did not
specifically investigate which tau species specifically induced seed-
ing and propagation of tau pathology and the usage of transgenic
mouse models is not analogous to sporadic forms of AD. When
wild-type mice were injected with both tau oligomers and PHFs
isolated from AD brains, tau oligomers induced the spread of tau
pathology from the injection site to neighboring brain regions and
impaired memory, as measured by object recognition. Conversely,
mice injected with PHFs only exhibited tau pathology near the
injection site and did not exhibit any memory impairments on
the behavioral task, suggesting that tau oligomers, but not fibrillar
tau, is capable of seeding and propagating pathology (72). Fur-
thermore, similar results have been found using primary neurons.
Neurons were exposed to low molecular weight aggregates – rec-
ognized by the tau oligomer-specific antibody, T22, and examined
via electron microscopy for oligomeric characteristics – as well as
to fibrils formed in vitro, filaments formed in vivo, and monomers.
Low molecular weight aggregates and short fibrils exhibited uptake
into the cell, but monomers and filaments were not internalized
(83). Other studies have shown tau aggregate uptake using cell cul-
ture, but did not specifically identify the type of aggregates being
internalized. Neural stem cells treated with tau monomers and
aggregates formed using the tau microtubule binding repeat region
induced to fibrillize with arachidonic acid, exhibited significantly
more tau aggregate uptake than monomer uptake. Additionally,
aggregates, but not monomers, induced seeding of endogenous
tau misfolding (84).

On the other hand, Guo and Lee hypothesized that seeding of
pathological tau in cultured cells would be able to occur more
quickly by seeding with pre-formed tau fibrils, thereby omitting
the step where monomer must be converted to oligomer prior to
fibril formation. Fibrillization of recombinant tau was induced
with the addition of heparin and was verified using thioflavin T.
Fibril-treated cells exhibited seeding and propagation of aggre-
gates via endocytosis. However, following fibril confirmation with
thioflavin T and prior to cell treatment, fibrils used in this study
were sonicated (85). Previous research investigating Aβ seeding
found that sonication increased seeding ability by fragmenting fib-
rils into smaller, soluble species (57) and sonicated prions have also
been shown to have more potent seeding potentials than unsoni-
cated fibrils (56). Since it has been shown that both prion and Aβ

oligomers, rather than fibrils, are the seeds for pathological protein
templating (26, 27), it is likely that sonication partially converts
insoluble fibrils into soluble oligomeric forms. Sonication of tau
fibrils has also been shown to cause shearing of filaments, partic-
ularly those in PHF form (86). Therefore, it is likely that sonicated
tau fibrils used to treat cells in the previous study (85) also con-
tained tau in oligomeric form, which may explain why seeding and
propagation was successful.

Recently, Wu et al. studied propagation of tau in primary neu-
rons using microfluidic chambers which allow somatodendritic
compartments to be isolated from axonal compartments, enabling
not only the analysis of tau uptake from the extracellular space into
the cell, but also propagation within the neuron. They found that

low molecular weight tau aggregates specifically recognized by tau
oligomer-specific antibody, T22, propagate between isolated neu-
ronal compartments both anterogradely and retrogradely (83).
Importantly, tau is primarily found in the axons of healthy neu-
rons (87), though tau may also be found in the dendrite where
it colocalizes with the src kinase, fyn (88, 89). In AD, however,
misfolded and hyperphosphorylated tau accumulates in the axon,
dendrites, and the cell body (90), suggesting that intracellular
transport may also be important for the spread of disease. In
lamprey neurons expressing low levels of tau, tau was primar-
ily localized to the axon and proximal dendrites, both regions
consistent with tau functioning as a microtubule-associated pro-
tein. However, in neurons expressing high levels of tau, tau was
found in distal dendrites and near the soma membrane, both
areas lacking microtubules. High-expressing tau cells showed more
degeneration and secretion of tau. Moreover, as tau can modu-
late activity of microtubule-associated motor proteins involved
in dendritic transport, tau localized to the dendrite may have
implications for its propagation (91). Phosphorylated tau local-
ized at the synapse in AD brain samples appears to correlate with
ubiquitin-proteasome system (UPS) dysfunction, suggesting that
tau oligomer accumulation at the synapse impairs the UPS, which
is a crucial player in the breakdown of tau. Accumulation of tau at
the synapse may also suggest a mechanism for trans-synaptic tau
propagation (92).

Phosphorylation clearly plays a role in the toxicity and local-
ization of tau, however, its exact role in neurodegenerative disease
is unknown and appears to be quite complicated. While hyper-
phosphorylated tau has been shown to have toxic results in the
cell, increasing aggregation and abnormal tau localization (40, 90),
dephosphorylated tau can also have harmful effects. Phosphory-
lated tau released into the medium of cultured neuroblastoma cells
through muscarinic receptor activation that is dephosphorylated
by tissue-non-specific alkaline phosphatase (TNAP) led to exci-
totoxicity, increasing calcium levels in nearby cells. Additionally,
levels of TNAP are heightened in AD brains compared to control
brains (93). Another study of primary cortical neurons also found
that extracellular tau is largely dephosphorylated (94). Conversely,
one study found that phosphorylation of tau increased its secretion
from HeLa cells (95). Inflammation and activation of microglia has
been shown to increase tau phosphorylation as well as aggregation,
but is complicated by the fact that the opposite effect is seen in Aβ

(96–99). The localization of tau in the cytosol, cell membrane,
and the nucleus also appears to be important for tau toxicity, and
is mediated by phosphorylation. Oxidative stress and heat shock
induce the dephosphorylation of cytosolic tau and its transport
into the nucleus. Once relocated to the nucleus, tau appears to
protect neuronal DNA from damage under cell stress (100), which
may be important in AD where DNA damage has been shown
to occur (101). One possibility is that abnormal phosphorylation
of tau in AD may prevent tau from being dephosphorylated and
translocated to the nucleus to protect against DNA damage. The
localization of tau to the cell membrane may also depend upon its
dephosphorylation, as tau with lower levels of phosphorylation in
its proline region was shown to be associated with the cell mem-
brane, while phosphorylated tau was found in the cytoplasm (102,
103). However, interaction with membrane bound proteins, such
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as aforementioned fyn may stabilize association of phosphorylated
tau with the membrane.

MECHANISM OF TAU PROPAGATION
The entry of prion proteins, Aβ, and other amyloid proteins into
the cell via different mechanisms has been well-established (104–
107). One hypothesis for amyloid oligomer toxicity and entrance
into cells is through protein interaction with the cell membrane.
One model suggests that oligomers embed themselves into the cell
membrane and form pores. However, it appears as though the for-
mation of pore-like annular protofibrils occurs through a separate
pathway from fibril formation (108). An alternative model sug-
gests that oligomers interact with lipid rafts in the bilayer, causing
membrane thinning and increased membrane permeabilization,
which may play a role in oligomer toxicity, allowing non-specific
ion entrance, as well as leakage of cellular compartments. Several
types of amyloid oligomers have been shown to increase mem-
brane permeability, including Aβ, α-synuclein, and prion protein
(107, 109–111). Tau has been reported to interact with the lipid
rafts in the cell membrane and undergo conformational changes
leading to membrane stress (112–115). Additionally,permeabiliza-
tion of the membrane could mediate internalization of oligomers
into the cell.

There has also been evidence for endocytosis as a route of amy-
loid entry into the cell. Propagation of α-synuclein, prion protein,
Sup35, and Aβ has been shown to be associated with the endo-
somal pathway (116–118). One study found that tau aggregates
colocalize with dextran in neural stem cells, implying that entry
into the cell occurs via macropinocytosis. However, the aggregate
type was not specifically tested (84). Aggregates identified specif-
ically as tau oligomers colocalized with fluid-phase endocytosis
marker, dextran, as well as with early endosomal marker, Rab5,
and late endosomal/lysosomal marker, Lamp1. When endocyto-
sis was inhibited with dynamin inhibitor, Dynasore, tau uptake
was blocked, while inhibition of clathrin-mediated endocytosis
with Pitstop2B did not impact internalization (83). These studies
together suggest a mechanism for tau propagation in which tau
is internalized via pinocytosis and enters the endosomal pathway.
Tau can move through the endosomal pathway to the lysosome
where toxic species may be degraded or recycled back to the
cell membrane, where they may be released to be internalized
by adjacent neurons. More research is needed to determine how
membrane-enclosed tau oligomers are released inside of the cell,
though it appears likely that the majority are degraded in the lyso-
some, while those that avoid degradation may cause the endosomal
membrane to burst and be released in the cytoplasm, where they
can seed aggregation of healthy tau (83). While clathrin-mediated
endocytosis did not appear to be involved in tau propagation,
endocytosis inhibitors are often found to be non-specific (119),
and therefore, the possibility of other types of endocytosis in tau
spread bears more study.

Receptor-mediated endocytosis could be another route of entry
into the cell as amyloids have been reported to bind to cell sur-
face receptors. Internalization of α-synuclein has been shown to
be dependent upon receptor-mediated endocytosis, potentially
through caveolin-mediated endocytosis (117). Additionally, Aβ

binds to NMDA, α7 nicotinic acetylcholine, and APOE receptors,

inducing receptor endocytosis (120–124). Aβ oligomers also bind
cellular prion protein, PrPc, which is complexed with the Src tyro-
sine kinase, Fyn. This interaction has been shown to increase
tau dysfunction and prevents native tau from binding to fyn
(125). Under normal conditions, tau binds to fyn in oligoden-
drocytes (126) and in neurons, activating the Ras/MAPK pathway
(103). Mutations to the microtubule binding region in tau lead
to decreases in oligodendrocyte process number and length and
disease-related missense mutations increase tau association with
Fyn (127). Results indicate that the interaction between tau and
fyn may be important for neurodegeneration, both through a loss
in native tau interaction and through a gain in toxic tau function.
Interaction with PrPc complexed to fyn could also mediate tau
entry into the cell as the PrPc complex is associated with and endo-
cytosed with caveolin (128). Tau may also enter the cell through a
direct interaction with fyn. Lee et al. used a lamprey ABC tauopa-
thy model in which tau is expressed in specifically identified ABC
neurons to investigate the spread of tau. They report that tau phos-
phorylated at Y18, the site most commonly phosphorylated by
fyn kinase, is associated with vesicular organelles. Additionally,
when tau is overexpressed and localizes to the dendrite, dendritic
vesicle accumulation is observed. Phosphorylated tau is colocal-
ized with vesicles which bear resemblance to endosomes, as well
as to fyn. Fyn has also been shown to colocalize with exosomes,
suggesting a possible mechanism for fyn-tau transport in which
fyn-associated tau is endocytosed, transported from early endo-
somes to late endosomal compartments, and then transported out
of the cell via exosomes (91).

While one mechanism for tau oligomer release is through
oligomer toxicity leading to cell death, causing the cell to lyse
and release its contents (129), studies show that this likely does
not account for the majority of tau release. In primary neurons
treated with tau oligomers, extracellular tau only increases once
levels as high as 40% cell death are reached, which does not corre-
spond to physiological levels of cell death during the initial spread
of neurodegenerative disease (130). Additionally, treatment with
tau oligomers in primary neurons does not lead to significant levels
of apoptosis (83). There has however been some evidence for non-
apoptotic membrane blebbing as a possible secondary mechanism
for tau release (91, 131).

Exocytosis has been implicated as a mechanism of amyloid
spread as prion proteins and α-synuclein have been shown to
be associated with exosomes in cell culture (132, 133). How-
ever, investigations of a similar mechanism for tau release have
been unclear. Simón et al. found that when tau was overexpressed
in kidney-derived cell lines, tau was secreted contained within
membrane vesicles (129, 134). While tau secreted by neuroblas-
toma cells and tau in human CSF was found to be associated
with exosomes in one study (135), another reported that tau was
not detected in isolated exosomes from neuroblastoma cells (130).
However, these studies used cell models where tau was overex-
pressed. In an attempt to approach more similar conditions to
those seen physiologically, researchers cultured primary corti-
cal neurons containing endogenous tau and found that tau was
released by a mechanism unrelated to cell death and was regu-
lated by AMPA receptor activation. Inhibition of synaptic vesicle
release decreased extracellular tau, while tau was not found to be
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associated with exosomes, indicating that release of tau through
traditional synaptic exocytosis following AMPA receptor activa-
tion may be one mechanism of tau release (94). Another study
found that cells constitutively release tau which is not contained
within a membrane under conditions inhibiting cell death (136).
Therefore, more research is warranted to investigate the condi-
tions under which tau is associated with exosomes and the specific
tau conformations found in exosomes. Tunneling nanotubes –
long, temporary channels that allow for long-distance transport
between cells – have recently been discovered as a transport mech-
anism for prion protein (137). While they have not yet been studied
directly in the context of tau, similarities between the spread of
prions and tau suggest that tunneling nanotubes may be another
potential mode of tau propagation meriting study.

CONCLUSION
Determining how neurodegenerative tauopathies initiate and
propagate toxic species will be crucial to finding a treatment for
these diseases. Recent evidence suggests that tau oligomers, not
NFTs, are the toxic tau species mediating the initiation, seeding,
and propagation of neurodegenerative tauopathies and are the
best target for anti-tau therapeutics. The mechanism by which tau
seeding occurs remains to be elucidated, but oligomer-nucleated
conformational induction, whereby native tau monomers are

entirely converted to oligomers prior to aggregation into fibrils,
appears to be a likely model. Tau oligomers can effectively enter
cells, be transported intracellularly, and be released from cells
to affect others. However, the mechanism by which propagation
occurs is unclear. Tau likely enters the cell in one of two main
ways, stressing the cell membrane or entering via endocytosis.
Entrance through interaction with the membrane may occur
through formation of pores or by interacting with lipid rafts
causing membrane stress. Both macropinocytosis and receptor-
mediated endocytosis have been implicated as possible mecha-
nisms for tau entry. Tau secretion is likely not due simply to cell
death, but may occur within exosomes, through synaptic vesicle
release, or a non-traditional secretion pathway in which tau is
not enclosed in a membrane. The elucidation of the mechanisms
addressed will lead to a better understanding of neurodegenerative
disease and may reveal new targets for treatment.
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