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The pre-clinical diagnostics is essential for management of Parkinson’s disease (PD).
Although PD has been studied intensively in the last decades, the pre-clinical indicators
of that motor disorder have yet to be established. Several approaches were proposed but
the definitive method is still lacking. Here we report on the non-linear characteristics of
surface electromyogram (sEMG) and tremor acceleration as a possible diagnostic tool,
and, in prospective, as a predictor for PD. Following this approach we calculated such non-
linear parameters of sEMG and accelerometer signal as correlation dimension, entropy,
and determinism. We found that the non-linear parameters allowed discriminating some
85% of healthy controls from PD patients.Thus, this approach offers considerable potential
for developing sEMG-based method for pre-clinical diagnostics of PD. However, non-linear
parameters proved to be more reliable for the shaking form of PD, while diagnostics of the
rigid form of PD using EMG remains an open question.

Keywords: Parkinson’s disease, electromyography, non-linear parameters, early diagnostics

WHY TO IMPROVE DIAGNOSTICS OF PARKINSON’S DISEASE
AND WHY TO DO IT TIMELY?
Parkinson’s disease (PD) is a progressive disorder which affects
motor, higher mental and autonomic functions of the human
organism. PD is the second most common, after Alzheimer’s dis-
ease, neurodegenerative disease. The incidence of PD in developed
countries is estimated at about 1% in people older than 60 years
and 4% in people over 80 years (1). PD is, in a sense, “non-lethal”
pathology because it does not cause immediate fatal outcome.
It can last for decades. Then, why is it so important to timely
diagnose PD?

ECONOMICAL BURDEN
Parkinson’s disease is still lethal due to motor deficits which cause
falls. Also, PD implies burden of several kinds on the PD patients,
their relatives, and society. The personal burden means dramatic
decrease of the quality of the patient’s life due to motor (rest-
ing tremor, muscle rigidity, bradykinesia and/or akinesia, postural
instability, and fatigue) and non-motor symptoms (constipation,
impaired heart rate variability, depression, sleep disorders). These
motor and non-motor symptoms may decrease person’s ability to
work and thus may imply early retirement, restrictions on profes-
sion choice and, hence, the salary (2). Cost burden of PD patients
also includes medication, care costs, insurance etc. Annual eco-
nomical burden on one PD patient in the developed countries
exceeds 6000–25000 USD (3).

DIFFERENTIAL DIAGNOSIS BETWEEN VARIOUS TREMULOUS STATES
Parkinson’s disease diagnosis is highly uncertain in the early stages
and only 70% of patients are correctly diagnosed with PD (4).

PD is characterized by the symptoms which are shared with such
similar, though still different, motor disorder as essential tremor
(ET). There is a large body of papers on comparative studies of PD
and ET (5). However, a diagnostic tool to differentiate these two
pathologies is yet to be elaborated (6).

DIFFERENTIAL DIAGNOSIS BETWEEN CLINICAL FORMS OF PD
PD is clinically not uniform and is presented by at least three clin-
ical forms – tremulous-dominant, or shaking form, akinetic-rigid
form and mixed form. The incidence of tremor-dominant and
mixed (tremor plus akinesia/rigidity) type of PD is as much as
75% (7). Correspondingly, 10% of PD patients never have signs of
resting tremor (8).

PHYSIOLOGICAL TOOL
Parkinson’s disease may provide insight into such phenomena of
the motor system as muscle tone, posture, gate and tremor, and yet
enigmatic “motor commands,” and “motor programs.” For exam-
ple, a characteristic spine bent “posture of beggar” in PD patients
is analogous to the “tired ape” stance of astronauts/cosmonauts
first described by Edwin Aldrin during Lunar mission (9) or to the
“posture of embryo” under cold exposure (10).

LONG PRE-CLINICAL PHASE
Parkinson’s disease is characterized by a lengthy prodromal, which
is known as either “pre-clinical” or “pre-diagnostic” phase (11,
12). The primary cause of PD is progressive loss of dopaminergic
neurons in the compact part of Substantia nigra. When approxi-
mately 60% of these are lost, PD becomes clinically recognizable.
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This phase is believed to start long before emergence of clini-
cal PD and then slowly progresses usually over 4.5 years (13, 14).
Besides formidable challenge in early diagnosis, the prodromal
period also presents unique opportunity in disease prevention or
delay in PD onset (15). As such, “disease modification,” “slow-
ing down,” or “neuroprotection” are emerging terms in respect
with PD (15). Approximately 10% of subjects over 60 years are
in the “pre-diagnostic” phase of PD according to neuropatho-
logical reports (16). Therefore, predating the diagnosis of PD
and identifying subjects at-risk is an important goal for research
aimed to postpone the onset of PD by neuroprotective therapy
(17, 18). Thus, the ultimate goal of the early diagnosis of PD
would be to switch from medical treatment to disease manage-
ment. Becker et al. (17) suggest two approaches in order to reach
that goal. The first one would be to detect subjects with risk factors
for PD using currently available tests, such as scanning Substan-
tia nigra using functional magnetic resonance imaging (fMRI),
ultrasound, and genetic identification. The other approach would
be to detect PD patients at the very initial phase of the dis-
ease when only few non-motor or “soft” motor symptoms are
detectable.

Thus, pre-clinical detection of PD seems to be an important
goal because even subtle motor or non-motor pre-clinical abnor-
malities may serve as “predictors” for further PD. Such predictive
study would help identifying the subjects at-risk of future PD, to
start earlier anti-PD treatment, and to develop effective neuro-
protective treatment strategies (18). Here, we report on current
approaches in early diagnostics and differential diagnosis of PD
with special stress on the non-linear parameters of interference
surface electromyography (sEMG) signal.

CURRENT APPROACHES TO EARLY DIAGNOSIS OF PD
Patients with PD have several symptoms other than motor ones
(the non-motor symptoms). Few of them have been proposed for
early detection of PD. Among them are: (1) olfactory disorder; (2)
sleep disorder; (3) autonomic features (heart rate variability and
constipation); (4) color vision disorders; and (5) so-called “soft”
signs of PD such as reaction time slowing, depression, mid-life
obesity, and non-specific pain in joints (19). These disorders are
associated with functioning of dopaminergic synapses and may
reflect progression of dopamine deficit from brainstem to neocor-
tex, as proposed by Braak (20). Accumulating evidence suggests
that the above mentioned symptoms develop namely during a
long prodromal period of PD (21).

Olfaction is impaired first in PD due to affection of the olfac-
tory bulb, thus forming stage I of PD (20). Smell dysfunctions,
such as hyposmia, anosmia, impaired odor detection, discrimi-
nation, or identification affects more than 80% of PD patients
(19). Visual dysfunction is suggested to be caused by a dopamin-
ergic deficit of the retinal neurons (16). Indeed, dopaminergic
therapy improves visual impairment (22). Rapid eye movement
(REM) sleep behavior disorder (RBD) is a prodromal marker for
PD, and it is characterized by the loss of normal skeletal mus-
cle tone during REM sleep in association with increased EMG of
limb and chin muscles, excessive limb jerking and dream menta-
tion (14, 23). Occurrence of RBD in PD patients varies from 15
to 47% (23). Interestingly, olfaction, REM and visual disorders are

usually synchronized with each other thus forming a unique set of
associated symptoms (24).

Autonomic symptoms, such as constipation and heart rate vari-
ability, and affective symptoms (depression, phobia) are also can-
didates for early stage PD diagnostics (14, 17, 19, 25). Dopamine
loss may also produce subtle (“soft”) subjective motor complaints,
such as slowed reaction time, imbalance, changes in handwrit-
ing, speech, or reduced arm motion. In particular, impairment
of orofacial motor functions (articulation, phonation, prosody)
may lead to speech defectiveness due to weakness of tongue and
lips musculature (26). It has been demonstrated that 78% of early
untreated PD subjects indicate some form of vocal impairment
(27). Impairment of handwriting, Archimedes spiral drawing, and
hand tapping may also indicate for PD. Advanced analysis of spi-
ral metrics presented high correlation with UPDRS (Unified PD
Rating Scale, part III) (28). Variation of hand rhythmic tapping
was increased in tremor predominant group of PD patients (29).
These symptoms may be identified years before the diagnosis of
PD is made (17).

Over the last years, single photon emission computed tomog-
raphy (SPECT), positron emission tomography (PET), fMRI and
transcranial sonography are widely used to assess dopaminergic
function in PD patients, their relatives, and healthy controls (17).
However, their diagnostic precision is still far from satisfactory
(13). For example, up to 15% of subjects with normal imag-
ing findings have clinically evident PD, and vice versa, decreased
dopamine content in the Basal ganglia seen on MRI is often asso-
ciated with neurodegenerative diseases other than PD (dementia
with Lewy bodies, multiply sclerosis atrophy) (30). Also, methods
based on nuclear medicine and ultrasound are not appropriate for
population-based studies due to their high costs, and insufficient
availability (17).

In a whole, definitive evidence for a PD-sensitive diagnostic tool
is lacking. Combination of the above mentioned methods would
probably be the best current solution for pre-clinical diagnosis of
PD. The decisive diagnosis of PD is still post-mortem. All in all,
current methods help to diagnose only 70–80% of the PD cases
(17, 31), which is not satisfactory. It corresponds with misdiagno-
sis of PD estimated as 20–30% (8, 30). Novel biomarkers for PD
must be presented.

EMG AS A POTENTIAL EARLY MARKER FOR PD
Electromyography (EMG) helps investigating the central nervous
system (CNS) because it reflects the activity of the spinal motoneu-
rons due to motor units (MUs). We seek to provide a readable
method to diagnose PD based on EMG. In ideal, such method
would also be helpful to detect PD either at early stage or even pre-
clinically. Several studies have reported that MUs in PD patients
discharge with alternating shorter and longer interspike intervals
(doublets or triplets). This pattern of activity is strikingly differ-
ent from stationary activity of MUs under normal muscle tone
(32–34). Nonetheless, the doublet pattern is not specific for PD
and can be seen under other normal and pathological conditions.
For example, doublets are seen in humans at the onset of strong
and ballistic movements (35), during whole-body heating (36),
and after dynamic training (37). Doublets are common in neu-
ropathies (38) and amyotrophic lateral sclerosis (39). Also, MU
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action potentials are usually recorded using needle electrodes, i.e.,
intramuscularly. This is uncomfortable for the patient and requires
antiseptic measures.

There has been an attempt to combine EMG with thermal
interventions as a provoking factor for PD symptoms. Cold was
reported to intensify tremor in PD patients, especially with tremor-
dominated form, while heat reportedly attenuated muscle rigidity
(40). Nonetheless, cold exposure is likely not reliable for early diag-
nostics of PD due to its apparent unpleasantness and procedure
requirements. Cold also can provoke chill and cold shivering, that
would require further analysis to distinguish it from PD tremor.

In contrast to needle EMG, surface EMG (sEMG) is non-
invasive (less discomfort and risk of infection), more stable
in respect with electrode position (more repeatable), and cost-
efficient. sEMG has been extensively used to examine motor func-
tion and movement disorders in humans and it is believed to
provide relevant information on neuromuscular strategies (41).
Spectral-based analysis methods have diagnostic value for PD (42–
46). However, no consensus exists about applicability of sEMG to
PD diagnosis because conventional linear parameters are still lack-
ing to provide definitive difference between the PD and healthy
controls.

The morphology-based analysis has shown promising results
in discriminating PD and healthy controls. The method is based
on the histogram and crossing rate analysis of sEMG signals (44).
sEMG kurtosis, a parameter based on higher order statistics, is
reportedly increased in PD patients. This might reflect increased
number of spikes due to increased synchronicity of MU firing (47).
Turn/amplitude analysis (TAA) of sEMG, a method that couples
number of turns on sEMG (reversal of sEMG signal direction with
amplitude >100 µV) with average sEMG amplitude, is still largely
used to discriminate between neurogenic and myogenic affections
(48, 49). To the best of our knowledge, TAA yet was not applied to
study PD.

Previous works have reported that sEMG waveform can better
be modeled as an output of a non-linear dynamic system, rather
than a stochastic output of a white-noise driven linear system (38).
Non-linearity is a hallmark of complex dynamic systems (50, 51).
As a non-linear signal, sEMG displays chaotic behavior, i.e., its time
series (1) evolves over the time, (2) depends on the initial state,
and (3) is fractal in the terms of dimensionality (52). Thus, as a
non-linear signal, sEMG can be characterized by the state of deter-
ministic chaos (53). Therefore, sEMG might give clues to describe
dynamics of the neuronal circuits in the terms of regularity, pre-
dictability, and complexity (54). Indeed, it has been recently found
that non-linear parameters, such as approximate entropy (ApEn),
percent of determinism based on recurrence quantification analy-
sis (RQA), and dimensionality based on fractal analysis are highly
sensitive for hidden rhythms on sEMG in subjects under fatigue
and condition of increased MU synchronization (43, 55–58).

sEMG in PD patients is known to be rich in regular clusters
(grouping) at the characteristic tremor frequencies (4–6 Hz) due
to increased synchronization of MU (59). Also, determinism of
sEMG in PD patients at rest was higher than during voluntary iso-
metric contraction (42). Acceleration signal has also been studied
in PD patients using both linear and non-linear parameters (59,
60). These findings led us to ask whether either readily visible or

“hidden” rhythms in sEMG contribute to its non-linear features
and thus yield a difference between PD patients and healthy con-
trols. If this hypothesis holds, PD patients might present a more
regular time-dependent structure of sEMG and acceleration time
series, while healthy subjects – a less regular and more complex sig-
nal. Also, PD patients with lower UPDRS score might present less
regular signal, either sEMG or acceleration. We compared a variety
of novel non-linear parameters with the classic linear parameters
of sEMG and acceleration signal between PD patients with vari-
ous UPDRS scores, and found that this hypothesis holds true (47,
61). The results and conclusions are presented in the following
sections.

LINEAR AND NON-LINEAR VARIABLES OF sEMG AND
ACCELERATION IN PD PATIENTS
sEMG SIGNAL
This subsection deals with our previous study (47), in which
we studied PD patients (n= 30) and two healthy control groups
of different age – young (n= 20) and old (n= 20). sEMG was
recorded bilaterally in the upright stance from biceps brachii mus-
cles under elbow flexion. The loading conditions were 0, 1, and 2 kg
respectively. Complexity and regularity of SEMG was analyzed
by various methods of non-linear time series analysis, including
sample entropy (SampEn), correlation dimension (CD), percent
of determinism (DET%), and recurrence rate (REC%) based on
RQA. The amplitude of sEMG was defined as the root mean square
(RMS) value and median frequency (MDF) was also determined
for analysis.

The major finding of our studies was that non-linear parame-
ters of sEMG signal in the PD group significantly differed from
the ones in the healthy control groups (47). In particular, %REC
and %DET values of SEMG were significantly higher in the PD
group, while SampEn and CD were lower in comparison to old
and young controls (Table 1). Instead, such traditional parameters
as RMS and MDF did not differ between groups (Table 1).

Decreased CD of sEMG in the PD group may indicate increased
self-similarity of the myoelectrical signal over time (18) and hence,
lowered complexity of the underlying neural network. Decreased
sample entropy of sEMG signal in the PD group may reflect higher
regularity of sEMG. These findings are in line with earlier studies,
which have documented higher sensitivity of %DET and entropy
to motor unit synchronization, than spectral frequency charac-
teristics (44, 56, 57, 59, 60). High %DET reflects abundant wave
features in sEMG, either readily visible by eye or quasi-waves dur-
ing, e.g., increased motor unit synchronization (44). Clustering of
MU action potentials was the characteristic of raw sEMG in many
our PD patients. Interestingly, %DET also was increased in some
patients with visually stationary sEMG. Figure 1 shows sEMG sig-
nals and recurrence plots obtained from PD patient with higher
(with distinct sEMG clustering) and lower UPDRS score (with
stationary-looking sEMG), and from a healthy older subject.

Thus the “continuum” of UPDRS score from lower to higher
values may correspond with “continuum” of sEMG parameters.
In fact, we have found that such novel sEMG parameters, as
%REC, and %DET were significantly correlated with UPDRS
score (R= 0.47–0.71) (47). Thus, PD patients with less expressed
sEMG clustering indeed present less regular signal. Most of novel
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Table 1 |The linear and non-linear SEMG parameters of PD patients and healthy old and young control subjects.

Group No load 1 kg load 2 kg load

Right Left Right Left Right Left

RMS (µV)

PD 48.42±29.17 41.09±29.50 81.90±48.22 61.91±35.01*# 107.63±58.44 88.6±48.7*#

Old 40.81±20.91 41.28±18.83 68.04±32.26 70.62±30.83 96.52±48.98 100.32±44.4

Young 42.83±22.87 51.88±26.08 72.83±27.09 98.27±48.34 108.15±41.86 139.41±60.77

MDF (Hz)

PD 55.10±15.28 57.10±10.57 60.70±12.17** 62.19±10.78* 59.13±11.81* 58.46±7.56

Old 56.20±7.69 59.86±10.86 56.00±6.63 60.57±10.97 55.47±5.01 59.54±10.74§

Young 50.68±5.98 53.10±8.41 51.63±5.57 53.07±7.23 51.90±5.48 52.14±6.09

PERCENTAGE OF RECURRENCE (%REC)

PD 21.4±18.9**## 16.5±17.6*# 17.6±15.5**# 15.5±19.1 16.7±16.9*# 11.8±11.9

Old 7.3±4.7 7.8±3.7 6.8±2.2 10.3±7.8 6.6±2.6 10.3±7.8

Young 7.4±4.3 7.7±4.3 8.9±4.3 8.4±4.2 7.7±3.4 8.3±3.8

PERCENTAGE OF DETERMINISM (%DET)

PD 32.6±33.5**# 24.8±27.8* 26.20±27.6* 22.3±26.3 28.5±27.9* 20.7±22.5

Old 11.6±7.1 9.7±5.1 12.3±6.4 12.9±7.2 12.1±6.5 12.9±7.2

Young 17.0±7.4 15.8±9.4 19.0±8.0 18.3±8.4 19.3±8.8 20.5±9.4

SAMPLE ENTROPY (SAMPEN)

PD 0.93±0.35** 1.03±0.31* 1.05±0.35 1.08±0.37 1.01±0.35 1.10±0.24

Old 1.17±0.11 1.20±0.11 1.17±0.10 1.21±0.14§ 1.15±0.10 1.17±0.14§§

Young 1.02±0.11 1.00±0.14 1.02±0.13 1.02±0.15 0.99±0.14 0.98±0.14

CORRELATION DIMENSION (CD)

PD 4.86±2.51**## 5.63±2.33* 5.28±2.35**# 6.05±2.42 5.59±2.41*# 6.26±1.97

Old 6.92±1.15 6.97±0.73 7.10±0.62 6.54±1.25 6.98±0.82 7.18±0.63

Young 6.77±1.07 6.76±0.98 6.61±0.83 6.54±1.08 6.77±0.86 6.72±0.80

The data was analyzed in study (50).

*PD to young (p < 0.05); **PD to young (p < 0.01); #PD to old (p < 0.05); ##PD to old (p < 0.01), §old to young (p < 0.05).

sEMG characteristics correlated also with finger tapping scores
(R= 0.54–0.66) (47). Correlation values were the most significant
in the state without additional loading, and they decreased when
loading increased. This probably indicates emergence of “regu-
lar normal” postural muscle tonus, which erased the difference
between the groups. In a sense, under loading sEMG of PD patients
became more “normal.”

Thus, sEMG signal in PD is less complex, more predictable and
regular. It means that rhythmic activity takes place in the spinal
cord, resulting in more or less obvious clustering of sEMG. From
the physiological point of view, these data reflect increased syn-
chronization of MU activity or increased clustering coefficient of
signal generator (the spinal neuron circuitry) (56). It could also
well be that the spinal cord rather relays this periodicity from the
upper levels of CNS, than generates it itself. In fact, high regular-
ity of sEMG signal in PD is associated with rhythmic oscillatory
activity in the CNS (62). The 4–7 Hz parkinsonian tremor may be
associated with increased θ-rhythm (4–7 Hz) in EEG, thus indi-
cating general slowing of oscillatory brain activity with the time
course of PD (63).

ACCELERATION SIGNAL
In another previous study by our group (61), we measured
accelerometer (ACC) characteristics of tremor: (1) the amplitude

of ACC, computed as the RMS value of the signal; (2) the fre-
quency (F) corresponding to the maximum power in acceleration
spectrum; (3) the coherence spectrum (Coh) between sEMG and
acceleration signals, which describes the similarities in the power
spectra of two time series. Time-dependent structure of ACC was
analyzed using SampEn, CD, DET% and REC% (61). %DET of
the acceleration signal was much higher in the PD patients (mean
50%) when compared to young and old (mean 11–13%) con-
trols while ApEn of tremor signal is 15–22% lower in PD patients
than in healthy controls (61). Thus, tremor is more regular in PD
in comparison with healthy controls, that is in line with earlier
studies (59, 60).

Acceleration signal demonstrated a very much the same cor-
relation with loads, UPDRS, and motor symptoms as the sEMG
signal (61). However, there was much less “merging” of non-linear
parameters values under loading, probably due to different origins
of sEMG and acceleration signals.

%DET, SampEn, and amplitude of acceleration signal, though
less than that of sEMG, correlated with the UPDRS score
(R= 0.47–0.52) and finger tapping (R= 0.32–0.46) (61). Thus,
acceleration signals in the PD group contain large portions of
recurrent fragments. This evidences a highly deterministic, time-
dependent structure of tremor in the PD group. Moreover, tremor
in PD patients is more deterministic, the larger is the UPDRS score.
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FIGURE 1 | EMG signals (top) measured from one PD patient with UPDRS = 52 (left), one PD patient with UPDRS = 15 (middle), and one healthy old
control (right). The EMG measurements were analyzed in study (47). The corresponding EMG recurrence plots (bottom).

It means that tremor under PD progression not only grows in its
amplitude, but becomes more regular (61). Figure 2 shows ACC
signals and recurrence plots obtained from PD patient with higher
and lower UPDRS score, and from a healthy older subject.

No major difference in sEMG and acceleration characteris-
tics was found between old and young controls (47, 61). That
is in a line with a postulation that healthy aging does not lead
to major changes in postural tremor (60). According to our data
only peak frequency and %REC were smaller in older subjects,
while SampEn, cross-SampEn, and CD were slightly greater when
compared to younger subjects. Similarly, in the studies of Vail-
lancourt et al. (46) and Sturman et al. (60), ApEn of acceleration
signal was shown to be greater, although insignificantly, in older
healthy subjects compared to the younger subjects, especially at
lower loadings. The same tendency, also insignificant, we observed
for the EMG parameters (47).

OTHER SIGNALS
There are few studies on the non-linear properties of signals
in PD other than sEMG, i.e., EEG and acoustic (voice). Their
results mainly showed that the EEG of PD patients is character-
ized by higher entropy (64) and CD (59). Such higher complexity
may reflect reduced disfacilitation of competing motor programs,
resulting in a larger number of simultaneously active neural net-
works (65). The fractal dimension of the acoustic signal of sus-
tained vowel production is reduced in PD patients as compared to
the respective controls (66).

PROSPECTIVE AND PITFALLS
We believe that non-linear parameters of sEMG have poten-
tial in differential diagnosis of PD and it is promising for early

pre-clinical diagnostics of PD. In our recent studies (67, 68),
different EMG and acceleration signal features, including non-
linear, were extracted and used to form high dimensional feature
vectors for the cluster analysis of subjects. According to clus-
tering results, one cluster contained 90% of the healthy con-
trols and two other clusters 76% of PD patients (67). This can
be regarded as a promising result when compared to SPECT
or clinical diagnosis (46, 69). EMG burst characteristics were
also analyzed during flexion and extension movements in the
study of Rissanen et al. (68). The discrimination rates between
patients with PD and healthy controls obtained in this study
(73%/82% in flexion and 80%/87% in extension) depict a rather
high sensitivity/specificity of the method. However, at best the
sEMG/acceleration method discriminates as much as 80% of PD
patients from healthy controls that is yet far from desirable 100%.
Two major reasons may prevent sEMG of reaching a more precise
discrimination.

PD NON-UNIFORMITY
First, it could well be so that 10–20% of PD patients which
cannot be distinguished from healthy controls by non-linear
parameters, belong to the patients who never have signs of
resting tremor (akinetic-rigid form). In fact, in our study,
the portion of PD patients without tremor was 10%. sEMG
from the rigid muscle lacks rhythms, which are characteris-
tic of the tremor, due to asynchronous stationary discharges
of MU. Therefore, muscle tone from the rigid muscle is non-
distinguishable from regular postural muscle tone (33). As such,
new tools must be elaborated and tried to detect, namely
rigidity.
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FIGURE 2 | ACC signals (top) measured from one PD patient with UPDRS = 48 and rest tremorTR = 2 (left), one PD patient with UPDRS = 20 and
TR = 2 (middle) and one healthy old control (right). The ACC measurements were analyzed in study (61). The corresponding ACC recurrence plots (bottom).
TR, tremor score.

METHODOLOGICAL LIMITATIONS
Second, much of PD diagnoses are still false (4, 14). In our study,
it may be so that some patients actually did not have PD and
thus they might contribute to the overlapping of PD patients and
healthy controls. Vice versa, some subjects considered as healthy,
might actually be not. In theory, it could well be that some of older
healthy controls had the pre-clinical stage of PD. Similarly, some
younger healthy controls could have had ET.

In ideal, to find a discriminating characteristic, one would com-
pare a group of PD patients with true diagnose and a group of true
healthy persons. As for now, it is difficult to arrange so. We still
have to rely on the clinical diagnosis, UPDRS, or SPECT, at best.
Also, the lowest UPDRS score in our study was as little as 14. It
would be interesting to examine, whether novel sEMG parameters
are sensitive to even lower UPDRS scores.

To overcome these methodological pitfalls, one should con-
sider designing a longitudinal study of PD. Namely, sEMG and
acceleration could be recorded from a cohort of older healthy

subjects over the age of 60 years. Then, these subjects could be
investigated in respect with non-linear parameters every 1–2 years.
Statistically, 10% of them are on their pre-clinical stage of PD (16),
and eventually some of them will develop the clinical form. In that
case, the early changes on sEMG or acceleration could be detected.
Also, there are few genes that have a significant impact on the
development of Parkinson’s disease (70). People with these genes
and the relatives of PD patients could be tested for presumably
subtle changes in sEMG parameters.

CONCLUSION
The novel sEMG parameters have potential in the pre-clinical diag-
nosis of PD due to their relatively high discrimination power, cost
efficiency and high throughput.
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