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Sleep can favor the consolidation of both procedural and declarative memories, promote
gist extraction, help the integration of new with old memories, and desaturate the ability to
learn. It is often assumed that such beneficial effects are due to the reactivation of neural
circuits in sleep to further strengthen the synapses modified during wake or transfer mem-
ories to different parts of the brain. A different possibility is that sleep may benefit memory
not by further strengthening synapses, but rather by renormalizing synaptic strength to
restore cellular homeostasis after net synaptic potentiation in wake. In this way, the sleep-
dependent reactivation of neural circuits could result in the competitive down-selection of
synapses that are activated infrequently and fit less well with the overall organization of
memories. By using computer simulations, we show here that synaptic down-selection
is in principle sufficient to explain the beneficial effects of sleep on the consolidation of
procedural and declarative memories, on gist extraction, and on the integration of new
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with old memories, thereby addressing the plasticity-stability dilemma.
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1. INTRODUCTION
Sleep has positive effects on memory consolidation, as shown by
various experimental paradigms in which newly formed memories
are preserved better after a night of sleep than after an equivalent
amount of time spent awake. This benefit is well documented for
declarative memories — those one can recollect consciously, such
as lists of words or associations between pictures and places (1-7).
Non-declarative memories, such as perceptual and motor skills,
can also profit from sleep (8—15). For instance, if one tries to reach
a target on a computer screen with the mouse while the cursor
is rotated systematically without the subject noticing, the brain
slowly learns to compensate for the rotation (16). Remarkably,
sleep after learning results in movements that become more accu-
rate and less noisy, in line with an increase in signal-to-noise ratio
(S/N) (11). Sleep may exert similar effects on declarative memories
by helping to extract the “gist” out of a large number of memories
(5, 17): the details (noise) are weeded out, while the general idea
(signal) is preserved. Sleep can also benefit the integration of new
with old memories (5, 17), perhaps through similar means. During
sleep, a large number of circuits can be activated off-line in many
different combinations, without worrying about the consequences
for behavior. In this way, new memories that fit better with the vast
amount of organized older memories can be preserved, whereas
other synaptic traces can be eliminated. So far, it seems that the
memory benefits of sleep, especially for declarative memories, are
due primarily to NREM sleep, but in some instances REM sleep or
a combination of NREM-REM cycles may also play a role.

How does sleep produce its beneficial effects on memory? A
commonly held view is that sleep may work by “reactivating” mem-
ories off-line and further strengthening them, or by transferring

memories from short-lasting stores, such as the hippocampus, to
long-term stores, such as the cerebral cortex, through a process
akin to long-term potentiation of synapses (2, 7, 18). This view
is an inference stemming largely from juxtaposing two lines of
evidence. First, there is substantial evidence that activity patterns
learned in wake are reactivated, or “replayed,” during sleep [e.g.,
Ref. (19-24)], suggesting that sleep may offer an opportunity for
off-line memory rehearsal and, potentially, for synaptic strength-
ening of the kind observed during learning in wake. Second, the
evidence for sleep-dependent memory consolidation mentioned
above is taken as an indication that sleep may literally “strengthen”
memories. Indeed, recent experiments have shown that increas-
ing the intensity of neural activity during sleep inspecific circuits
can benefit certain memories, consistent with an active role of
sleep-dependent reactivation for memory consolidation (25, 26).

There are, however, alternative possibilities. It is now clear that
the spontaneous activation of neural circuits embodying memo-
ries occurs not just during sleep after learning, but also in wake
(27-31), as well as before learning (32). Moreover, most, if not
all examples of consolidation of declarative memories after sleep
do not reflect an absolute improvement, but rather a reduction
in forgetting. Also, most examples of gist extraction and mem-
ory integration (33-35), are not consistent with the idea that
sleep leads to the formation of new associations, but rather to
the unmasking of ones that were already available (34, 36, 37).
Finally, if new associations could easily be formed during sleep
with mechanisms similar to those employed by the brain during
wake, the brain would reinforce modes of functioning that become
progressively divorced from the environment, potentially forming
maladaptive “fantasies.”
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An alternative scenario that can account for activity-dependent
memory benefits of sleep, without incurring such problems, is
that sleep may enforce a competitive down-selection of synapses,
rather than a further strengthening or induction of new associa-
tive links. This synaptic homeostasis hypothesis (38—40) predicts
that the competitive, activity-dependent depression of synapses
can lead to memory consolidation due to an increase in S/N in
both procedural and declarative tasks. Moreover, the same mech-
anism can give rise to gist extraction and the integration of old
with new memories. In this way, off-line net synaptic depression
during sleep can address the plasticity-stability dilemma (42, 43)
in a satisfactory manner. Also, synaptic down-selection during
sleep can restore the selectivity of neuronal responses (44), desat-
urate the brain’s ability to learn (45, 46), and reestablish cellular
homeostasis challenged by net synaptic strengthening during wake
(38-40).

In what follows, we show with computer simulations of sim-
ple, representative examples that a competitive, activity-dependent
mechanism of synaptic down-selection during sleep can indeed
account, at least in principle, for many of the benefits of sleep on
memory. In a companion paper (41), we argue that biasing neural
plasticity toward synaptic potentiation in wake and depression
in sleep ensures, over repeated cycles of wake-sleep, that neural
circuits learn to match the statistical structure of the environ-
ment without becoming prone to catastrophic interference or to
spurious modes of functioning.

2. MATERIALS AND METHODS

The goal of this paper is to demonstrate how, in principle, activity-
dependent synaptic down-selection during sleep can account for
the benefits of sleep under a number of different learning and
memory paradigms. For this purpose, we make a number of
simplifying assumptions and resort to networks of integrate and
fire neurons based on previous work (47). These simulated net-
works fall in-between the large-scale, detailed Hodgkin—Huxley
conductance-based models we previously employed to assess the
effects of sleep on procedural learning (48) and the schema-level
abstract models used by Lewis et al. (17) to discuss gist forma-
tion and memory integration during sleep. Below, we describe the
neuron model, the plasticity rules employed for both training in
wake and down-selection in sleep, and the spontaneous activation
of stored memories in sleep. A limitation of this study is that dif-
ferent simulated networks were used for different experiments in
order to most economically address different aspects of memory
(procedural, declarative, hierarchical, and so on). However, it must
be emphasized that all experiments utilize the same neuron and
synapse model. Furthermore, the learning rule synaptic potentia-
tion in wake paired with synaptic down-selection in sleep was also
kept constant across the different experiments.

21. NEURON MODEL

Asin Ref. (47), we model integrate and fire neurons. Neurons com-
municate through voltage-independent feedforward connections
as well as through voltage-dependent longer timescale feedback
connections (49). Each neuron also receives a number of “exter-
nal noise” connections that are assumed to originate outside of
the network and are voltage-independent. Neurons evaluate on a

1 ms time step, in which the membrane potential V of a neuron is
updated using the rules described below:

Here, M, N, and O are the number of feedforward, feedback,
and external noise connections respectively. For each time step,
the membrane potential is evaluated as follows: first, the contri-
butions to the membrane potential from the voltage-independent
connections (that is, due to feedforward and external noise) are
evaluated; next, if the value of exceeds a pre-specified voltage-
dependent depolarization threshold Zth, the contribution of the
feedback connections is evaluated and is added to the final mem-
brane potential V' of the neuron. To reflect the longer timescale
effects of NMDA-dominated feedback connections (49), feedback
activity is integrated over the past two time steps, as indicated by
equation (2) (results were qualitatively similar when integrating
over 3—10 time steps, due to the short feedforward-feedback loops
in the small networks employed in the present simulations). Once
the final membrane potential V' of the neuron has been evaluated,
the output activity A of the neuron is evaluated using the following
rule:

(1)

VprerBs VprerB < Zi
Vprers + Vg, otherwise

N N
V=Y WPAPt-1D+) wPaAPe-2 (@

i=1 i=1

VererB = VEF + VNoise (3)
M
Vie =y WA -1 (4)
j=1
O . .
Vioise = 3 WS AR (1) (5)
k=1

1, V > threshold
A = . (6)
0, otherwise

Finally, at the end of every simulation time step, whether a
neuron bursts or not, its membrane potential is reset to 0. This
means that our simple spiking neuron model does not retain
temporal history of the activity between time steps. This design
point was chosen to minimize the complexity of the simulated
examples.

2.2. PLASTICITY MECHANISMS: SYNAPTIC POTENTIATION IN WAKE

In the present simulations, building upon previous work (47),
we assume that synaptic potentiation in wake is dependent on
four conditions: the neuron receives strong feedforward firing
(bursts), the neuron receives strong feedback bursts, the neuron
itself bursts strongly, and global neuromodulators are high (50,
51). These conditions capture some simple heuristics that neu-
rons should follow when deciding which synapses to potentiate
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during learning. First, a neuron should be particularly sensitive
to “suspicious coincidences” in input firing, both in time and
in space. The reason is that, under the conditions of sparse fir-
ing mandated by energy constraints, such suspicious coincidences
reflect the occurrence of events that happen more frequently than
expected by chance, and which are thus ultimately related to the
causal structure of the environment (52). Moreover, a neuron
should be especially sensitive to coincidences between feedforward
and feedback signaling, the former relayed by driving, primarily
AMPA connections, the latter by modulatory, primarily NMDA
connections (49). The reason is that coincidence between feedfor-
ward and feedback inputs suggests that the firing of the neuron
has played a causal role in closing the loop in a neural circuit (41).
It also indicates that the feedforward suspicious coincidences the
neuron has captured, presumably originating in the environment,
can be matched internally by feedback coincidences generated
higher-up in the brain. This is a sign that the brain can inter-
nally model the suspicious coincidences it captures externally and
vice-versa — a good recipe for increasing the matching between
its causal structure and that of the environment (40). In addi-
tion, a neuron should pay particular attention if there is a positive
correlation between presynaptic and postsynaptic spikes, as this
suggests that there were enough suspicious coincidences, integrat-
ing over its many inputs, to make it fire within a restricted time
frame (tens to hundreds of milliseconds). Finally, a neuron should
only enable the strengthening of connections when it is awake
and engaged in situations worth remembering, as signaled glob-
ally by neuromodulatory systems that are active during wake and
especially during salient, unexpected, or rewarding circumstances,
such as norepinephrine (53).

This learning rule is graphically depicted in Figure 1A. Note
that both the voltage-independent feedforward connections and
the voltage-dependent feedback connections are assumed to be
plastic. This figure also demonstrates that synaptic potentiating
events are confined within a dendritic domain — that is, poten-
tiation occurs if the aforementioned feedforward and feedback
activations are matched on the same dendritic branch, in line with
recent evidence (54, 55).

In the simulations studied in this paper, a dendritic domain is
composed of at least one voltage-independent feedforward con-
nection and one voltage-dependent feedback connection having a
longer timescale. Therefore, this simple integrate and fire model
captures both the inter-neuronal competition (between neurons)
as well as the intra-neuronal competition (between the dendritic
domains of a single neuron). If a neuron bursts, but receives
feedforward and feedback on different dendritic domains, no
potentiation is induced. In the present simulations, there is no
long-term depression in wake, although in more realistic scenar-
ios, some degree of synaptic depression is expected to occur [see
Ref. (40, 48)].

As defined above, our simple dendritic domain model has
at least one feedforward and one feedback connection, though
several of the experiments described below employ multiple feed-
forward and feedback connections impinging upon a single den-
dritic domain. Furthermore, as proposed by the synaptic home-
ostasis hypothesis and captured by the learning rule described
above, major synaptic changes require an interaction between

feedforward and feedback connectivity. A more realistic model
would account for the true spatial distributions of the mod-
eled synapses and time-varying conductances; however, in this
model, we capture the simple interactions of “proximal” feedfor-
ward and feedback synapses by organizing them into a dendritic
domain.

Formally, if a neuron bursts because it received bursts on its
feedforward and feedback synapses within the same dendritic
domain, then the weight corresponding to a synapse i within the
active dendritic domain is potentiated using the following rule:

| Wita, if Aj(t — 1) = 1 and Apomain(t — 1) > 0

Wi = .
W;, otherwise
(7)
M N
Apomain(t—=1) = Y AP -1 APt -1 (8)
m=1 n=1

That is, if a neuron bursts, then for each of its dendritic
domains that receive both feedforward and feedback bursts, the
active synapses are incremented by «. M and N are the number
of feedforward and feedback synapses within the domain respec-
tively. For the present simulations, the value of « is set to 0.1
for feedforward and 0.05 for feedback connections. Furthermore,
feedforward and feedback connections are bounded between 0 and
W max- For simplicity, global neuromodulators are assumed to be
high throughout learning in wake, resulting in net potentiation, in
line with experimental results (50, 51).

2.3. PLASTICITY MECHANISMS: SYNAPTIC DOWN-SELECTION IN
SLEEP

The synaptic homeostasis hypothesis suggests that the net synap-
tic potentiation of wake must be balanced by synaptic depres-
sion in sleep. Various synaptic rules enforcing depression during
sleep can be envisioned, including a proportional scaling down
of all synapses (16), a rule biasing depression to spare stronger
synapses more than weaker ones (48), and a down-selection
rule — essentially a mirror image of the activity-dependent rule
for synaptic potentiation in wake — implemented in the present
simulations. As illustrated schematically in Figure 1B, a neu-
ron that detects suspicious coincidences “protects” the associ-
ated synapses from depression during sleep, rather than further
potentiating them. Possible cellular mechanisms include (1) the
blockade of calcineurin, whose expression is upregulated in sleep
(56) and promotes synaptic depression (56-59), by high Ca™*
levels; and (2) the selective entry of Arc in the spines that are
not protected (60, 61). By contrast, synapses that are activated
in isolation are not protected and thus depress progressively in
the course of sleep. The switch to the down-selection mode
is signaled globally by a drop in the level of neuromodulators
(50,51).

As with the potentiation mechanisms for wake described above,
down-selection in sleep is assumed to be confined to dendritic
domains as well. Formally, when neuron bursts during sleep, but
receives either only feedforward bursts or only feedback bursts on
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FIGURE 1 | Synaptic potentiation in wake and down-selection in sleep.
(A) During wake, plasticity is dominated by potentiation. Synapses are
potentiated when a neuron receives persistent feedforward activation and
longer timescale feedback activations on the same dendritic domain, the
neuron itself exhibits strong activation, and global neuromodulators are
present. The orange box indicates the dendritic domain which meets these
requirements for LTP. Conversely, the gray box indicates a dendritic domain

B P e
- Neuromodulators ~ ~
A -~ (Low)
/ ﬁ Protection
/ o= ——————
' FB ‘ 5"1
B | A I H
\ e
1
1

1
\,

o
s
=4
E
. .

[Dendritic |

iDomains

1

which is missing feedback activity, so either no change happens or LTD is
induced. (B) In sleep, global neuromodulators are largely absent. The
synapses in a dendritic domain are protected when the neuron is strongly
activated by matching feedforward and feedback activations (gray box, left
dendritic domain). Conversely, LTD occurs when a neuron bursts but its
feedforward and feedback are mismatched within a dendritic domain (purple
box, right dendritic domain).

synapses within a dendritic domain, it depresses a synapse 7 in a
non-active dendritic domain according to the following rule:

W; — B, ifAij(t — 1) = 1 and Apomain(f — 1) =0

Wi = .
W, otherwise

9)

That is, if a neuron bursts and has either received feedfor-
ward without feedback or feedback without feedforward bursts
on synapses within a dendritic domain, the active synapses in
that domain are depressed by . For our simulations, the value
of B is set to be 0.01 for feedforward and 0.005 for feedback con-
nections. In the experiments described in this manuscript, the
values of o and B were empirically chosen based on our simu-
lation’s constraints, including the degree of connectivity, average
input of the neuron, and simulation time. Feedback rates were
chosen to be smaller than feedforward rates such that top-down
connections would change more slowly, while feedforward con-
nections could change more rapidly with new input activity from
the environment.

Alternative down-selection rules were investigated in pilot sim-
ulations. One such rule prescribed that, when a neuron does
not burst, synapses in active dendritic domains are depressed, in
line with classic Hebbian and spike-timing-dependent plasticity
(STDP) learning rules (62—64). Qualitatively, the results for the
simple simulations presented in this paper were not substantially
different from those obtained by employing the rule in Figure 1B.

24. INITIAL CONNECTIVITY, NEURONAL GROUPS, AND
SPONTANEOQUS ACTIVATION IN SLEEP
In the simulations, neurons are arranged in highly connected

neuronal groups (typically 18 integrate and fire neurons) with

feedforward and feedback connections, in line with the minicol-
umn organization of sensory cortices (65). Within our simplified
models, highly interconnected neuronal groups ensure that activ-
ity levels are stable, and that inter-group connectivity, which is the
focus of our analysis, is not too sparse.

The number of neurons and their overall connectivity varies
across the different experiments and will be described in the later
sections. In all simulations, the synaptic weights corresponding
to feedforward and feedback connections are initialized to 1/10
of their maximum value (W ,x/10), with no initial preference to
any input patterns. Each of the neurons also receives three noise
connections, initialized to a value of W,ax, which are not plas-
tic. The threshold of the neurons is set to 2W pax, such that two
inputs of maximum strength are sufficient to make the neuron
fire. Simultaneous activations of 2 or more noise inputs result in a
postsynaptic neuron burst, allowing the neurons to become spon-
taneously active even before synapses have strengthened. Finally, as
mentioned above, the voltage-dependent feedback connections are
integrated if the neuron is depolarized beyond the value of Zy,, set
here to Wax/5 (from either noise inputs or voltage-independent
feedforward connections).

During simulated slow wave sleep, neurons undergo slow oscil-
lations at around 1 Hz, during which they alternate between depo-
larized up-states when they fire in a way similar to wake, and
hyperpolarized down-states, during which they tend to remain
silent. To provide a simple implementation of such slow oscil-
lations, the level of activation of noise connections was set to
20% for a total of 500 ms (up-state), and to 5% for the next
500 ms (down-state). Neurons become spontaneously activated,
and through spike percolation in the subsequent time steps, acti-
vate memories through the network. When connections are strong,
as is often the case after forming a new memory, a few spontaneous
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spikes may be sufficient to reactivate an entire memory over a few
time steps.

3. RESULTS

3.1. CONSOLIDATION OF PROCEDURAL MEMORIES

Procedural (or non-declarative) memories are those that do not
require conscious control or awareness. In the following section,
we investigate procedural learning under the plasticity and down-
selection mechanisms outlined above and verify their effects using
computer simulations.

3.1.1. Procedural learning experiment
In Figure 2, we consider a neuronal network learning a proce-
dural task. Six neuronal groups (composed of 18 neurons each)
are shown and labeled in Figure 2A. The procedural memory
task is modeled in such a way that learning happens in a segre-
gated channel, where activity percolates from left to right. To place
this experiment within the context of a real-world example, the
sequential task can be compared to learning a key progression on
a piano.

The network is trained on the sequence A=B=C=D
in pair-wise steps. First, the network is repeatedly exposed to

the sequence A= B, then to the sequence B=>C, and finally
to the sequence C= D. This simulates the human behavior
where a complex sequence is learned by decomposing it into
simple sub-sequences. The network is trained on the correct
sequence 90% of the time, while 10% of the time the network
is trained on one of two “spurious” sequences (A=E=C=D
and A= B= F= D). These erroneous sequences correspond to
mistakes (i.e., noise) that may be made when learning a new scale
on the piano.

In Figure 3A, we see the spike raster plots of the six neuronal
groups during training. From the Figure, we see that the network
is trained with A = B, B = C, and finally C = D. Figure 2B shows
the changes in connection strength among the neural groups after
training in wake. In the figure, the connection color corresponds to
the source neuronal group, and the connection width corresponds
to synaptic strength. One can see that the strongest connections
(A= B= C= D) correspond to the learned sequence. However,
other connections have also been strengthened, including those
corresponding to “spurious” sequences.

As plasticity leads predominantly to potentiation during wake,
the influence of the activation of several neuronal groups has
broadened. For example, ideally neuronal group B would have

A

FIGURE 2 | Procedural learning task. (A) The network is initialized to have
weak connections between all neural groups. (B) During wake, the
sequence A= B = C= D is learned. However, other connections are also
potentiated due to spontaneous activations as well as mistake sequences
encountered during learning. Neuronal group color saturation indicates its
frequency of activation in wake. (C) After sleep, activation protects the
learned sequence significantly more than the other connections between

groups, and the sharpness of selectivity is restored and the S/N is
enhanced. Neuronal group color saturation indicates its frequency of
activation in sleep. (D) After several training and renormalization periods,
the only significant connections are the ones that capture the learned
sequence. Neuronal group color saturation indicates its frequency of
activation in sleep. Connection strengths less that 10% of the maximum are
not shown for simplicity.
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FIGURE 3 | Neuron activations during procedural learning task. (A) Spike
raster plot of the training phase. Stimuli A and B are followed by the stimuli B
and C, which are followed by C and D. (B) Spike raster plot showing the
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activation of the correct sequence during sleep. (C) Spike raster plot showing
the activation of the correct sequence after a single session of wake-training
followed by renormalization in sleep.

a strong set of synapses to group C. However, due to spu-
rious associations, B has established an effect on three addi-
tional neuronal groups. In such a setup, uninterrupted wake
can lead to runaway potentiation, resulting eventually in strong
connections between all neuronal groups and complete loss of
specificity.

Because the neuronal groups corresponding to the signal
(A= B = C= D) formstronger inter-group connections as com-
pared to the groups involved only in spurious sequences (groups
E and F), they are reactivated at a higher rate in sleep. As a
result, the synapses corresponding to the correct procedural mem-
ory (A= B=C=D) are protected from depression, whereas
the connections corresponding to spurious sequences are not.
As renormalization mechanisms during sleep down-select the
non-protected synapses, selectivity is enhanced — the connec-
tions underlying A = B = C=> D remain strong after sleep, while
many other connections are depressed. Figure 2C shows the con-
nections strengths between various neuronal groups after a sin-
gle period of wake-training and sleep. Finally, Figure 2D shows
that after many training and sleep sessions, this effect is more
pronounced.

3.1.2. Sequence recall and S/N after procedural learning in wake
After learning in wake, performance and S/N are assessed by eval-
uating the networks ability to correctly recall the learned sequence
in wake. To do so, neuronal group A is clamped in the activated
state for 25 ms, while the ensuing activations of other neuronal
groups are recorded. A correct recall is counted whenever at least
50% of the neurons in the groups B, C, and D are activated in the
correct sequence A= B = C=D within 500 ms of clamping A
in the activated state. If 50% of either neuronal group E or F are
activated within this time window after stimulus onset, the recall is
counted as incorrect. Performance is quantified as the percentage
of correct recalls, while S/N is measured as:

Number Correct Recalled Sequences
S/N =

10
Number Incorrect Recalled Sequences (10)

Recall percentages and S/N values for the experiments
described in the next subsections are summarized in Table 1.

3.1.3. Sequence reactivation during sleep

Neurons within the same group tend to be active at the
same time due to the high degree of intra-group connec-
tivity. As shown in Figure 3B, this activity often propa-
gates between groups, “replaying” the newly learned sequence
A= B= C=D. During simulated sleep periods, spontaneous
activation of this kind leads to plastic changes mediating synaptic
down-selection as described in Section 6. Accordingly, synapses
are depressed in a manner inversely proportional to their
reactivation frequency, leading to the connectivity shown in
Figure 2D.

3.1.4. Synaptic down-selection during sleep improves
performance and S/N

The baseline network shown in Figure 2A (before training)
achieves, as expected, a recall performance of 0% and S/N
of 0 (Table 1). Next, the network is trained with the signal
(A= B= C= D) and spurious sequences (A= E= C=Dand
A= B = F= D) asdescribed in Section 1, for a total of 10,000 ms
iterations. Immediately after this wake-training period, the net-
work is able to recall the sequence correctly 80% of the time,
resulting in a S/N of 4. The corresponding connectivity is shown
in Figure 2B.

Subsequently, the network is allowed to undergo synaptic
down-selection in the sleep mode for 10,000 ms. The resulting
synaptic connectivity is shown in Figure 2C. After sleep, the recall
performance of the network improved to 90% and the S/N mea-
sure increases to 9 (Table 1). Figure 3C shows a correct recall
sequence of the network, after the network had experienced a
single wake-sleep cycle.

Finally, the network undergoes 10 wake/sleep cycles. As a result,
the synapses corresponding to the correct sequence are signif-
icantly strengthened, whereas spurious connections have been
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Table 1 | Sequence recall performance and S/N for procedural learning.

Experiment Baseline — 0 wake/ 1Wake 1Wake/ 10 Wake/ Extra wake Potentiation
sleep cycles (before sleep) sleep cycle sleep cycles in sleep
Recall (%) 0 80 90 95 20 25
S/N 0 4 9 19 0.25 0.33
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FIGURE 4 | Sequence recall. (A) With sleep between training and testing sessions, the spike raster plot shows that the correct sequence is recalled correctly
after a single wake-sleep cycle. (B) After two training sessions without sleep, the spike raster plot shows the activation of the incorrect sequence by activating
the neural group A. (C) After synaptic potentiation during sleep, the spike raster plot shows the activation of the incorrect sequence.
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down-selected, as shown in Figure 2D. The recall rate is 95%
and the S/N measure increased further to a value of 19.

3.1.5. Extra wake degrades performance and S/N

In Figure 4A, the spike-raster plot shows the correct recall of the
sequence after a single period of wake followed by sleep-dependent
down-selection. To establish whether synaptic down-selection in
sleep can be substituted for by additional learning in wake, we
simulate an additional wake-training period without intervening
sleep. Accordingly, the network is trained in the wake mode for
20,000 ms. Figure 4B shows the spike raster plot of a typical recall
sequence after the extended training period. Since the connections
to the neuronal groups associated with the spurious sequences (E
and F) have been further potentiated (while those associated with
the correct sequences were already saturated), the correct sequence
is recalled only 20% of the time, corresponding to an S/N measure
of 0.25 (Table 1).

3.1.6. Synaptic potentiation during sleep degrades performance
and S/N

Next, we investigate the consequences of permitting synaptic
potentiation, rather than down-selection, to occur during the
slow oscillations occurring in sleep. For this purpose, the learn-
ing rule in the sleep mode is switched from the down-selection
rule (Section 3) to the potentiation rule normally associated with
wake (Section 2). An example of the networks recall performance
is shown in the raster plot of Figure 4C. This example is represen-
tative of the fact that, with potentiation occurring during sleep, the
neuronal groups involved in the spurious sequences (groups E and

F) are activated quite frequently. As a result, the correct sequence
was recalled only 25% of the time, corresponding to a S/N value
of 0.33.

3.2. CONSOLIDATION OF DECLARATIVE MEMORIES

In this section, we simulate the effects of synaptic down-selection
during sleep on conscious, declarative memories. To keep the
model as simple as possible, we do not attempt to simulate explic-
itly a hippocampal-neocortical network, which would go beyond
the scope of the present paper. Rather, we make use of a network
connected as an associative matrix with inter-group connections
between all neuronal groups (see Figure 5), instead of within a
segregated channel, as was done in the previous section to sim-
ulate procedural learning. The encoding of arbitrary associations
is a classic paradigm employed in studies of declarative memory
consolidation (66, 67).

3.2.1. Declarative learning experiment
In Figure 5A, we consider a network composed of 16 neuronal
groups. The neuronal groups are configured to identify one of 16
different patterns, A through P. During training in wake, pairs of
neuronal groups are simultaneously activated. Each of the pairs is
activated for 2,000 ms to induce strong synaptic potentiation.
Figure 5B shows the connectivity established among the neu-
ronal groups once the network has been trained with 8 pairs of
associations (e.g., A and L, B and M). In this experiment, we stim-
ulate one neuronal group and observed whether 50% (or more)
of the neurons in its associated neuronal group fired within 50 ms
of the onset of stimulation. For example, we stimulate neuronal
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FIGURE 5 | Declarative memory task. (A) The network with 16
neuronal groups before it is trained. (B) The network with 16 neuronal
groups is trained to learn 8 pair associations. However, other
connections are also potentiated due to spontaneous activations as well
as mistake sequences encountered during learning. Neuronal group
color saturation indicates its frequency of activation in wake. (C) After
sleep, activation protects the learned pairs significantly more than the

other connections between groups. Neuronal group color saturation
indicates its frequency of activation in sleep. (D) After training in wake
(B), half of the associative pairs are cued during sleep (Pairs A-L, B-M,
C-P D-J). The neuronal group color saturation indicates its frequency of
activation in sleep, which is greater for the cued pairs. As a result, cued
pairs are significantly protected and subsequently have a higher recall
rate and S/N.

group A and observe whether neuronal group Lis correctly recalled
(activated). As with the procedural memory task, if any neuronal
group outside of the paired associate showed at least 50% activa-
tion within this window, the trial is counted as an incorrect recall.
The S/N for the declarative memory task is defined as:

/N = Percentage Correct Recalled Pairs
" Percentage Incorrect Recalled Pairs

(11)

322 Synaptic down-selection during sleep preserves
performance and S/N

Initially, the network shown in Figure 5A has no strong associative

links, the baseline recall rate is 0%, and the S/N is 0. Immediately

after the training phase, the strengthening of connections demon-

strated in Figure 5B leads to a recall rate of 87%, corresponding to a

S/N of 6.7 (see Table 2). After a period of sleep (see Figure 5C), the
network recalls the learned pairs correctly 75% of the time, with
a S/N of 2.7. If the network is allowed to undergo 10 wake/sleep
cycles, the recall rate improves to 94%, with a S/N of 15.6.

323 Extra wake degrades performance and S/N

Next, we simulate the standard experimental comparison between
the effects of sleep after training versus extra wake. Of the two iden-
tical networks trained on the associative recall task, one is allowed
to enter the sleep mode for 20,000 ms (as described above), while
the other is kept in the wake mode for the same amount of time.
To mimic interference due to spurious associations occurring in
wakefulness, the second network is exposed to six random associ-
ations, different from the ones learned during the initial training.
Each of these spurious associations is presented to the network
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Table 2 | Paired associate recall performance and S/N for declarative learning.

Experiment Baseline — 0 wake/ 1Wake 1Wake/ 10 Wake/ Extra wake Potentiation Cuein
sleep cycles (before sleep) sleep cycle sleep cycles in sleep sleep

Recall (%) 0 87 75 94 53 60 85

S/N 0 6.7 3 15.6 112 1.5 5.67

for 300 ms, leading to further synaptic potentiation. As a result,
the awake network shows correct recall only 53% of the time,
corresponding to a S/N value of 1.12.

The results obtained after declarative learning should be com-
pared to the one obtained with procedural learning above. With
the procedural task, recall after training in wake is 80% and after
down-selection in sleep it improves to 90%. With the declarative
task, recall after training in wake is 87% and after down-selection
in sleep it is reduced to 75%, compared to 53% without sleep.
This difference between absolute improvement after procedural
learning and relative preservation (reduced degradation) after
declarative learning is in line with experimental results (2). In the
simulations, these results can be explained by considering that, in
the procedural task, acquisition of both correct and spurious asso-
ciations through synaptic potentiation in wake is confined within
a single channel, reducing the effects of interference. By contrast,
in the declarative task, the all-to-all connectivity that is character-
istic of associative matrices is much more prone to interference by
spurious associations.

3.24. Synaptic potentiation during sleep degrades performance
and S/N

Next, we examine the effects of synaptic potentiation during sleep.
For this experiment, the network is trained as before with 8
associated pairs for 2,000 ms. However, instead of synaptic down-
selection, the network uses the potentiation rule as in wake (see
Section 2.2). As a consequence, the recall rate of the network
degrades to 60%, with a S/N value of 1.5. Examining the dynamics
of activation and plasticity during sleep revealed that the primary
reason for this degradation in performance and S/N is the spuri-
ous strengthening of connections between neuronal groups that
are spontaneously activated during sleep.

325. Cuing memories during sleep improves performance and S/N
Finally, based on recent experimental results [e.g., Ref. (68,69)], we
also examine the effects of stimulus cuing during sleep. As before,
the network shown in Figure 5B is trained in wake to learn 8 asso-
ciative pairs. After training, the network has a recall rate of 87%
and a S/N measure of 6.7. During sleep, 4 of the trained pairs are
cued (i.e., strongly activated through external stimuli), while the
other 4 pairs are activated as before only through the occurrence of
spontaneous slow oscillations. The external cues are presented to
the network 3 times each (1 pair at a time) for a period of 500 ms
per cue. The total sleep time was again 20,000 ms.

During external cuing in sleep, the plasticity of the network was
still governed by synaptic down-selection. Each of the cued neu-
ronal groups spent on average 8% more time in the up-state during
slow wave oscillations. Because each of the cued pairs were acti-
vated together as a result of the stimulation, the synapses between

them were better protected than those between the non-cued pairs,
which became activated only through the simulated slow wave
oscillations.

Figure 5D shows the state of the network after the cuing in
sleep. The color saturation of each neuronal group indicates its
intensity of activation during sleep, which has a direct impact on
the synaptic strength between the associated pairs. When we mea-
sure recall performance for the entire network after 1 sleep cycle,
the value is 85%, corresponding to a S/N value of 5.7, higher than
without cuing. We then compare directly the cued with the non-
cued pairs. As expected, the non-cued pairs have a recall rate of
75% with an S/N of 3, values similar to those observed without
cuing (see Section 2). By contrast, the cued pairs have a recall rate
of 95% and a S/N measure of 19, an improvement in line with
empirical results (68, 69).

Alternatively, if synaptic potentiation occurs during sleep, the
network again runs the risk of strengthening spurious connections,
as described in Section 4. If potentiation is limited only to cued
pairs, while non-cued pairs undergo synaptic down-selection, the
results are again in line with those shown in Figure 5D; however,
such a result implies that during sleep the brain would have a way
to implement different plasticity rules for cued and non-cued pairs
and to differentially tag the relevant synapses during wakefulness.

3.3. GIST EXTRACTION

Recent evidence indicates that sleep facilitates gist extraction — the
ability to form enduring memories of high-level invariants, such
as faces, places, or even maps, more than of low-level details (5,
17). Below, we examine how spontaneous activation followed by
synaptic down-selection in sleep can promote gist extraction in a
hierarchically organized network.

3.3.1. Synaptic down-selection during sleep favors gist extraction
in hierarchically organized networks

For this purpose, we arrange neuronal groups according to the
simple hierarchical organization shown in Figure 6. This net-
work architecture is inspired by the hierarchical organization of
anatomical connections in the cerebral cortex and by the physio-
logical evidence showing that neurons in higher regions respond
to more invariant stimuli than neurons in lower regions (70). In
Figure 6A, each circle represents a neuronal group of 18 inter-
connected neurons. For this experiment, the first level contains 26
neuronal groups, the middle level 14, and the upper level 3. To
ensure that the top level of the network receives feedback activa-
tions necessary to trigger plasticity, it is recurrently connected to
a fourth level via non-plastic synapses (not shown). As with other
experiments, feedforward and feedback connections are initialized
to Wnax/10 (though feedback connections are not shown to avoid
clutter).
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FIGURE 6 | Gist extraction task. (A) The hierarchically organized
neuronal network is initialized to with weak connections shown in
gray. (B) During wake, the network is exposed to four stimuli. The
blue, purple, and orange stimuli partially overlap with the green
stimuli. After learning, many connections are strengthened, though
the connections corresponding to the overlapping features in the

stimuli are strongest. Neuronal group color saturation indicates its
frequency of activation in wake. (C) During renormalization, many
connections are depressed, but the gist remains. Neuronal group
color saturation indicates its frequency of activation in sleep. For
(B,C), connection strengths less than 10% of the maximum weight
are not shown for simplicity.

Figure 6B shows four different stimuli on which the network
is trained during wake, indicated by the colored arrow inputs to
the bottom level of the network. Note that the orange, purple, and
blue stimuli each partially overlap with the green stimuli. Dur-
ing wake, each of the four stimuli is presented to the network for
500 ms, four times each, with the order chosen randomly. The total
training time in wake is 8,000 ms.

Figure 6B shows the feedforward connections after training in
wake, where the thickness of the connections corresponds to their
synaptic weight. While many connections became stronger, those
relaying features that overlapped among the different stimuli —
that is, the gist — show the largest increase in strength (at or close
to Wax; connections with strength at or less than Wpax/10 are
omitted for clarity).

In Figure 6C, the color intensity of each of the neuronal groups
indicates its frequency of activation during a subsequent period
of sleep lasting 10,000 ms. As also shown in the figure, due to
down-selection during sleep, many of the synapses are depressed,
but those corresponding to the gist shared by the four stimuli are
mostly preserved. That is, during down-selection in sleep the con-
nections between level 2 and 3 are comparatively better protected
than those between level 1 and 2. Thus, spontaneous activation
and down-selection during sleep favor gist extraction.

3.3.2. In hierarchically organized convergent-divergent networks,
top-down spontaneous activation predominates over
bottom-up activation during sleep

In the model, an important factor promoting the relative preser-
vation of gist versus detail has to do with the dynamics of spon-
taneous activation during sleep. The general hypothesis is that
neuronal patterns in sleep are more frequently activated top-
down (level 3 before 2 before 1) than bottom-up (level 1 before 2
before 3).

To validate this notion, we perform two experiments. Using
hierarchical network of neurons similar to that shown in
Figure 6A, feedforward and feedback weights are initialized to
W max/5. Furthermore, the timescale of the feedback connections
is set equal to the timescale of feedforward connections (1 ms),
though feedback connections maintained their voltage-dependent
behavior. For this experiment, while the network is engaged in
spontaneous slow oscillations through noise injections, synaptic
down-selection is turned off. A random neuron is chosen in level

1 and level 3, and we observe the frequency with which the neuron
initiated a spike that will percolate through the hierarchy. Percola-
tion is successful if, for example, the neuron in level 3 spikes, then
in the next time step a neuron (within the first neuron’s receptive
field) in level 2 also spikes, and finally a neuron (within the first
neuron’s receptive field) spikes in level 1. Bottom-up sequences
are detected the same way, but in the opposite direction (level 1
to 2 to 3). After 10,000 ms of simulated sleep, the number of top-
down initiated sequences was nearly 4 times that of bottom-up
sequences.

In our second experiment, we take the same network (in sim-
ulated slow wave sleep) and impose a steady activation of either
1/3 of the neurons in the top level (level 3), chosen at random,
or of 1/3 of the neurons in the bottom level (level 1). For this
experiment, the average firing rate of the network is 5% higher
when the stimulation is provided to the top level, despite the
fact that when the stimulation is provided at the bottom level,
substantially more neurons are activated (see Figure 6). In the
model, this bias for top-down activation can be explained by the
narrower fan-out of feedforward versus feedback connections in
a convergent-divergent hierarchical network. In the bottom-up,
feedforward direction, it is unlikely that the randomly stimulated
neurons fit the receptive field of a higher-level neuron to make it
fire. This unlikelihood is multiplied when considering the percola-
tion of activity in a feedforward direction over multiple levels. By
contrast, since a level 3 neuron has a broad fan-out to lower levels,
it can bias toward firing many compatible patterns of activation in
lower levels, so activation is more likely to propagate in top-down
direction.

The bias for top-down initiated activity is enhanced further
by the longer timescale effects typically associated with top-down
connections. By increasing the timescale of feedback connections
to 2 ms, the activity of the network is 20% higher when the top level
is activated. The bias is even larger if the total number of feedback
connections is made to be greater than the number of feedfor-
ward connections, as has been suggested for corticothalamic versus
thalamocortical connections (71, 72).

34. INTEGRATION OF OLD WITH NEW MEMORIES

All previous experiments (procedural learning, declarative learn-
ing, and gist extraction) begin with networks treated as a tab-
ula rasa, without strong connections corresponding to previous
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memories. In the following experiments, we consider a hierar-
chically organized network of neurons with previously stored
memories. In particular, we consider how synaptic down-selection
in sleep favors new memories that fit well with old memories, and
how synaptic depression in wake can interfere with old memories.
3.4.1. Synaptic down-selection during sleep favors the integration
of new with old memories
Both theoretical considerations (73) and experimental evidence (5,
17) suggest that off-line activation of neural circuits during sleep
may provide an ideal setting for the integration of newly acquired
associative links with an established body of knowledge within the
brain. To assess how sleep-dependent down-selection mechanisms
can aid this process of memory integration, we resort again to a
hierarchically organized network of neuronal groups (Figure 7).
Each of the 3 levels of the network comprised 30 neuronal groups
containing 18 neurons each. As with the gist example, the top level
of the network receives non-plastic feedback activations from a
fourth level in order to initially trigger plasticity (not shown).
The two identical networks are then endowed with “old” mem-
ories (shown in red in Figures 7A,D, implemented by a set of
strong feedforward and feedback connections between levels (ini-
tialized to Wax). Then, both networks are exposed to a stimulus
to create a “new” memory. The network in Figure 7B is exposed
to a stimulus (shown in green) that has substantial overlap with
the old red memories. Conversely, the network in Figure 7E is
exposed to a stimulus (shown in blue) that only overlapped with a
single neuronal group (per level) associated with the old red mem-
ories. To prevent extensive subliminal plasticity through the entire

network of associations during wake, we keep the majority of the
neuronal groups in the second and third levels of the network in an
inactive state (shown in gray). In real brains, global activation and
plasticity during experience is ruled out by several mechanisms of
intra- and inter-areal competition and inhibition.

As shown in the figure, after a wake-training period of
10,000 ms, both networks has acquired the new memory by
strengthening several connections between the levels (shown in
blue and green, respectively). Thereafter, both networks are set
in the sleep mode for an additional 10,000 ms. During simulated
sleep, the new green memory (Figure 7C) is often co-activated
with the old red memories, due to the presence of many points
of contact. In the figure, the frequency of activation is indicated
by the color saturation of the neuronal group. Since connections
belonging to the new green and old red memories often termi-
nate on the same synaptic compartments, even partial activations
are able to protect synapses from down-selection, as long as activa-
tions are conveyed by both feedforward and feedback connections.
As a result, the synaptic weights of the new green memory are
depressed, on average, by only 2%. Conversely, a significant por-
tion of the new blue memory (Figure 7F) can only be activated
by the other neuronal groups within the blue memory. As a result,
the blue memory often encountered mismatched feedforward and
feedback activations, resulting in substantial depression: synapses
between levels 1 and 2 are depressed on average by 28%, and
those between level 2 and 3 by 11%. Thus, as expected, sponta-
neous activation in the sleep mode protected preferentially the
new memory that overlapped significantly with old memories,
resulting in memory integration.

FIGURE 7 | Memory integration task. (A) A hierarchically organized network
contains a previously learned memory. (B) The first network is exposed to a
stimulus which forms a new memory (green) that significantly overlaps with
the old memory (red). Gray neuronal groups are inhibited. (C) During sleep,
the green and red memories are often activated together. As a result, the
memory is protected and downscaling is minimized (2% on average).
Neuronal group color saturation indicates its frequency of activation. (D) The

same initial network from (A). (E) This network is exposed to a stimulus
which forms a new memory (blue) that minimally overlaps with the old
memory (red). Gray neuronal groups are inhibited. (F) Conversely, most of the
blue memory is activated independently of the red memory. Connections are
downscaled 28% between the bottom and middle level, and 11% between
the middle and higher level. Neuronal group color saturation indicates its
frequency of activation.
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342 Synaptic depression in wake degrades old memories that
are not activated

As mentioned in the Section “Introduction,” down-selection
should occur during sleep, when the brain is off-line and it can
comprehensively activate its memory bases. By contrast, if the nec-
essary renormalization of synaptic strength are to happen in wake
(concurrently with learning by potentiation), it will run the risk
of degrading important memories simply because they happen
not to be activated during the limited sampling dictated by a day’s
wake behavior.

To illustrate this aspect with a simple example, in this final sim-
ulation we implement renormalization during wake while a new
memory was being formed. The same network shown in Figure 7A
is exposed to the green stimulus as in Figure 7B. As in the previ-
ous simulation, during wake-training the majority of the neuronal
groups in the second and third levels of the network, correspond-
ing to old memories, are kept in an inactive state (shown in gray).
This is done to replicate the sampling bias occurring during any
particular wake episode: on a given day, the brain is typically faced
with some novel stimuli (relating, say, to a new acquaintance), and
has no opportunity to activate most of its old memories (including
memories related, say, to one’s old friends).

To achieve activity-dependent synaptic renormalization during
wake, the plasticity rule is modified by allowing for the depres-
sion of synapses that are inactive when the postsynaptic neuron
fired, not unlike STDP (62—64). During wake-training, neurons
responding to the features of the new stimulus (related, say, to the
face, voice, posture etc. of a new acquaintance) are activated often,
so the active synapses conveying the new stimulus became progres-
sively stronger, laying down a trace for the new memory (green in
Figure 7B). However, on the same day, synapses onto the same neu-
rons originating from neurons involved in old memories (related,
say, to the face, voice, posture etc. of old friends) are almost always
inactive, and undergo progressive depression (on average, by 90%
when using the same learning rates for potentiation and depres-
sion). Thus, activity-dependent synaptic renormalization in wake
will achieve new learning at the expense of potentially degrading
important features of old memories. Clearly, it will not be advis-
able, when making a new friend, to run the risk that of losing the
old ones simply because they were not present on that day.

During simulated sleep, the effects of the synaptic depression
in wake are compounded. As the new memory no longer over-
laps with the old memory, the advantages of co-activation in sleep
are absent. As a result, the connections of the new memory are
depressed to the same levels as they would have been were they
independent of an old memory (similar to the network shown in
Figure 7F.

4. DISCUSSION

The goal of this paper is to show that cycles of activity-dependent
synaptic potentiation during learning in wake, followed by down-
selection of synapses during the slow oscillations of sleep, can
account in principle for several of the beneficial effects of sleep on
memory, including the consolidation of procedural and declar-
ative memories, gist extraction, and the integration of new with
old memories. These effects were demonstrated using computer
simulations of simple integrate and fire neurons endowed with

plasticity, which were mechanistic enough to evaluate whether the
predicted effects could be achieved in a “neural” implementation,
yet as simple as possible to focus on proof of principle rather
than on detailed models of specific brain regions. Below, we dis-
cuss the rationale for the down-selection idea, some of the general
mechanisms that could implement down-selection in the mam-
malian brain, the extent to which down-selection can account for
the experimental results about sleep and memory, and some dif-
ferences of the down-selection model with respect to the standard
replay-transfer-potentiation model. In a companion paper (41),
we examine how the process of learning during wake and down-
selecting during sleep can be quantified in terms of how well a
synaptic architecture captures and models the statistical structure
of the environment.

4.1. SLEEP AND SYNAPTIC HOMEOSTASIS

The sleep-dependent down-selection model investigated in this
paper is motivated by the hypothesis that the core function of
sleep is to renormalize synaptic strength, which increases dur-
ing wake as a result of learning and during development as a
result of synaptogenesis (38—40). A progressive increase in synap-
tic strength is not sustainable at the single neuron level due to the
burden it poses on energy consumption, space and cellular sup-
plies. Therefore, there needs to be an overall renormalization of
synaptic strength to restore cellular and synaptic homeostasis. As
hypothesized here, if synaptic renormalization happens through
an activity-dependent, competitive down-selection process dur-
ing sleep, several systems-level advantages can also be obtained,
including memory consolidation, gist extraction, and integration
of new with old memories, in addition to a desaturation of the
ability to learn. The core prediction of a net increase in synap-
tic strength in wake and its net decrease in sleep is supported by
molecular, electrophysiological, and structural evidence (38-40).
Various memory benefits of sleep are also supported by much
evidence (2-7). However, these results are often interpreted as
consistent with the replay-transfer-potentiation model: (i) the
reactivation of memories during sleep, especially declarative mem-
ories, leads to (ii) their transfer from hippocampus to cortex; (iii) a
further potentiation of synapses that underlies their consolidation.
As shown here, an alternative notion that spontaneous activity dur-
ing sleep may actually produce a down-selection of synapses, the
synaptic homeostasis hypothesis, is: (i) consistent with molecular,
electrophysiological, and structural evidence; (ii) can provide a
parsimonious account of many of the benefits of sleep on memory;
(iif) avoids inherent risks associated with potentiating patterns of
activity occurring when the brain is not on-line. Below, we briefly
outline the rationale behind the synaptic homeostasis hypothesis
and its prescriptions for wake and sleep.

4.2. POTENTIATION IN WAKE

Neuronal firing, especially due to its postsynaptic consequences,
is energetically more expensive than silence (74-78). Therefore,
neurons should fire sparsely and do so only for important events
(44). At any given time, a neuron deep in the brain can infer the
importance of its inputs based on the occurrence of “suspicious
coincidences” (52). Given that a neuron receives a large num-
ber of synapses, all of them usually firing at very low rates due
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to energy constraints, coincidences of firing at multiple synapses,
occurring much above what would be expected by chance, are
suspicious and probably important, as they reflect some statis-
tical structure in the inputs and ultimately in the environment.
A burst of spikes is also suspicious, suggesting the persistence of
some input beyond chance (47). When a neuron detects the occur-
rence of suspicious coincidences by integrating over several of its
synapses, in space or time, it should communicate that something
presumably important happened by firing, rather than by silence;
otherwise important events would not be able to percolate and be
further integrated down-stream (44). In an open-ended environ-
ment, new contingencies occur all the time when one is awake,
especially when exploring the environment, leading to new suspi-
cious coincidences over synapses that may initially not be strong.
In order to learn these new contingencies, a neuron must be able
to potentiate these synapses so it can reliably signal their detection
to the rest of the brain. In summary, when connected to the environ-
ment, neurons should fire for suspicious coincidences and percolate
them through the brain by potentiating the synapses that convey
them.

The learning rule implemented in the present model
[Figure 1A, see also Ref. (47)] follows these prescriptions and,
in line with those of Hebbian and spike-timing-dependent plas-
ticity (79), requires the coincidence between pre- and postsynaptic
firing. Moreover, it emphasizes suspicious coincidences in input
firing that occur over a restricted dendritic domain (54, 55), espe-
cially if they are due to a coincidence between driving, feedforward
(primarily AMPA) and modulatory, feedback signaling [primarily
NMDA (49)]. Finally, it requires the coincident activation of dif-
fuse neuromodulatory systems, such as the noradrenergic system,
which occurs during salient events in wake.

4.2.1. The dangers of synaptic potentiation in sleep

This last requirement implies that synaptic potentiation should
occur primarily in wake, when an organism interacts with its
real environment, and not in sleep, when it is disconnected
and exposed to its own dreams or “fantasies” (80). While in
wake non-declarative skills can be acquired under the control
of environmental feedback, new learning during sleep could eas-
ily drift onto inappropriate modes. These negative consequences
of synaptic potentiation during sleep are schematically illustrated
in the simulations of Section 3.2.4 and 3.1.6 for declarative and
procedural memories, respectively. The silence of diffuse neuro-
modulatory systems during most of sleep (50, 51), the associ-
ated lack of induction of genes implicated in synaptic poten-
tiation (56, 81), and consistent evidence that true learning is
not possible in sleep (82) are in line with the idea that as a
rule the acquisition of new memories should be confined to
wake.

It must be emphasized that the learning rule used in the present
simulations is only meant to be representative of the particular
mechanisms implemented by any given neuronal class. In fact,
these are likely to differ, even substantially, in different species,
brain structures, cell types, and developmental times (40). What
the synaptic homeostasis hypothesis explicitly predicts, however,
is that wake is bound to lead to a net increase in synaptic strength,
which in turn needs then to be renormalized by sleep.

4.3. SYNAPTIC DOWN-SELECTION IN SLEEP

According to the synaptic homeostasis hypothesis, synaptic renor-
malization has positive effects both at the cellular level and at the
systems level (38—40). At the cellular level, it leads to the restoration
of energy efficiency, space, and cellular stress. At the systems level,
it leads to the memory benefits investigated in the present simu-
lations. But why should proper synaptic renormalization require
sleep? The main reason has to do with statistics.

4.3.1. The dangers of synaptic renormalization in wake

During a typical wake period, when the brain is on-line and learn-
ing, it is necessarily faced with a limited sampling of the statistical
structure of the environment. For example, one may make a new
acquaintance with whom one spends a large portion of the day. As
a consequence, many neurons in one’s brain will detect and learn,
primarily by synaptic potentiation, several new “suspicious coinci-
dences” having to do with that person’s face, voice, posture, and so
on, forming new memories that are potentially very useful. Under
these circumstances, however, it would be maladaptive if neurons
were to satisfy the requirement for renormalization by depress-
ing those synapses that were not involved in signaling the new
acquaintance, just because they were not activated much on that
particular day, thus progressively erasing old memories — those of
old friends — that are just as useful. These negative consequences
of synaptic renormalization in wake, due to the inevitably limited
sampling a given waking day affords, were illustrated by a sim-
ple example in Section 3.4.2. Conversely, as illustrated in Section
3.4.1, this problem is solved when the brain disconnects from the
environment in sleep; decoupled from the requirements of behav-
ior, the brain can afford to perform a comprehensive sampling of
all its previous knowledge (old memories). In this way, connec-
tions conveying important old memories will be protected, and so
will those conveying new memories that fit best with the old ones,
whereas only connections conveying spurious coincidences will be
at a competitive disadvantage and be depressed.

As was mentioned in the Methods, various synaptic rules
enforcing depression during sleep can be envisioned, including
a proportional scaling down of all synapses (16) and a rule bias-
ing depression to spare stronger synapses more than weaker ones
(48). The down-selection rule implemented here is almost a mirror
image of the activity-dependent rule used for synaptic potentia-
tion during wake (Figure 1B). This rule, too, is only meant to be
representative, and in fact, as indicated in the Section “Materials
and Methods,” it can be modified in various ways while leading to
qualitatively similar effects. Altogether, the down-selection process
ensures the survival of those circuits that are “fittest,” either because
they were strengthened repeatedly during wake, or because they are
better integrated with older memories. Instead, synapses involved
in circuits that were only occasionally strengthened during wake,
or fit less well with old memories, are depressed and eventually
eliminated. As shown by the present simulations, the same rule can
account for several of the beneficial effects of sleep on memory,
including consolidation, gist extraction, and integration.

44. MEMORY CONSOLIDATION
Substantial evidence exists that after sleep, compared to an equiv-
alent period of wake, previously acquired skills (non-declarative)
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or facts (declarative) are retained better — an effect usually referred
to as memory consolidation. This evidence is especially strong
for declarative memories (1-7), but many examples of sleep-
dependent enhancement of both perceptual and procedural mem-
ories exist (8—15), often with an associated local increase in sleep
slow waves [e.g., Ref. (11, 83, 84)]. In some cases, the suppression
of sleep slow waves has been shown to prevent the memory bene-
fits of sleep (84, 85), while their enhancement has positive effects
(25, 26).

Section 3.1.4 and 3.2.2 showed how wake-training followed
by sleep-dependent down-selection in simple neuronal networks
models, endowed with the learning rules of Figure 1, resulted in
an enhancement of performance when re-testing after sleep, inline
with experimental results obtained with both non-declarative and
declarative tasks. The models illustrate that performance enhance-
ments can be obtained without any further strengthening of
connections during sleep-related spontaneous activity (so-called
reactivation), but simply through a competitive protection of
well-learned associations against spurious associations that were
preferentially depressed. In other words, the enhancement was due
to an increase in S/N, without the need for an absolute increase
in the strength of connections conveying the signal. Of note,
the increase in S/N after sleep led to an absolute improvement
in performance in the “non-declarative,” sequence-learning task,
which in the model was implemented in a segregated “channel”-
like architecture. By contrast, in the “declarative,” paired associate
task, implemented in an associative memory-like architecture, a
period of sleep limited the decay in performance produced by
an equivalent period of wake, but did not result in an absolute
improvement. This difference, which is in line with a large body
of experimental evidence, is explained in the model by the greater
opportunities for interference during post-training wake in large
associative networks.

The improvement in performance and S/N after sleep-
dependent depression of synapses is also in line with previous
modeling work in which different depression rules were employed.
Olcese et al. implemented a large-scale model of the corticothal-
amic system that learned a sequence using an STDP paradigm
(48). Modeling a network of Hodgkin—Huxley-like spiking neu-
rons, Olcese et al. trained their network to reproduce a sequence
of activations across four patches of neurons and demonstrated
that the S/N was significantly increased when the training session
was followed by synaptic renormalization during sleep. During
sleep, the plasticity mechanism was modified to predominately
depress connections, resulting in a selective depression of weaker
synapses, while stronger synapses were preferentially protected.
Just like the present simplified model (Section 3.1.3), the corti-
cothalamic model showed preferential reactivation of the learned
sequence in sleep. Moreover, this reactivation declined over time,
matching experimental evidence (21, 31). Hill et al. (16) simi-
larly compared the results of the non-declarative rotation-learning
paradigm in a behavioral study and a computational model. The
results of the behavioral study demonstrated that performance
was enhanced in proportion to the amount of SWA during sleep,
while the results of the computational model showed that sleep-
dependent downscaling of synaptic weights matched the results of
behavioral experiment.

In recent studies, it has been shown that after learning associ-
ations between sounds and spatial locations (69) or odors and
spatial locations (68), actively cuing the encoded memories in
sleep (by sound or odor, respectively) enhances memory reten-
tion. This general cuing effect has also being replicated in our
simulations (Section 3.2.5). Specifically, memories cued during
sleep were recalled better than without cuing, and the effect was
specific, in that in the same session the recall of uncued memories
did not improve. Once again, the mechanism through which selec-
tive cuing can lead to selective memory improvements after sleep
(in relative terms) is that, by increasing beyond the spontaneous
level the activation of specific circuits, and not of others, cued
synapses are all-the-more protected from depression and have a
competitive advantage over non-cued ones.

Finally, as shown in Sections 3.1.5 and 3.2.3, while sponta-
neous activation and synaptic down-selection in sleep were able
to improve performance, additional activation through training
in wake was not, and beyond a point, it actually degraded perfor-
mance. This effect is accounted for in the model by the fact that
the potentiation of the signal ends up saturating, and extra train-
ing mostly potentiates the noise, thereby decreasing S/N. Similar
results were obtained in the simulations of Hill et al. (16), and
are consistent with experimental results in perceptual learning
(86-88).

4.5. GIST EXTRACTION AND THE INTEGRATION OF NEW WITH OLD
MEMORIES

The brain has a remarkable ability to extract high-level invari-
ants from sensory inputs and form gist memories, a process that is
thought to be facilitated by sleep (5, 17). The simulations in Section
3.3.1 demonstrate how sleep-dependent synaptic down-selection
can achieve gist extraction in a hierarchically organized neuronal
network. In this network, the convergent divergent arrangement
of feedforward and feedback connections leads to the more fre-
quent spontaneous activation of top-down rather than bottom-up
sequences of firing. This observation is in line with the more fre-
quent origin of sleep slow waves in anterior rather than posterior
cortices (89, 90). It is also in line with the evidence suggesting
that cognitive activity during sleep is more akin to imagination
than to perception (91). In the simulations, the end result of pref-
erential top-down activation during sleep is that memory traces
formed in higher areas are comparatively better protected than
those formed in lower areas. In essence, the more frequent top-
down activation provides an endogenous equivalent of sensory
cuing (Section 3.2.5), which leads in turn to the preferential preser-
vation of high-level, invariant features (the gist) as compared to
low-level details.

Another prominent feature of memory is that new material is
better remembered if it fits with previously learned schemas (73);
that is, if the new memories can be integrated or incorporated
with an organized body of old memories (92). Again, sleep seems
to facilitate this process (5, 17). In Section 3.4.1, the potential
role of activity-dependent synaptic down-selection on memory
integration was examined with hierarchically organized networks
of neurons. During sleep, when the old memories became spon-
taneously activated (which they did frequently), they also co-
activated those new memories with which they had many points
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of contact (and vice versa). In this way, the activity-dependent
down-selection mechanism protected both sets of memories from
synaptic depression. However, when overlap between the old and
new memories was minimal, synapses corresponding to the newly
formed memory were comparatively more depressed, as they were
less frequently co-activated with old memories. Moreover, they
did not contribute to selecting which old memories would be best
protected. Thus, as shown at an elementary level by these simula-
tions, sleep allows new memories to interact with a large body of
old memories, be consolidated depending on the extent to which
they fit in their overall organization, and possibly even contribute
to memory reorganization. Recent evidence indicates that learn-
ing can affect the local intensity of sleep slow waves [e.g., Ref. (11,
83, 84)] as well as their origin (93), that many slow waves are local
rather than global and involve varying subsets of cortical areas in
varying combinations (94), and that they travel in varying direc-
tions (89). Based on these findings and the results of the present
simulations, it would seem that the joint activation of new and
old memories during sleep, associated with a competitive down-
selection process, not only favors their integration, but may also
lead to a complex systems-level reorganization of memory.

5. CONCLUSION

Several models of memory consolidation have assumed that some
of the beneficial effects of sleep on memory may occur because,
in the course of NREM sleep, activity patterns acquired dur-
ing learning in wake are actively replayed, leading to further
potentiation of the underlying synapses. The synaptic homeostasis
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