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The nature of “toxic” tau in Alzheimer's disease (AD) has been unclear. During pathogen-
esis, the importance of tau oligomerization vs. tau phosphorylation is controversial and
the investigation of both remains critical toward defining the “toxicity” of tau. The phos-
phorylation of tau on serines and/or threonines occurs early in the disease course and
altering phosphorylation has been shown to disrupt neuropathogenesis. \We have recently
reported that in PC12-derived cells, tau had a role in signal transduction processes activated
by NGF By depleting tau, NGFinduced MAPK activation was attenuated and by restoring
tau, MAPK activation was restored. Furthermore, the phosphorylation of tau on Thr231
was required for tau to potentiate MAPK activation. Here we report the effects of addi-
tional disease-related tau phosphorylation sites and tau isoform on the ability of tau to
potentiate MAPK activation. Our findings, which tested three other sites of phosphoryla-
tion, showed that phosphorylation at these other sites mainly lessened MAPK activation;
none potentiated MAPK activation. In comparing ON3R tau to the other five brain tau iso-
forms, most showed a trend toward less MAPK activation, with only 2N4R tau showing
significantly less activation. Since MAPK activation has been reported in AD brain and is
characteristic of cell proliferation mechanisms, tau phosphorylation that promotes MAPK
activation could promote cell cycle activation mechanisms. In neurons, the activation of
the cell cycle leads to cell death, suggesting that abnormally phosphorylated tau can be
a toxic species. The relationship between tau oligomerization and its ability to potentiate
MAPK activation needs to be determined.

Keywords: tau, MAPK activation, phosphorylation, signal transduction, NGF

INTRODUCTION

The existence of tau pathology occurs in many age-related neu-
rodegenerative diseases that are now termed “tauopathies.” Among
these diseases, Alzheimer’s disease (AD) is the most prevalent and
it has been suggested that the presence of tau is critical for dis-
ease progression (1, 2). Neurodegenerative diseases caused by both
missense and intronic mutations in the tau gene have indicated
the ability of tau to cause disease [reviewed by Ref. (3-5)]. How-
ever, the mechanism by which tau leads to neurodegeneration is
unknown. For instance, whether there is a loss of function or a gain
of toxic function remains controversial. In considering the role of
different tau species during neurodegeneration, hyperphosphory-
lated tau, and tau filaments have long been investigated. Evidence
suggesting that neurofibrillary tangles were not a toxic species
came from data indicating that tau-induced behavioral deficits
could be improved without changing the tangle burden (6). In
fact, neuronal loss did not correlate with neurofibrillary pathology
(7). Also, in Drosophila and C. elegans, tau-induced neurodegen-
eration occurred in the absence of neurofibrillary tangles (8, 9).
Most recently, the investigation of tau oligomers has suggested that
they may have an early role in neurodegeneration. Tau oligomers
correlate with cellular abnormalities (10-12) and neurodegenera-
tive disease (13—16). However, the molecular mechanism by which
tau oligomers cause toxicity has not been clearly demonstrated. In
addition, in these studies, the tau oligomers were composed of
phosphorylated tau, making it difficult to isolate the effects of
oligomerization from those of phosphorylation.

Tau phosphorylation is required for its neurotoxic effects (17,
18) and as tau is hyperphosphorylated early in the disease process,
it is not surprising that tau oligomers would be formed from phos-
phorylated tau. Therefore, in determining if tau oligomers have
specific function, one could also first determine the function of
abnormally phosphorylated tau, then ask if that tau was in the
form of oligomers. Recently, we found that tau has the ability to
potentiate NGF-induced MAPK activation and that phosphoryla-
tion on Thr231 was critical for the activity (19). Since this activity
was seen within 3 h after NGF addition, our data identified a new
role for tau in signal transduction processes that take place during
neuronal differentiation. At the same time, as Thr231 is phospho-
rylated early during neurodegeneration (20), it raised the question
of whether this new tau activity had a role in neurodegeneration.
To further probe the relationship between tau phosphorylation
and its ability to potentiate MAPK activation, here we investigate
the effects of additional phosphorylated sites, focusing on sites rel-
evant to AD. We also investigate the effects of alternative splicing
on the ability of tau to affect MAPK activation.

MATERIALS AND METHODS

CELL CULTURE

PC6-3 cells (21) were cultured on collagen (BD Biosciences) coated
dishes using RMPI 1640 medium with 10% horse serum and 5%
fetal bovine serum. D5 cells, a stable PC6-3 cell line with stable
over-expression of the ON3R isoform of human tau, and rTau4
cells, a PC6-3 cell line with stable expression of hairpin RNAI
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targeting endogenous rat tau, were previously described (19).
Media for stable cell lines was supplemented with 200 pg/ml G418.

MAPK REPORTER ASSAYS

MAPK activation was measured by a luciferase reporter assay as
described by Leugers and Lee (19). The ability of tau mutants
to influence NGF-induced MAPK activation was studied by co-
transfecting tau plasmids with the MAPK reporter plasmids. Tau
plasmids used were pRc/CMV-0N3R, pRc/CMV-0N3R-5214D,
PRc/CMV-0N3R-5404D, pRc/CMV-0N3R-S396D/S404D, pRc/
CMV-0N3R-5202D, pRc/CMV-0N3R-5199D/8202D, pRc/CMV-
ON4R, pRc/CMV-0N4R-5202D, pRc/CMV-0N4R-S199D/S202D,
PRc/CMV-1N3R, pRc/CMV-2N3R, pRc/CMV-1N4R, and pRc/
CMV-2N4R. (ON3R, ON4R, etc., denote tau isoforms where
ON3R contains 352 residues with no amino terminal inserts and
three microtubule binding repeats; 2N4R contains 441 residues
with two amino terminal inserts and four microtubule binding
repeats, etc.). Mutant tau plasmids with phospho-mimicking S
to D mutations were constructed using site-directed mutagenesis
(Stratagene, Inc.); sequences were confirmed by DNA sequencing.

TAU DETECTION IN CELL LINES

D5 cells were grown with or without NGF for 30 min and then har-
vested in RIPA buffer with protease and phosphatase inhibitors
(19). After rocking at 4° for 20 min, lysates were centrifuged
20 min. Supernatants were added to an equal volume of 2x
Laemmli sample buffer and boiled 5min. Cell lysate samples
were subject to SDS-PAGE and transferred to PVDF membranes.
Membranes were probed with anti-phospho-Ser214-tau (Invit-
rogen, Inc.), PHF1 (22), AT8 (23), Tau5 (24), Taul2 (25), or
anti-GAPDH (Chemicon, Inc.). Signal was visualized using ECL
(Western Lightning Plus-ECL, Perkin Elmer, Inc.).

RESULTS AND DISCUSSION

To examine MAPK activation, PC6-3 cells, a PC12-derived cell
line (21), were treated with NGE. To probe tau function, we
used the rTau4 cell line, a PC6-3-derived cell line that expressed
a hairpin shRNA that selectively down-regulated the expres-
sion of endogenous rat tau without affecting the expression of
human tau mediated by transfection (19). In tau-depleted rTau4,
NGF-induced MAPK activation was attenuated and the addi-
tion of wild-type human tau (ON3R) was able to significantly
restore MAPK activity after growth factor treatment (19). More-
over, a phospho-mimicking mutation at Thr231 brought further
increases to MAPK activation while a Thr to ala mutation at
Thr231 showed a dominant negative effect on MAPK activation
(19). This led us to conclude that tau phosphorylation at Thr231
was required for the effect of tau on MAPK signaling. Based on
these findings, and the fact that tau can undergo phosphorylation
atanumber of sites during early brain development (26) or during
neurodegeneration (27), we further investigated the effects of tau
phosphorylation on MAPK activation.

To select tau phosphorylation sites to test, we sought sites that
were modified in both AD and in the PC6-3 cells. We chose to
examine Ser214, Ser396/Ser404, and Ser199/Ser202, all of which
are known to be phosphorylated in AD. While tau phosphorylation
in NGF-treated PC12 cells has been examined, NGF treatments

greater than 24 h were often used and we were interested in ear-
lier time points as our focus was on signal transduction rather
than neurite outgrowth. To assess the phosphorylation of both
endogenous rat tau and exogenously expressed human tau (ON3R),
we utilized the previously described PC6-3-derived cell line D5,
that stably expresses human tau (19). In both undifferentiated
cells and cells stimulated with NGF, we observed phosphoryla-
tion at Ser199/Ser202, detected by AT8, as well as phosphorylation
at Ser396/Ser404, detected by PHF1 (Figure 1). NGF treatment
was performed for 30 min and no further changes in the level of
phosphorylation at these sites were observed for up to 3h (data
not shown). The phosphorylation at Ser396/Ser404 was found to
occur in both rat tau and human tau species and the addition
of growth factor appeared to slightly increase the level of phos-
phorylation. Phosphorylation at Ser199/Ser202 was also observed
in both rat and human tau and did not appear to change upon
NGF addition. In contrast, phosphorylation at Ser214 appeared
increased after NGF induction (Figure 1). Our previous data had
shown that phosphorylation at Thr231 also increased after NGF
induction (19). These data indicate that these tau sites are being
phosphorylated in PC6-3 cells.

To examine MAPK activation, we tested a panel of phospho-
mimetic mutations at these tau phosphorylation sites. In advance
of measuring MAPK activation, protein produced by each plasmid
was visualized by western blotting in order to confirm that equiv-
alent amounts of each protein was being expressed in each exper-
iment (Figure 2A). In this way, differences in MAPK activation
would be attributed to protein identity rather than protein quan-
tity. In each experiment, WT tau was expressed in the tau-depleted
rTau4 cells as control. When expressing ON3R human tau with
a phospho-mimicking mutation at Ser214 (S214D, Figure 2B),
we observed a significant attenuation of MAPK activation rela-
tive to WT tau. Next, we tested phosphorylation at Ser404 using
$404D and observed a trend of reduction in MAPK signaling
(Figure 2C), indicating that phosphorylation at this site might
also impair the ability of tau to enhance MAPK signaling. As
phosphorylation at Ser404 often occurred in conjunction with
phosphorylation at Ser396 (22, 26, 27), we also tested a double
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FIGURE 1 | Phosphorylated tau is expressed in PC6-3 cells. Serum
starved D5 cells were stimulated with 50 ng/ml NGF for 30 min. Cells were
harvested as described in Section “Materials and Methods.” Following
SDS-PAGE, immunoblotting was performed with antibodies as indicated,
total tau being probed by Tau5 and human tau by Tau12.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels are shown as
a loading control. Arrowhead indicates human tau; the less abundant rat tau
was visualized with Taub.
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FIGURE 2 | Tau phosphorylation modulates the effect of tau on Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels are shown
NGF-induced MAPK signaling. rTau4 was transfected with MAPK as a loading control. (B-F) Fold-MAPK reporter increase was calculated
reporter system plasmids and tau plasmid indicated. Thirty-six hours after as previously described (19). (*p < 0.05; **p <0.005; ***p < 0.001).
transfection, NGF was added 3 h prior to cell harvest. (A) To assure equal Data shown are mean + SE from three independent experiments; for
tau expression in transfections to be assayed in (B-F), lysates from rTau4 each experiment, transfections were performed in triplicate for each
cells transfected under identical conditions were probed with Tau13. condition.

mutant, $396D/S404D, and found MAPK signaling significantly
impaired relative to both control WT tau and $S404D mutant
(Figure 2C). In addition, the phospho-mimicking substitution at
Ser202 was tested and we observed a trend of decreasing MAPK
activation (Figure 2D). The double mutant S199D/S202D was
also tested and we found a similar trend (Figure 2D). Together,
these findings identified several tau phosphorylation sites where
phosphorylation appeared to decrease the ability of ON3R tau
to potentiate MAPK activation. Moreover, these findings indi-
cated that the ability of phospho-Thr231-tau to increase MAPK
activation was unique (Table 1).

Tau mutations that affect the alternative splicing of tau mRNA
can result in increased levels of 4R tau and cause neurodegenera-
tive disease [reviewed in Ref. (28,29)]. To determine if the isoform
identity could alter the ability of tau to affect MAPK signaling, we
tested different isoforms of tau for their ability to rescue MAPK
activation in rTau4. In comparing the abilities of the wild-type
ON3R and ON4R tau to restore MAPK signaling, while significant
differences were not demonstrated, there was a trend showing that
ON4R tau had reduced activity (Figure 2F). In addition, in both
3R and 4R isoforms, we observed a trend of decreased MAPK
activation as the N-terminal inserts were added (Figure 2F). A
significant difference between the largest and smallest isoforms of
tau (2N4R vs. ON3R tau) was observed (Figure 2F). These obser-
vations demonstrated that the effects of tau on MAPK signaling
may be modulated by alternative splicing.

Lastly, we compared the effects of the phospho-mimicking
substitutions on ON3R and ON4R tau. Comparing the effects
of S202D on ON3R and ON4R, we found that the mutation
inhibited MAPK signaling to a larger extent in ON4R, where
a significant decrease occurred (compare Figures 2D,E). How-
ever, when the effects of the double mutant S199D/S202D were
compared between ON3R and ON4R, we found that while ON3R

Table 1 | Phospho-mimicking mutations in ON3R tau, tested for their
ability to potentiate MAPK activation.

Ability to potentiate
MAPK activation

Phospho-Ser214 (5214D) l
Phospho-Ser202 (S202D)
Phospho-Ser199/Ser202 (S199D/S202D)
Phospho-Ser404 (S404D)
Phospho-Ser396/Ser404 (S396D/S404D)
Phospho-Thr231 (T231D)

——

(Bolded larger arrows indicate a statistically significant difference relative to
non-phosphorylated tau; non-bolded smaller arrows indicate a trending result.)

§199D/S202D resembled ON3R S202D in its ability to decrease
MAPK signaling (Figure 2D), ON4R S199D/S202D appeared to
rescue MAPK signaling, yielding levels similar to wild-type ON4R
tau (Figure 2E). These findings suggest that in ON4R, while the
phosphorylation of tau at Ser202 decreased the ability of tau
to potentiate MAPK activation, additional phosphorylation at
Ser199 neutralized the effect, returning MAPK activation lev-
els to WT tau levels. These data indicated that the effect of
phosphorylation on NGF-induced signaling depended on the tau
isoform used.

Our data shows that phosphorylation differentially affected the
function of 3R and 4R tau isoforms. This result resembles pre-
vious data reported for the interaction between tau and the SH3
domain of Fyn, where we found that phosphorylation differen-
tially affected the equilibrium binding constant of ON3R and ON4R
tau for the SH3 domain of Fyn (30). For the Fyn SH3 interaction,
phosphorylation at Ser199/Ser202 or at Ser396/Ser404 increased
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the binding of ON4R to the Fyn SH3 domain whereas phospho-
rylation at Ser199/Ser202 decreased the binding of ON3R to the
Fyn SH3 (phosphorylation at Ser396/Ser404 did not affect the
binding of ON3R to Fyn SH3). While the details of the effects
of phosphorylation are not similar, both the SH3 binding data
and the MAPK activation data demonstrate that phosphoryla-
tion differentially affected the function of ON3R and ON4R tau
isoforms. Such findings might help explain why disease could
be caused by overexpressing 4R tau relative to 3R tau. In our
data, we noted that phosphorylation at Ser199/Ser202 on 4R
tau resembled WT tau in its ability to potentiate MAPK signal-
ing whereas the similar modification on 3R tau reduced MAPK
activation.

During development, tau phosphorylation changes, with phos-
phorylation at Ser199, Ser202, Ser214, and Ser404 first increasing,
then decreasing while phosphorylation at Thr231 and Ser396
remained unchanged (31). The expression of 4R tau was also
up-regulated during development as ON3R tau was the only tau
isoform expressed in fetal brain while the remaining isoforms were
expressed in an adult specific manner (32). In our experimental
system where NGF was added to initiate neuronal differentiation,
phosphorylation could either potentiate or attenuate MAPK acti-
vation [Figure 2, Ref. (19)]. Phosphorylation at two sites (Ser214
and Ser396/Ser404) significantly down-regulated activation while
that at one site (Thr231) up-regulated activation. Therefore, the
exact effects of phosphorylation would depend on the quan-
tity of specific phosphorylated tau forms present. This, in turn,
would depend on the rate of phosphorylation and dephospho-
rylation of tau at specific sites. However, the spatial localization
of the various phosphorylated species may also be important.
Since we measure MAPK activation in a transfected cell, it is
possible that the spatial localization of the tau expressed by trans-
fection may not duplicate that of the endogenous tau. If the
ability of tau, expressed by transfection, to affect MAPK activa-
tion was dependent on a spatial localization not duplicated by
endogenous tau, caution needs to be exercised in the interpreta-
tion of our results. Nevertheless, a critical role for tau in MAPK
activation was confirmed by our experiments where ERK1/2 acti-
vation was examined without the transfection of MAPK reporter
plasmids (19).

Our tests have investigated the ability of disease-related tau
phosphorylation to affect the ability of tau to upregulate MAPK
signaling. Among the sites we have investigated, Thr231 was the
site whose phosphorylation occurred earliest during neurode-
generation (33, 34). Phosphorylation at Ser262/Ser356 occurred
next, with Ser214 close behind; phosphorylation at Ser199/Ser202
and Ser396/Ser404 accumulated latest during neurodegeneration
(33). Therefore, as tau phosphorylation changed during disease
progression, tau function would similarly change. Our data sug-
gested that phospho-Thr231-tau would potentiate MAPK acti-
vation and since phospho-Thr231 occurred early during the
neurodegenerative process (20), one could speculate that MAPK
activation would also occur. Data reporting the presence of acti-
vated ERK1/2 in pretangle neurons and in Braak stage I-III
brains (35) supports the hypothesis that phospho-Thr231-tau
may potentiate MAPK activation early in the neurodegenerative

process. Then, as tau phosphorylation changed during the neu-
rodegenerative process, the capacity for tau to potentiate MAPK
activation would also change. Phosphorylation at Ser262/Ser356
would not affect MAPK activation (19) whereas phosphoryla-
tion at Ser214 and Ser396/Ser404 would lead to a decrease in
the ability of tau to upregulate MAPK activation (Figure 2).
In tauopathies where the level of 4R tau was increased, the
isoform change alone might decrease MAPK activation. How-
ever, one could also speculate that the phosphorylation of 4R
tau, for instance at Ser199/Ser202, could lead to an increase in
MAPK activation, relative to that conducted by similarly phos-
phorylated 3R tau forms. To further investigate the relationship
between tau phosphorylation and MAPK activation during neu-
rodegeneration, tauopathy mouse models and/or human post-
mortem brain tissue would be probed for phospho-Thr231-tau
and activated MAPK. Using immunocytochemistry, if activated
MAPK only appeared in the same neurons that were positive for
phospho-Thr231 tau, this would suggest that phosphorylation of
tau at Thr231 was related to MAPK activation. One would also
look for a correlation between activated MAPK and phospho-
Ser199/Ser202 in 4R tau isoforms, in addition to a correlation
between phospho-Ser214-tau (or phospho-Ser396/Ser404) and a
reduction in activated MAPK.

The activation of MAPK can occur in signal transduction path-
ways where cell proliferation is upregulated [reviewed by Ref.
(36, 37)]. Therefore, increasing the activation of MAPK could
cause an increase in cell cycle activation. In Drosophila, the abil-
ity of tau to cause neurodegeneration was shown to involve cell
cycle components (17). Our data supports the hypothesis that tau
can potentiate cell cycle mechanisms. In a post-mitotic neuron,
the activation of cell division would lead to neurodegeneration
[reviewed by Ref. (38)].

It is not known whether tau participates in signal transduc-
tion in adult neurons. Gene expression in the tau-depleted mouse
was compared to that of WT mouse, using microarray analysis
of 8-week-old mice (39). In the tau-depleted mouse, the genes
with the highest increase in expression were FosB and c-fos [see
Supplemental Data in Ref. (39)]. Since MAPK activation drives
fos activation, our data leads us to speculate that the tau-depleted
mouse had increased fos expression as a compensatory measure.
Since the comparison had used an 8-week-old mouse, it is pos-
sible that tau was also necessary for signal transduction in the
adult.

While it is clear that phosphorylated tau can form oligomers,
we have not determined if the tau that upregulates MAPK acti-
vation is a monomer, dimer, trimer, or oligomer. Moreover, the
mechanism by which tau affects NGF signaling is under inves-
tigation. The ability of proteins to form dimers during signal
transduction processes is not unusual and in some cases, dimer
formation is linked to phosphorylation. It would be important
to determine if tau dimerization or oligomerization occurred
in the same manner as disease-related phosphorylation, where
dimerization or oligomerization would occur normally during
development, then become down-regulated in the adult. If tau
oligomers are found during normal development, the toxicity of
tau oligomers during neurodegeneration may be related to specific
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tau oligomer functions that were inappropriate or abnormal for
adult neurons.
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