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In a proof-of-principle prototypical demonstration we describe a new type of brain-machine
interface (BMI) paradigm for upper limb motor-training. The proposed technique allows a
fast contingent and proportionally modulated stimulation of afferent proprioceptive and
motor output neural pathways using operant learning. Continuous and immediate assisted-
feedback of force proportional to rolandic rhythm oscillations during actual movements
was employed and illustrated with a single case experiment. One hemiplegic patient was
trained for 2 weeks coupling somatosensory brain oscillations with force-field control dur-
ing a robot-mediated center-out motor-task whose execution approaches movements of
everyday life.The robot facilitated actual movements adding a modulated force directed to
the target, thus providing a non-delayed proprioceptive feedback. Neuro-electric, kinematic,
and motor-behavioral measures were recorded in pre- and post-assessments without force
assistance. Patient’s healthy arm was used as control since neither a placebo control was
possible nor other control conditions. We observed a generalized and significant kine-
matic improvement in the affected arm and a spatial accuracy improvement in both arms,
together with an increase and focalization of the somatosensory rhythm changes used
to provide assisted-force-feedback. The interpretation of the neurophysiological and kine-
matic evidences reported here is strictly related to the repetition of the motor-task and the
presence of the assisted-force-feedback. Results are described as systematic observations
only, without firm conclusions about the effectiveness of the methodology. In this prototyp-
ical view, the design of appropriate control conditions is discussed. This study presents a
novel operant-learning-based BMI-application for motor-training coupling brain oscillations
and force feedback during an actual movement.

Keywords: brain-machine interface, motor-training, proprioception, assisted-force-feedback, operant learning

INTRODUCTION
Motor rehabilitation in neurological disorders has been recently
combined with neurophysiologic feedback of brain activity related
to motor functioning to improve functional outcome. Based on
observations of neural plasticity (1–4), assistive technologies,
and robot-aided therapies are currently exploited (5) to aug-
ment visuospatial/proprioceptive feedback (6, 7) and provide an
alternative rehabilitation strategy, especially in severe patients (8–
11). These approaches include devices such as: robotic-arms, gait
machines, treadmills, mechanical orthosis, and haptic devices suit-
able for finger, hand, and arm (5, 12). Other active rehabilitation
treatments include: functional electrical stimulation (FES) devices
(13) and virtual environments (6, 7). All these devices are usually
employed in an open-loop modality, with a pre-defined or a user-
adapted feedback according to assist-as-needed strategy (14, 15).
Principles of a rewarding feedback during motor-training have
been evaluated in many studies where reinforced or task-oriented

feedback have been used with promising results in terms of func-
tional recovery (5, 6, 12, 16–18). In one study a long-term robot-
assisted treatment was compared with standard rehabilitation care
showing a significant improvement of the Fugl-Meyer score (12).
In another case the positive effects of a short-term goal-directed
robotic therapy were sustained 4 months after the treatment (18).
Other recent studies investigating the haptic-based intervention in
an open-loop modality without brain activity proved its effective-
ness in comparison to the standardized repetitive physiotherapy
practice (19) and stability of the functional improvement (20).
Because of the poor clinical outcome, these results seem to suggest
that an enhanced brain-self-regulated proprioceptive assistance
might be a promising modality for motor rehabilitation after
stroke.

Recently, brain-machine interface (BMI) technology offers the
possibility of brain self-regulation with immediate and rein-
forced feedback of motor-related brain activity. BMI provides a
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closed-loop, generally combining neurophysiological signals, an
operant learning paradigm, and an external device (21–24). This
combination allows the contingent stimulation of down-stream
and afferent neural fibers to promote neural plasticity (2–4). Dif-
ferently from the context considered in the present study, another
way to promote brain plasticity relies on stimulation techniques
operating directly on the central nervous system (3, 25).

Most BMI-studies on motor re-learning reported positive
results (10, 11, 22, 26, 27) and are almost always characterized
by the following main components: (i) the combination of BMI-
training with goal-oriented physical practice, (ii) the involvement
of severely paralyzed post-stroke patients or individuals with
tetraparesis, (iii) the focus of BMI-systems’ ability on detecting
intention (i.e., the neurophysiological signals changes classifi-
cation accuracy). Only a few studies involving patients associ-
ated motor-behavioral and functional changes to brain activity
changes (24).

During a BMI-based motor-training, increase and control of
targeted brain activity is the first important step to achieve the
intended goal (10, 11, 26). This is accomplished through feed-
back mediated learning. The feedback is used to successfully
complete specific tasks and to provide reward, even if feedback
output devices are frequently controlled in a binary mode only, i.e.,
opening and closing the hand. Often these BMIs imply a delayed
proprioceptive feedback in the intention-action loop, especially
when motor-imagery (MI) and an external device are combined
and applied to severe cases, such as a typical MI cursor BMI-task
whose successful completion triggers a robotic action (10, 11) or
FES stimulation (26). Four exceptions were presented by Ramos-
Murguialday et al. (21, 23, 24) and Gomez-Rodriguez et al. (22),
who reported an on-line intention decoding example during a
BMI-task to flex or extend the hand and forearm with a robotic
device. These on-line applications provided participants with a
non-delayed haptic feedback during the task (not at the end of the
mental task) allowing contingent stimulation of involved affer-
ent and efferent neural networks; however, these studies involved
mainly healthy participants, except for two stroke patients in
Gomez-Rodriguez et al. (22), who were not clinically described,
and the two patients groups described in Ramos-Murguialday
et al. (24). These first studies employing non-delayed feedback
(i.e., closed-loop paradigm and on-line feedback) emphasized the
advantages to closely relate the feedback with intended actions
or goals, and consequently to promote cortical reorganization
(4, 28). Moreover one study has proven large motor-function
improvements in presence of a moderate BMI-performance (27).
Therefore, BMI-based motor-training could offer further expla-
nations of the role of feedback into the mechanisms underlying
recovery of motor-functions (3, 4, 29).

In this study we describe a new closed-loop BMI-application
with assisted-feedback of force in which the electroencephalo-
graphic (EEG) oscillations of sensori-motor rhythms (SMR) were
used to continuously assist the intended movement by adding a
force to the actual motor execution. This added force is propor-
tional to the contralateral rolandic rhythm de-synchronization
caused by movement intention and movement execution (ME).
We call this BMI-system an “assisted-force-feedback” BMI (29).
The main elements of this application are: the use of a motor

execution task (not a MI task), the type of feedback and the
concomitant recording of motor kinematic performance (8, 30).
In particular and differently from other methods, the proposed
augmented feedback allows a fast (non-delayed) contingent and
proportionally modulated (non-binary) activation of afferent
proprioceptive and motor output neural pathways for motor
rehabilitation in an operant learning context.

To demonstrate the feasibility, a patient with a moderate
impairment of the upper limb motor-function, due to hemi-
paresis, was trained for 2 weeks with pre- and post-assessment
evaluations. In accordance with the above considerations we
report the methodology, neurophysiological signal changes,
behavioral outcome during training and motor-task kinematic
outcome.

MATERIALS AND METHODS
PATIENT
A 25-years-old moderate right-hemiplegic female chronic stroke
survivor participated in the study. She suffered from a left-sided
thalamic-capsular bleeding at the age of 16, due to a vascular
malformation. A surgical intervention at the age of 17 stabilized
her conditions. After 6 years, a right-hemiplegia with tingling and
numbness due to the peri-lesional edema, probably caused by the
intervention, occurred. She was admitted to the S.Camillo Hos-
pital, for a short hospitalization period, where she underwent the
BMI-training (see BMI Protocol) with both arms. Her disabil-
ity was characterized by a limited right-arm and forearm control,
right-hand grasping, external rotation, and a restricted volitional
movement of the fingers (spasticity). However, she was able to
use her right-hand or arm for some daily living activities (i.e.,
open a door, objects grasping), and was able to walk slowly with-
out external aid. The chronic character of her impairment was
assessed by multiple functional measurements after the surgical
intervention (6, 3, and 1 months before inclusion in the present
study). The following clinical tests were assessed 2 days before the
experimental protocol: Fugl-Meyer Assessment for Upper Extrem-
ity (FMA-UE, score 40/66), sensibility (S, score 21/24), Modified
Ashworth Score (MAS, score 4, biceps brachii, pectoralis major,
flexor carpi, flexor digitorum profundus, flexor digitorum super-
ficialis were measured), Reaching Score (RS, score 21/36), and Nine
Hole Peg Test (NHPT, score 5 p./50 s).

The standardized language test (Aachener Aphasie Test, AAT;
token test score: eight minimal deficit; comprehension score: seven
slight deficit) and cognitive assessment was carried out to ensure
understanding capability and execution of the proposed task. The
participant was recruited for the study because she was able to ini-
tiate and complete the target-reaching task of our protocol, albeit
with limited performance (inclusion criteria). The unaffected arm
was used as control since neither placebo control was possi-
ble nor different control conditions. The experimental protocol
was approved by the Ethical Committee of the S.Camillo Hospi-
tal. Written informed consent was obtained from the participant
according to the Declaration of Helsinki.

BMI MOTOR-TASK
The BMI-application was designed to perform robot-aided upper
limb tasks exploiting an operant learning paradigm (4, 29).
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It relies on two basic principles (see Control of the Robotic
Device):

- to provide brain-signal-based continuous proportional modu-
lation of assisted-force-feedback (closed-loop);

- to estimate motor-behavioral kinematic outcome.

A robotic device (PHANTOM Premium 3.0/6DOF, Sensable
Technologies) was used to supply assisted-force-feedback propor-
tional to event-related de-synchronization which was obtained
using the BCI2000 platform [(31); www.bci2000.org]. Since the
exercises required a volitional motor output we used oscillatory
brain activity changes denoted here as movement-related de-
synchronization (MRD). The EEG was recorded using 16 Ag/AgCl
scalp electrodes located over fronto-central, central, and centro-
parietal areas, according to the International 10–20 System (Fz, Cz,
Fc1, Fc2, F3, F4, Fc5, Fc6, C3, C4, Cp1, Cp2, Cp5, Cp6, P3, P4),
with a sampling rate of 512 Hz, and two pre-conditioning filters: a
band-pass from 0.1 up to 60 Hz and a 50 Hz notch (gUSBAmp,
g.tec GmbH). The robotic device allowed recording kinematic
parameters of the movement (position and speed) every 1 ms.
The experimental protocol consisted of a series of standard target-
reaching tasks over a horizontal plane. The patient was seated
comfortably in front of a table covered with a slippery surface and
was asked to hold the robotic device stylus (i.e., the end-effector)
and to focus on the computer screen. The position of the end-
effector was always displayed as a cursor (diameter correspondent
to 9 mm, cursor’s trajectories were never displayed) on the screen.
During the repetitive task, the patient grasped the stylus device
and controlled the position of the cursor on the screen receiving
visuospatial (watching the cursor) and proprioceptive muscular
force (contracting and moving the muscles) feedback. The patient
underwent self-paced four targets “center-out” task: one out of
four (N, E, S, and W) target positions was randomly selected in
each trial for the ME (see Figure 1). Each target was represented by
a white square of 18 mm. After an anticipation period of 1.5 s with
the cursor in the center box (18 mm) a target appeared. The patient
was asked to move the cursor, controlling the end-effector from the
center to the target in a pre-defined time window (0.5÷0.7 s) and
to perform the task as accurate as possible (see Figures 1 and 2).
This interval was chosen on the basis of Fitts’ law, reviewed for
the two-dimensional tasks by Scott MacKenzie and Buxton (32).
A coherent visual and auditory feedback was provided at the end
of each movement depending on its duration: the target exploded
with a sound, if the duration of movement was between 0.5 and
0.7 s (i.e., “correct” trial); the target became red if the duration
was below 0.5 s or it became blue if the duration was longer than
0.7 s. As soon as the target was reached, the patient was asked to
move back to the center box and to repeat the task. The center-
target distance was 10 cm (visual angle equal to 8°). A single run
comprised 80 movements (20 trials for each direction). Before
starting each run, a 40 s rest period was recorded while patients’
arms rested on the table. Triggers were saved on EEG traces to
distinguish rest and movement conditions. A session consisted
of three runs. During training on-line assisted-force-feedback
was provided in each trial depending on brain activity changes
as explained below (see On-line BMI Assisted-Force-Feedback).

FIGURE 1 | Motor-training. Four targets “center-out” task (A) with an
example of a trajectory and some assisted-force-feedback vectors (orange
arrows); physical representation (B) of the reaching task. The trajectory is
shown for clarity, but during the motor task was never present.

Summarizing, during training the patient received also a mod-
ulated assisted-force-feedback perceived haptically as a force
supporting ME.

BMI PROTOCOL
The robot training was performed on both healthy and paretic
arms in daily sessions during 2 weeks, 3 days a week, resulting in 18
runs for each arm (see Figure 3). Overall treatment duration was
adapted to the hospitalization interval of the examined patient.
A pre-evaluation session without assisted-force-feedback was per-
formed 2 days before BMI-training on both arms of the patient as
baseline assessment. An identical post-evaluation session was car-
ried out without assisted-force-feedback as final assessment 2 days
after the last BMI-training session. The “center-out” reaching task
was employed during the robot training as well as in pre- and
post-evaluations. A similar study (19) which exploited the same
robot assistive device used here, but in an open-loop modality,
reported results difficult to compare because of different types of
exercise and measured outcome. For this reason we chose to use
the unaffected arm of the same patient as control condition.

EEG OFF-LINE DATA PROCESSING
Electroencephalographic fluctuations of amplitude greater than
100 µV caused by electrodes displacement or motion were marked
and excluded from successive analysis. Direct current offset adjust-
ment and common average reference (CAR) filtering were carried
out to reduce low-frequency components in the spectral analysis.
Successively, data were segmented in two classes: rest and move-
ment. Each detected valid interval was used to estimate the power
spectrum using the maximum entropy method (MEM), imple-
mented in the BCI2000 platform and having a window size of
0.5 s, window step 4 samples and model order 16. The length of
the analysis window (0.5 s) and overlap were chosen mainly on
the basis of previous studies (4, 11, 21, 22) as it represented a good
trade-off between the accuracy of power spectral estimates and the
typical trial duration of the proposed motor-task (about 600 ms,
see Kinematic Outcome, Table 1). The MEM analysis window
started 0.5 s before a movement interval onset, continued through
this interval as a sliding window with steps of four samples to
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FIGURE 2 | Experimental procedure. Timing of self-paced trials with and
without assisted-force-feedback (the force applied to the robotic arm was
continuously updated every 16 ms). A self-paced trials starts by entering the
center box, after 1.5 s a target appears (one out of four possible directions),
thus the user plans the movement execution and initiates the movement

toward the target; as soon as the target was reached (i.e., at the end of the
trial) both visual and auditory feedback inform the user about the task
completion; then the user comes back to the center position to start another
trial. During BMI-training an assisted-force-feedback was provided according
to the algorithm explained in Section “On-Line BMI Assisted-Force-Feedback.”

FIGURE 3 | Experimental protocol. Interval between blocks consisted of 2 days.

Table 1 | “Correct” trials kinematic outcome.

Categories Description Healthy arm Affected arm

Pre-evaluation

(N = 134)

Mean (STD)

Post-evaluation

(N = 201)

Mean (STD)

Statistics Pre-evaluation

(N = 93)

Mean (STD)

Post-evaluation

(N = 122)

Mean (STD)

Statistics

p-Value p-Value

General behavior % Of “correct” trials 55.8 (16.3) 83.8 (6.5) 0.046*a 38.8 (14.2) 50.8 (8.3) 0.184a

Reaction time (ms) 380 (49) 417 (47) <0.001** 487 (460) 528 (75) <0.001**

Raw arm control Duration (ms) 604 (52) 604 (50) 0.959 590 (52) 610 (49) 0.008**

Mean speed (mm/s) 159 (13) 157 (15) 0.331 161 (14) 155 (14) 0.005**

Fine-tuned distal

arm control

Speed peak (mm/s) 275 (33) 226 (23) <0.001** 271 (40) 234 (29) <0.001**
Orthog. error (mm) 5.2 (2.3) 4.5 (1.8) 0.003** 6.9 (3.4) 4.7 (2.2) <0.001**

Area error (mm2) 15.1 (15.6) 11.0 (11.9) 0.021* 22.1 (28.1) 10.8 (12.2) <0.001**

Statistics were performed by means of Wilcoxon test, except for the percentage of “correct” trials for which we used the Kruskal–Wallis test a. Significance level:

*p < 0.05, **p < 0.01.

replicate the on-line settings (see Figure 2), and ended 0.5 s before
a valid interval offset. All power spectrum estimates within the
same valid interval were averaged. In this way we estimated, in

each trial, both the initial de-synchronization, during movement
planning (i.e., intention to move), and the movement-related de-
synchronization during trial execution. For each recorded channel
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the frequency analysis provided spectral power estimates subdi-
vided in equally spaced bins starting from 0.5 up to 30.5 Hz with a
bin width of 3 Hz. Spectral features distributions of the two condi-
tions were then compared using the highest explained variance (R2

values) as reported in some studies (10, 21, 23, 26). These R2 values
were successively used as criteria to select electrodes and frequency
bands to provide feedback (see Feedback Sources Selection).

A cross-check method was used to verify spectral power
decrease during a movement condition in pre- and post-
evaluations. For each valid trial of a run we estimated the
movement-related de-synchronization of each electrode used for
feedback as the fraction of spectral power decrease during a move-
ment condition interval in comparison to the mean spectral power
of the rest condition of the same run. The following formula was
used for each valid movement condition trial (and for each selected
electrode) of a single run: Pn= [Pi−Pr-mean]/Pr-mean (where Pi is
the power spectrum value of each valid i-th trial in a run and
Pr-mean is the rest condition mean spectral power of the same
run). The main difference with respect to the R2 values estimation
relies on the fact that power spectral values were normalized con-
sidering each single run separately. This normalization allowed a
comparison of the movement-related de-synchronization across
runs and specifically between pre- and post-evaluations.

FEEDBACK SOURCES SELECTION
Consistent with previous studies’ findings on event-related de-
synchronization and motor tasks (33, 34), we selected electrode
locations and frequency bins more related to a motor execu-
tion task than to a MI task. Therefore we: (i) preferred regions
where cortical activities were correlated with the requested motor-
task and its proprioception [proprioceptive afferent inputs could
enhance the possibility to distinguish the movement condition;
(21–23)], (ii) selected electrodes and frequency bins yielding high-
est and significant explained variance (R2) between rest and
movement conditions of pre-evaluation sessions performed by the
same patient before the training [without assisted-force-feedback;
(21, 23, 24, 26)], (iii) chose frequency bins closely related to
SMR activity and to avoid electromyographic artifacts (33, 34),
(iv) used contralateral EEG electrodes, to constrain selection on
ipsilesional brain areas (for the paretic arm) and contralesional
brain areas for the left-healthy arm (to ensure almost equal con-
trol conditions for arms comparison). Therefore, we chose for the
BMI-feedback electrodes over the primary motor cortex (M1), pri-
mary somatosensory cortex, and secondary somatosensory cortex.
For the right-affected arm we used EEG power at 14–17 Hz and
electrode locations C3, Cp1, P3, Cp5, while for left-healthy arm
we used EEG power at 11–14 Hz and electrode locations C4, Cp2,
P4, Cp6. This configuration remained unchanged during on-line
feedback BMI-training (see Figure 3).

ON-LINE BMI ASSISTED-FORCE-FEEDBACK
For each arm power spectral components of selected frequency
bins and channels were used as input of the standard linear clas-
sifier implemented by BCI2000 platform. Hence, the specified
spectral components were linearly combined with equal weights
of −1. The result was normalized (zero mean, unit variance, a
standard operation computed by BCI2000 software) with respect

to the rest period of each training run to adaptively take into
account changes in the shape of rest period power spectral distri-
bution across runs (21, 23, 26). We defined this normalized result
as the neuro-feedback (NFB) value. A power spectrum decrease of
selected locations and frequencies was reflected by positive values
of NFB (since we used negative weights for the classifier). The
NFB value was updated on-line every four samples (see EEG Off-
Line Data Processing) as soon as the patient started the movement
alone and for the total duration of task execution. In this way
a continuous updating of the force to be applied to the robotic
arm (to aid patient movement) was possible. If a positive NFB
value was detected at movement onset, this can be attributed to
movement planning phase (i.e., intention to move toward the
target), because the analysis window used to compute the NFB
value started 0.5 s before this time-instant; successive NFB values
referred to either intention to move and/or ME. When the tar-
get was reached and during the (back-) path to the center box the
assisted-force-feedback was disabled. Using pre-evaluation data of
the patient, we separated rest and movement spectral power distri-
butions optimizing a threshold T (equal to 0.5 for both arms) in
terms of rest condition distribution standard errors (i.e., Stan-
dard Deviation). The threshold value T was used to compute
the assisted-force-feedback factor as follows (i.e., the coefficient
used to compute the assisting force module, denoted as AFF):
AFF =NFB-T. This operation ensured the activation of the assist-
ing force when at least a minimum necessary movement-related
de-synchronization occurred (i.e., a deviation of at least 0.5× STD
of the de-synchronization from the mean of the power spectrum
distribution at rest). The assisting force factor was used during
a trial to compute the force assistance with the following rules:
(i) no force in absence of selected frequency bands and elec-
trodes power decrease (AFF ≤ 0); (ii) a force proportional to the
movement-related de-synchronization, using the assisting force
factor as linear coefficient (AFF > 0), always directed to the target
(target directed force: TDF =AFF ·C, were the constant C was sep-
arately determined for the two arms, see Control of the Robotic
Device); (iii) the force module was limited to the maximum force
constraint of 10 N, independently of further assisting force factor
increase; (iv) the force module was continuously updated dur-
ing a trial every 16 ms (SampleBlockSize = 4 combined with a
1000 Hz robotic device servo-loop rate; every two sample blocks
the assisting force factor was updated). The target directed assist-
ing force was applied to the end-effector of the robotic device.
Summarizing, an additional force always directed to the target
was provided during training runs every time the patient pro-
duced a relevant movement-related de-synchronization intending
and executing the movement (3), thus exploiting a smooth and
modulated assistive-strategy (14).

CONTROL OF THE ROBOTIC DEVICE
Phantom device and graphics interface were controlled by an exter-
nal program connected to BCI2000 by an UDP network protocol.
Communication with BCI2000 platform is bi-directional. This
external program, referred as “robotic interface,” is characterized
by two concurrent processes: the first one controls the robotic arm
and performs kinematic measurements (servo-loop rate equal to
1000 Hz); the second one handles the graphic interface adjusting
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the cursor position and scheduling each trial phase according to
the timing of the task (see Figure 2). During an on-line session the
robotic interface sends the task execution status (rest condition,
target appearing, trial start, and target reached) to BCI2000, while
BCI2000 transfers the NFB value to the robotic interface every
sample block. The latter drives the robotic arm updating the force
to be supplied to the end-effector. This is accomplished calculat-
ing the assisted-force-feedback factor according to the previously
explained algorithm (see On-Line BMI Assisted-Force-Feedback)
and determining the direction of the force depending on the actual
cursor position. For the two arms we used two different constant
factors C to evaluate the module of the assisting force based on
mean maximum movement-related de-synchronization estimated
through pre-evaluation runs data (left-healthy arm: Ch= 7.0 N;
right-affected arm: Ca= 3.8 N). Crisp changes of force feedback
were avoided by adjusting internal robotic device parameters. Dur-
ing a run, the end-effector trajectory and instantaneous speed
time-courses of each trial were recorded. Trial duration and mean
speed mainly refers to the raw arm control for which the patient
received the mixed visual and auditory feedback at the end of a
trial. The ME accuracy is estimated by means of two trajectory-
related parameters: orthogonal error and area error (fine-tuned
distal arm control, for which the patient did not receive any feed-
back). These two measures refer to the trajectory error using as an
ideal path the (invisible) segment that joins center box and tar-
get box: orthogonal error is the maximum orthogonal trajectory
displacement with respect to the ideal path; area error is the mea-
sure of the area comprised between real trajectory and ideal path.
These data allowed a comprehensive description of the kinematic
performance as explained in the Section “Kinematic Outcome.”

STATISTICAL ANALYSIS
The statistical analysis compared conditions (rest and movement )
and pre- and post-evaluation estimates and outcomes. Wilcoxon
rank-sum test was applied for trials comparison. To compare the
percentage of successfully completed trials within a run (i.e., “cor-
rect” trials) we employed the Kruskal–Wallis test since assumption
criteria to apply more advanced statistics were violated (we had
only one value per run resulting in three “correct” trials per-
centage values for both pre- and post-evaluations). Feedback and
kinematic relationship during training were assessed by Spearman
correlation.

RESULTS
NEUROPHYSIOLOGICAL DATA
Selected frequency bands power spectral components of rest and
movement conditions were compared by their explained variance
R2 values across electrodes, which resulted in a series of maps
describing the topographic evolution of the relevant cortical activ-
ities starting from pre-evaluation assessment to final assessment
(see Figure 4).

The topographic evolution consists of a focalization (i.e.,
reduction of the extent) of the brain areas that discriminate
the two conditions. This process occurred during the treatment
and was confirmed in the post-sessions by a significant SMR
de-synchronization difference between pre- and post-evaluation
of both hemispheres (see Figure 5). For the affected arm, the

focus of increased de-synchronization was mainly located in the
ipsilesional hemisphere (see Figure 5B), while at the healthy hemi-
sphere a significant decrease of the de-synchronization occurred
(see Figure 5A), probably reflecting a pre-post habituation
effect.

Due to the classification algorithm (i.e., negative weights)
and variance-normalization we expected for the NFB variable a
mean value around zero at rest and a positive value during the
movements (reflecting a movement-related de-synchronization).
Figure 6 confirms this expectation with regard to the healthy
arm: a significant distinction between movement and rest con-
ditions during the training and the post-session can be noted.
Differently, for the affected arm a significant movement-related de-
synchronization can be observed in the second week of the training
only, as well as in the post-session; while during the first week of
training this neurophysiological change was not visible since we
obtained on average a negative NFB value (i.e., synchronization).

BEHAVIORAL OUTCOME DURING BMI-TRAINING
Consistently with the required motor-task we focused the atten-
tion on correct trials percentage and the presence of the assisted-
force feedback during training. Considering the healthy arm, the
patient received an assisted-force-feedback in 67.4% of training
trials only, with a mean force of 1.64± 1.49 N (mean force peak
of 2.68± 2.24 N); in 72.7% of the total training trials she suc-
cessfully completed the task reaching the target between 0.5 and
0.7 s; in remaining trials she was too fast or too slow. During
training of the healthy arm there were no significant relation-
ship between the number of correct trials and the presence of the
feedback (no. of correct trials vs. no. of all trials with feedback:
r =−0.33, p= 0.181; no. of correct trials vs. no. of only correct
trials with feedback: r =−0.01, p= 0.968); similarly, the mean
force peak and the number of only correct trials with feedback
showed a non-significant correlation (r = 0.12; p= 0.644). With
regard to the affected arm, the patient received an assisted-force-
feedback in 58.1% of training trials only, with a mean force of
0.88± 0.9 N (mean force peak of 1.57± 1.24 N); only in 35.6% of
the total training trials she successfully completed the task. Dif-
ferently from the healthy arm, during training of the affected arm
there were significant relationship between the number of correct
trials and the presence of the feedback (no. of correct trials vs. no.
of all trials with feedback: r = 0.66; p < 0.01; no. of correct trials
vs. no. of only correct trials with feedback: r = 0.75; p < 0.001);
in line with these results, the mean force peak and the number of
only correct trials with feedback showed a significant correlation
(r = 0.73; p < 0.001).

KINEMATIC OUTCOME
We separated kinematic results, obtained by the comparison
between pre- and post-evaluations, in three categories to high-
light physiological differences: general behavior, raw arm control
(mainly related to trunk and proximal muscles to approach the
target), and fine-tuned distal arm control (roughly related to dis-
tal muscles to reach the target with a straight line). Percentage
of “correct” trials is given in Table 1. Furthermore, the follow-
ing measures were summarized taking into account the portion
of the trials successfully completed only: reaction time (general
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FIGURE 4 | Brain oscillations before and after training. R2 maps of the
two conditions across training (rest and movement ); “pre” refers to
pre-evaluation, “tr” refers to training, “post” refers to post-evaluation,
“wk” refers to week (1 or 2), “R” refers to the right-hemiplegic arm, and
“L” refers to the left-healthy arm. R2 values were evaluated between the
two conditions with a variable number of trials depending on protocol
phase and trials rejection percentage. Top R2 maps show spatial

distribution related to the frequency bin 14÷17 Hz identified for the
right-affected arm using pre-evaluation data (number of trials N : pre-R,
N =221; tr-R wk1, N =659; tr-R wk2, N =501; post-R, N =215 ). Bottom
R2 maps show spatial distribution related to the frequency bin 11÷14 Hz
identified for the left-unaffected arm using pre-evaluation data (number of
trials N : pre-L, N = 216 ; tr-L wk1, N =662; tr-L wk2, N =515 ; post-L,
N =230).

FIGURE 5 | Spectral power decrease. Comparison of spectral power
decrease during movement execution between pre- and post-evaluations.
(A) Frequency bin from 11 to 14 Hz for left-healthy arm and (B) frequency bin
from 14 to 17 Hz for the right-affected arm. The graphs depict the
movement-related de-synchronization as the fraction of spectral power
decrease during a movement condition interval in comparison to the mean
spectral power of the rest condition (of the same run); for each electrode
mean and standard deviation was represented. The normalization to the mean

spectral power of the rest condition allows a comparison between pre- and
post-evaluations by means of Wilcoxon test (for the number of pre- and
post-evaluations trials see Figure 4 description). Electrodes showing the
largest effects are slightly different than those showed in Figure 4 because
the normalized computation is different from R2 estimation (see the
cross-check method explained in Section “EEG Off-Line Data Processing”). In
addition, significant changes of power decrease referred to the comparison
between pre- and post-evaluations.

behavior); duration, mean speed (raw arm control); speed peak,
orthogonal error, and area error (fine-tuned distal arm control).

For the left-healthy arm, only changes related to fine-tuned
distal arm control (i.e., spatial accuracy) showed a significant
improvement, while reaction time appeared significantly slower in
the post-session. Conversely, regarding the right-affected arm we
observed a generalized improvement including the spatial accu-
racy. As for the healthy arm, reaction time was slower in the
post-evaluation. The increase of reaction time should be exam-
ined together with the other kinematic results (see Discussion).
Kinematic and behavioral effects resulted in an enhanced accuracy
of the ME.

Task-related spatial accuracy was compared between arms
by means of orthogonal error and area error changes nor-
malizing post-session data with mean results of pre-evaluation
data. Each post-session “correct” trial value, for both orthogo-
nal error and area error variables, was normalized as a fraction
[Vn= (V post-M pre)/M pre, where V post is the value of the con-
sidered variable in each “correct” post-session trial and M pre

is the mean value of the same variable of all “correct” pre-
evaluation trials]. These quantities explained for each arm the
fraction of spatial accuracy improvement after BMI-training. Then
the average values of the two arms were compared. Affected
arm task-related spatial accuracy improvement was significantly
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higher than unaffected arm (post-evaluation “correct” trials:
N healthy= 201, N affected= 122; orthogonal error change frac-
tion, OE : OEhealthy=−0.14, OEaffected=−0.32, p < 0.00001; area
error change fraction, AE : AEhealthy=−0.27, AEaffected=−0.51,
p < 0.00001).

Finally, a session-by-session analysis of the training process
(see Figure 7) revealed that no sudden changes throughout
the training sessions occurred, on the other hand a gradual
improvement can be observed. Figure 7 shows, session-by-session,
the trend of two main parameters across the training and in
pre- and post-evaluations. The gradual enhancement is partially
confirmed by the comparison (using Wilcoxon test) of most
important kinematic parameters between the 2 weeks of train-
ing (% “correct” trials: phealthy= 0.197, paffected= 0.023; dura-
tion: phealthy= 1.0, paffected= 0.05; mean speed: phealthy= 0.031,
paffected= 0.436; speed peak: phealthy= 0.019, paffected= 0.73;
orthogonal error: phealthy= 0.666, paffected= 0.161; area error:
phealthy= 0.931, paffected= 0.258).

DISCUSSION
In this study a new closed-loop BMI-application with assisted-
force-feedback is described in a proof-of-principle prototypi-
cal demonstration. BMI-training was delivered to both arms
of a patient with unilateral chronic brain injury for 2 weeks.
This feedback was continuously modulated during a reaching

movement task driven by rolandic rhythm oscillations. Neuro-
physiological and kinematic evidences reported here are strictly
related to the repetition of the motor-task and the presence of the
assisted-force-feedback: the patient was asked to move the cur-
sor, controlling the end-effector from the center to the target in
a pre-defined time window (0.5÷0.7 s) and to perform the task
as accurate as possible. Since one single case is presented without
control conditions, except the evaluation of the unaffected arm,
the interpretation of the neurophysiological and kinematic evi-
dences reported here is limited. Results are described as systematic
observations only and the design of proper control conditions is
discussed below.

Neurophysiological correlates showed an increase and focaliza-
tion of the sensori-motor cortical activity used to control the BMI.
A significant increase of selected SMR changes was found, particu-
larly in the second part of the treatment and in the post-evaluation.
In line with previous findings, these SMR changes reflect an
increased de-synchronization during motor-training (11). The
lack of an increased de-synchronization during right-affected arm
exercises in the first week of the training could be explained with
at least three factors: (i) motor-task execution may be too fast
(i.e., about 600 ms) to induce a noticeable movement-related de-
synchronization (most likely we observed only the onset of SMR
de-synchronization); (ii) in some cases the assisted-force-feedback
reached large values interfering with the assistive-strategy and

FIGURE 6 | Neuro-feedback. Neuro-feedback evolution across training and in
pre- and post-evaluations: (A) left-healthy arm and (B) right-affected arm. The
neuro-feedback was obtained linearly combining power spectral components
of selected electrodes and normalizing (zero mean, unit variance) with
respect to the rest period of each training run; y -axis is represented in terms

of rest condition standard errors (off-line corrected, without artifacts). Positive
values of neuro-feedback reflected a movement-related de-synchronization;
“pre” refers to pre-evaluation, “tr” refers to training, “post” refers to
post-evaluation, “wk” refers to week (1 or 2). Wilcoxon test was applied
between rest and movement conditions only.

FIGURE 7 |Training process outcome. (A) Successful task
completion (general behavior) and (B) area error (fine-tuned distal arm
control) across the training and in pre- and post-evaluations (red for
left-healthy arm, light blue for right-affected arm). “pre” refers to
pre-evaluation and “post” refers to post-evaluation. “s1,” “s2,” “s3,”

“s4,” “s5,” and “s6” refer to session number (first week of training:
“s1,” “s2,” and “s3”; second week of training: “s4,” “s5,” and “s6”).
No sudden changes throughout the training sessions occurred.
Spearman correlation of the two variables across the training
sequence is reported for both arms.
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distracting the patient during ME; (iii) threshold selection to pro-
vide feedback should be accurately selected in order to teach the
patient more distinctively how to complete the task successfully. In
addition, such neurophysiological patterns could be more specifi-
cally described using high density EEG recording. The focalization
phenomenon was confirmed for movements executed with the
right-affected arm in the post-evaluation (without assisted-force-
feedback) and was associated with a significant increase of the
SMR de-synchronization in two ipsilesional sites (C3 and Cp5)
without significant effects on contralesional locations. Differently,
we observed for movements executed with unaffected left arm
a bilateral focalization. In the ipsilesional hemisphere two sites
showed opposite behaviors: in Cp1 we observed an increased SMR
de-synchronization, while in Cp5 we noted a decreased SMR de-
synchronization. In the contralesional hemisphere a decreased
SMR de-synchronization could be noted in C4 and Cp2 sites.
The bilateral focalization seems to be related to the complexity
of the task and involved brain areas: body spatial representation,
target representation, visuomotor integration of target selection
and movement selection (i.e., movement planning) and inter-
hemispheric inhibition are parallel processes that involve parietal
to frontal areas in both hemispheres during a reaching movement
(35–38). However, the focalization suggests also successive reduc-
tion of resources and a progressive automation of the involved
processes accompanied by sequential elimination of processing
resources outside the sensory-motor areas.

The focalization covaried with improved kinematic spatial
accuracy control. Analyzing behavioral and kinematic outcomes
related to “correct” trials we observed a significant improvement
of the fine-tuned distal control in both arms, mainly measured
by spatial movement’s accuracy (i.e., orthogonal and area errors
significantly decreased). Raw arm control showed a significant
improvement in right-affected arm only; in particular,we observed
a significant slowing. Behavior related to the motor-task was
characterized by a significant increase of reaction time which
appeared slower in the post-assessment for both arms. This effect is
associated to a slightly prolonged movement planning phase, with
enhanced accuracy of the ME (39,40). Considering all these effects,
during the BMI-training the patient improved her skill. As a con-
sequence, in the post-evaluation we observed for the right-affected
arm a prolonged movement planning (increased reaction time),
slowing, a significant reduction of the spatial errors and an upward
trend of “correct” trials. The first two effects (the extended move-
ment planning and the slowing) allowed the patient to complete
the task more often “correctly” than in pre-evaluation and more
accurately. In addition, a direct comparison between arms shows
that affected arm task-related spatial accuracy improvement was
significantly higher than the unaffected arm. Although the gradual
improvement on percentage of “correct” trials was non-significant
for the affected arm, during the training a positive, strong, and
significant relationship between this behavioral parameter and
the assisting force provided to the patient was found, indicating
the close association between neuro-feedback and behavioral per-
formance. During the training of the unaffected arm a gradual
improvement of the successful task completion was observed, but
we did not find the same positive and significant relationship as
in the affected arm. This could be explained by two inter-related

factors: a higher mean and peak value of the force applied dur-
ing training preventing correct movements and a ceiling effect on
the number of “correct” trials due to the unaltered and precise
motor-task execution.

The neurophysiological and motor-behavioral kinematic
results might be associated with two fundamental determinants
characterizing the BMI-training: the repetition of the task (with
visual and acoustic feedback at the end of each trial) and the
presence of the closed-loop assisted-force-feedback. Regardless of
the positive evidence observed in this application, we are unable
to separate these two factors and draw consistent conclusions
about the effectiveness of this novel methodology. To this pur-
pose proper control conditions should be designed. The main aim
of such a control is to assess the effectiveness of this BMI-system in
terms of motor-behavioral and functional recovery. As suggested
by Ramos-Murguialday et al. (23), one possibility is to design
a study where three groups are involved in the same training,
each one receiving a different assisted-force-feedback contingency.
The group A should receive a contingent feedback linked to SMR
de-synchronization. The group B should receive a contingent feed-
back coupled with SMR-synchronization. While the third group
should receive sham feedback [independent from brain activity
(23, 24)]. A comparison of the three groups might supply evidence
of the feedback modalities effectiveness, together with a systematic
evaluation of the performance related to the duration of the train-
ing. In addition, follow-up measurements should be planned in
order to verify whether learned motor skills are maintained over
time (18). Another control condition could be a group of stroke
patients trained with the same system in an open-loop modality
with a pre-defined control of the force-field assistance and without
brain activity involvement as reported in (19).

Another relevant aspect of the training design is the amount
of the assisting force received by the patients because it strongly
depends on their residual motor abilities. As the extent of
motion increases patients should receive less assistance or even
an opposing force. An exemplary case is reported by Fasoli et al.
(18) where two types of goal-directed robotic therapies (assisted
and progressive-resistive exercises) were delivered, without the
BMI, to patients with different clinical conditions. Considering
that motor abilities (i.e., functional recovery) can improve during
a training protocol, future studies should take into account the
overall duration (roughly short-term or long-term treatments).
In a BMI context, this suggests that the amount and/or the sign
of the robot assistance should be adapted to both the activation
of the selected patterns to provide the feedback and to the dura-
tion of the training, or else, the motor abilities recovered by the
patients. These observations can lead to different choices of the
experimental setting (i.e., changing the sign of the proportional
rule used to provide force assistance or to generate an opposing
force), that in turn address and limit the study design, patients’
inclusion criteria, and definition of proper controls.

The combination of operant learning and the paradigm used
for this experiment needs some residual motor abilities of the
patients. This limits the applicability of this BMI-training to
patients with a moderate motor impairment. The applicability
might be extended to patients with severe disabilities changing the
experimental design (i.e., the type of exercise, modality of gravity
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support, range of motion measurement, strength of the provided
force assistance). In future studies cost-benefit ratio parameters
in the evaluation of the proposed rehabilitation treatment and
its effectiveness should be included. This encompasses a quanti-
tative definition of the target population and a comparison with
standardized and widely used rehabilitation interventions.

Finally, the presented BMI strategy approaches daily living
movements more closely compared with delayed haptic feedback
BMI-applications because ME is closely related to enhanced pro-
prioception (41). This assisted-force-feedback BMI-application
is designed for motor impaired patients with residual move-
ments (29) and might open new possibilities in terms of robotic-
rehabilitation.

CONCLUSION
This study describes a BMI-based training with closed-loop
continuous muscular assisted-force-feedback. Neurophysiological
findings and kinematic/behavioral results, reported for a proto-
typical case, provide time-limited beneficial evidence for both the
repetition of the task and the presence of the closed-loop assis-
tance. This novel application might be useful to examine in depth
neurophysiological phenomena and learning mechanisms under-
lying re-learning of specific motor behaviors. A proper controlled
design is necessary to evaluate feedback modality effectiveness.
Future robot-mediated rehabilitation protocols could be designed
following this new learning strategy that allows to add sensory and
proprioceptive information to the closed-loop motor-training.
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