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Time series analysis with delay differential equations (DDEs) reveals non-linear properties
of the underlying dynamical system and can serve as a non-linear time-domain classifica-
tion tool. Here global DDE models were used to analyze short segments of simulated time
series from a known dynamical system, the Rössler system, in high noise regimes. In a
companion paper, we apply the DDE model developed here to classify short segments of
encephalographic (EEG) data recorded from patients with Parkinson’s disease and healthy
subjects. Nine simulated subjects in each of two distinct classes were generated by vary-
ing the bifurcation parameter b and keeping the other two parameters (a and c) of the
Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the
simulated data using white noise ranging from 10 to −30 dB signal-to-noise ratios (SNR).
Structure selection was supervised by selecting the number of terms, delays, and order
of non-linearity of the model DDE model that best linearly separated the two classes of
data. The distances d from the linear dividing hyperplane was then used to assess the
classification performance by computing the area A′ under the ROC curve. The selected
model was tested on untrained data using repeated random sub-sampling validation. DDEs
were able to accurately distinguish the two dynamical conditions, and moreover, to quantify
the changes in the dynamics. There was a significant correlation between the dynamical
bifurcation parameter b of the simulated data and the classification parameter d from our
analysis.This correlation still held for new simulated subjects with new dynamical parame-
ters selected from each of the two dynamical regimes. Furthermore, the correlation was
robust to added noise, being significant even when the noise was greater than the signal.
We conclude that DDE models may be used as a generalizable and reliable classification
tool for even small segments of noisy data.

Keywords: classification, Rössler attractor, non-linear dynamics, delay differential equations,
electroencephalography

1. INTRODUCTION
Electroencephalography (EEG) is a well studied and highly uti-
lized tool for analyzing the brain activity of subjects in passive and
active states. It is considered ideal for many studies because it is
non-invasive and has the temporal resolution necessary to moni-
tor cortical state changes. Due to the brain’s inherent non-linearity
at cellular and mesoscopic scales (1), much emphasis has been
placed on describing macroscopic scalp EEG waveforms as non-
linear signals (2, 3). The identification of non-linear structure in
human EEG has opened up a wide field of research for the applica-
tion of non-linear dynamics to neurological waveforms, see (4–6).
Subsequently, many studies have attempted to use non-linear
techniques to analyze chronic neurological disease states includ-
ing Alzheimer’s (7), epilepsy (8–12), Creutzfeld–Jacob (13), and
Parkinson’s disease (14, 15). These studies have focused on quan-
tifying the amount of non-linearity or complexity present in the
EEG waveform using non-linear measures. Explicitly, given that

the healthy EEG waveform is sparsely and sporadically non-linear
(2), pathological states can be characterized by either increasing
or decreasing non-linearity as measured by the correlation dimen-
sion, lyapunov exponent, or signal entropy. Unfortunately, these
methods have difficulty when applied to non-stationary, quickly
changing signals (7, 12). In this paper we present a new method
for classifying non-linear, chaotic time series that have been con-
structed from similar dynamical systems with selected parametric
differences. While the newly introduced method is meant to be
applied to EEG time series, the present analysis was carried out on a
simple dynamical system in order to provide better understanding
of the method’s response to small, easily controlled changes in the
underlying dynamical system. We hypothesized that this method
would be able to differentiate time series that differ by a single
underlying dynamical parameter based on dynamical properties
observed in the signal itself. The method is well suited for real data
as it does not suffer from the limitations of assumed stationarity
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and/or need for large data segments; issues that are commonly seen
with traditional non-linear analysis techniques. Finally, our com-
panion paper (Lainscsek et al., submitted) provides an in-depth,
dynamical analysis of real Parkinsonian (PD), and healthy control
(CO) EEG signals in order to identify and subsequently quantify
differences in order to classify the EEG signals.

The Rössler system (16), composed of dynamic non-linear
ordinary differential equations, was used to simulate time series
for the present analysis. The system was chosen because it is low-
dimensional and well studied in the field of non-linear analysis.
Analysis of the generated Rössler data is presented in a proof-
of-concept format whereby the underlying dynamics of a noisy,
non-linear, chaotic system were used to differentiate between sub-
jects whose defining feature was a single input parameter, b. In
order to extend our analysis to real Parkinsonian and healthy con-
trol EEGs, we hypothesized that PD and CO subject EEGs would
have different non-linear dynamical properties due to the under-
lying pathology of Parkinson Disease, e.g., dopamine depletion.
Implicit in our hypothesis is the assumption that a chaotic, non-
linear system has an underlying dynamical structure that can be
quantified with non-linear analysis even though the structure may
not be discernible by visual inspection or pattern recognition. The
Rössler system was used to generate data series to gain a better
understanding of DDE analysis on real data. We did not make any
attempt to compare the simulated data with actual Parkinson or
non-pathological EEG data, but rather assume that certain com-
plex properties, the relevant features of the underlying dynamical
structure, are present in both simulated and real data. Based on
these conjectures, we designed an algorithm that is able to classify
simulated Rössler waveforms in a noisy, chaotic system. Further-
more, the algorithm is able to correlate the output (classification)
with the bifurcation parameter used to construct the waveform.

The paper is organized as follows. Section 2 introduces the sim-
ulated data from the Rössler system. Section 3 explains the DDE
classification method and Section 4 shows the structure selection
of good DDE models. Analysis and results can be found in Section
5. Section 6 is the discussion.

2. RÖSSLER DATA
The Rössler system (16),

ẋ = −y − z

ẏ = x + ay

ż = b − cz + xz

(1)

is a non-linear dynamical system that provides either complex
or simple outputs depending on the parameters a, b, and c that
are chosen. Integrating the dynamical equations with respect to
time results in the formation of a 3-dimensional object known
as an attractor. The attractor is a graphical representation of the
longterm behavior of the dynamical system and is either chaotic
or periodic. Periodic behavior is ascertained from the period-
limit-cycle (Figure 1). The period-limit-cycle is the number of
revolutions the attractor must make before converging on itself
and repeating the cycle and is well defined for a simple system
with true periodicity. A chaotic attractor does not have a well

defined period-limit-cycle as the trajectories are chaotic and fail
to converge upon previous loops.

In order to properly visualize the behavior of the attractor, a
time series x(t ) is extracted from each point (x(t ), y(t ), z(t )) on
the attractor. x(t ) is then embedded in the xxτ -plane such that
xτ = x(t − τ ) is plotted against x(t ). An embedding converts a
single time series into a multidimensional object in an embedding
space (17–20). The reconstructed attractor reveals basic properties
(dimension, Lyapunov spectrum, entropy) of the true attractor of
the system. It allows valuable information to be obtained about
the dynamics of the system without having direct access to all
the systems variables. There are two basic embeddings: delay and
derivative embeddings. For a delay embedding the time series itself
and its delayed versions are used to construct the embedding;
for the derivative embedding the time series and its successive
derivatives are used. Judd and Mees (21) introduced the idea
of non-uniform embeddings for time series with components of
multiple time-scales. From the embedding a Poincaré map is con-
structed in the xxτ -plane by plotting the value of x(t ) every time
it passes through a specific line in a specific direction (Figure 1).
Here, the line is set to be at xτ = 0. The intersection points of
this line with x(t ) are the basis for the bifurcation diagram. The
bifurcation diagram plots the Poincaré section generated for each
bifurcation parameter b with b ranging from 0.01 to 1.6 (Figure 1).
It is inferred from the bifurcation diagram that the behavior of
the attractor is highly dependent on the value of the bifurca-
tion parameter b. For example, b= 0.45 generates an attractor
with chaotic behavior, however b= 1.0 generates an attractor with
simple 2-period-limit-cycle behavior.

Data simulation is accomplished by allowing only the bifurca-
tion parameter b to vary while setting a= 0.2 and c = 5.7. Random
initial conditions are defined and the system is subsequently inte-
grated with respect to time with an integration step size dt = 0.05.
The data were then down sampled by using every fifth data point
to have a similar number of pseudo periods as for the EEG data
in the companion paper (Lainscsek et al., submitted). The system
must be integrated for each value of b with each b producing its
own attractor. For each attractor, a Poincaré section is generated
and the values for x(t ) are plotted on the bifurcation diagram for
all b. Importantly, it does not matter whether x(t ), y(t ), or z(t )
is chosen as the time series of interest because each individual
time series contains all of the information needed to reconstruct
the original dynamical system (19). Furthermore, the bifurcation
diagrams constructed from x(t ), y(t ), z(t ) and their embeddings
xτ , yτ , zτ respectively, have the same dynamical properties. Thus,
modeling of the data will be unaffected by the choice of time series
or embedding.

Two classes of data were generated, both in the chaotic range of
the bifurcation diagram. Each class was given a non-overlapping
range where the parameter b was the only variation between sig-
nals generated (Figure 2). Each class was composed of 9 subjects
in order to emulate the data set presented in the accompany-
ing paper (Lainscsek et al., submitted). Within the classes, each
subject was given a unique b that fell within the range of the
respective class. It was expected that Parkinson patients would
have a wider range of variability than non-pathological subjects.
In keeping with this idea, the simulated PD subjects were given
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FIGURE 1 | Long term behavior of chaotic (b = 0.45) and simple
(b = 1.0) attractors (top panel). Embeddings of x (t ) in xxτ -plane that
are used to generate Poincaré sections (middle panel). The intersections
of the embedded time series with the line xτ =0 are marked with yellow

dots. The bifurcation diagram generated from the Poincaré section with
b=0.45 (blue line) and b=1.0 (red line) marked to display the
relationship between Poincaré sections and the bifurcation diagram
(lower panel).

FIGURE 2 | (A) Section of the bifurcation diagram from which the bifurcation parameters for all subjects were selected is outlined in red. (B) Enlarged view of
bifurcation range with PD and CO ranges clearly separated. PD subjects range 0.37–0.44 and are shown in red. CO subjects range 0.46–0.49 and are shown in
blue.

a wider range for parameter b. This assumption was validated in
our companion paper (Lainscsek et al., submitted) where real PD
EEGs showed increased variability when compared with control
EEGs. The Rössler signal produced was further constrained by the
number of cycles per 1 s of data, forcing the Rössler to have simi-
lar frequency ranges to that of EEG. The sampling rate was set at
512 Hz so that each 1 s segment of data consisted of 512 points. For
each subject, the time series x(t ) was used to create 50 randomly
selected data segments of 1 s duration by randomly selecting the
data segments from an elongated signal. Prior to selecting the 50
data segments, the first 90,000 data points were discarded in order
to remove the effects of initial conditions and isolate b as the major

difference between subjects. Noise was added to the simulated
signals to generate a signal-to-noise ratio (SNR) ranging between
10 and −30 dB, further imitating real EEG conditions while also
providing additional information as to classification performance
in noisy systems. Examples of the generated data and the respec-
tive embeddings are shown in Figure 3. Both the time series and
the embeddings look very similar within and across classes.

3. DELAY DIFFERENTIAL EQUATIONS
Here we used delay differential equations (DDEs) in an attempt to
classify simulated Rössler data from two separate distinct dynam-
ical ranges based on the underlying dynamics of their respective
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FIGURE 3 | (A) Example Rössler time series for all subjects at
SNR=0 dB. (B) Embeddings of the time series in (A). All time series and
embeddings are very similar as there are no patterns that discriminate

between classes. PD subjects are shown on the left column of each
diagram in red. CO subjects are shown on the right column of each
diagram in blue.

signals. Since we use this data set as simulation data to better
understand real EEG data in our companion paper (Lainscsek et
al., submitted) we will call the two dynamical ranges PD and CO. A
DDE is a generic non-uniform embedding (22) of a signal x(t ) that
relates the derivative of the signal ẋ(t ) to the signal non-uniformly
shifted in time xτ such that

ẋ = f (x , xτ1 , xτ2 , . . . xτn )

= a1xτ1 + a2xτ2 + a3xτ3 + . . .+ ai−1xτn

+ aix
2
τ1
+ ai+1xτ1 xτ2 + ai+2xτ1 xτ3 + . . .+ aj−1x2

τn

+ aj x
3
τ1
+ aj+1xτ1 2xτ2 + . . .+ al x

m
τn

(2)

where x = x(t) and xτn = x(t − τn). The right side of Equa-
tion (2) can be expanded out to include many terms and non-
linearities. Setting a limit on the number of terms and/or order of
non-linearities allowed in the right-sided polynomial produces a
low-dimensional DDE that is capable of capturing distinguishing
dynamical features of the data. Since we are interested in classifi-
cation, a low-dimensional DDE’s inability to entirely describe the
original signal x(t ) is not an issue. Our analysis was limited to two
delays and monomials up to cubic non-linearities,

ẋ = f (xτ1 , xτ2) = a1xτ1 + a2xτ2 + a3x2
τ1
+ a4xτ1 xτ2 + a5x2

τ2

+ a6x3
τ1
+ a7x2

τ1
xτ2 + a8xτ1 x2

τ2
+ a9x3

τ2
. (3)

The time delay τn in each term of the DDE ranged from 1 to
50 time-steps δt, further increasing the number of model-delay
combinations and signal estimating capacity. The derivative was
computed numerically using a center derivative algorithm (23).
The coefficients ai were estimated numerically by a singular value

decomposition (SVD) algorithm (24). The deviation of the model
output f (xτ1 , xτ2) from the signal derivative ẋ is henceforth called
the error ρ of the model and is calculated with mean-squared

error estimation ρ =
√∑

(ẋ − f (xτ1 , xτ2))
2. ρ can be minimized

by optimizing the structure of the DDE according to the dynamics
and the delays according to the time-scales in the data. Time-
shift scaling adds frequency information to the DDE model such
that linear DDE terms are related to the linear frequency con-
tent of the EEG signal and non-linear DDE terms are related to
frequency coupling (22). Only models of 2 or 3 terms were con-
sidered and all ai not included in Equation (3) were set to zero.
The error-coefficient space describes a particular DDE’s ability to
model a specific signal. For our purposes we did not attempt to
exactly model or recreate Rössler signals from the DDEs. The DDE
models were used for classification (22, 25, 26), giving an output
that corresponded to either a PD or CO input class. The primary
objective of the structure selection was to obtain DDE models
that maximally separate CO and PD subjects. Ideally the outputs
are completely separated such that there is no overlap of outputs
between the two groups. In order to obtain models that best sep-
arated the groups, a repeated random sub-sampling validation
scheme (27) was implemented.

4. SUPERVISED STRUCTURE SELECTION
4.1. TRAINING
Repeated random sub-sampling validation (27) is a method of
training and testing on a single dataset that was employed to
prevent over-fitting of a model to the dataset, thereby increas-
ing the generalizability of the experimental findings. First each
class was partitioned into subgroups containing six subjects and
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three subjects. The group of six subjects from the PD class and
the six subjects from the CO class were chosen to act as the train-
ing data. This left three subjects from each group on which to
test the trained models. The grouping was repeated 84 times so
that all possible combinations were used for training and testing.
DDE selection was performed on training subjects for each of their
respective 50 1 s segments of data. The window length on which
the DDE outputs were computed was set to 1 s, 1 window per
data segment. 600 data windows (2 classes× 6 subjects× 50 win-
dows) were computed for each structure selection performed. The
first 300 windows, i= 1:300 computed outputs for the six control
subjects, and i= 301:600 computed outputs from the six subjects
from the PD group. In DDE selection, a model-delay pair was fit to
a signal of interest using an SVD algorithm that numerically com-
puted the coefficients using a least-square-error estimation. The
calculated coefficients and error are placed into the matrix Ai,j,

Ai,j = (a, ρ)i,j =



a1,1 a1,2 a1,3 ρ1
...

...
...

...
a300,1 a300,2 a300,3 ρ300

a301,1 a301,2 a301,3 ρ301
...

...
...

...
a600,1 a600,2 a600,3 ρ600


(4)

Given that we have 50 DDE models restricted to 2 or 3 terms
and time constants τ 1,2 that range from 1 to 50, there are a total
of 103100 model-delay pairs. Table 1 lists all the DDE mod-
els. Note that, e.g. the DDE models ẋ = a1 xτ1 + a2 xτ1 xτ2 and
ẋ = a1 xτ2 + a2 xτ1 xτ2 are the same with exchanged delays τ 1

and τ 2. Therefore only the first of these two models was used.
All such redundant DDE models were omitted. Explicitly, 103100
Ai,j matrices were generated where Ai,j contained a1, a2, a3, and ρ
computed for each of the 600 windows. Provided the coefficient-
error matrix had definite separation between the two classes in
the coefficient-error space, it was possible to estimate a weight
matrix Wj using SVD such that Ai,j ·Wj= Si where Si maps the
outputs for CO and PD subjects to opposite sides of a predefined
hyperplane,

Ai · Wi = Si =

{
1 i ∈ CO(i ≤ 300)

−1 i ∈ PD(i > 300)
(5)

The weight matrix forces the CO class to the positive side of
the hyperplane and the PD class to the negative side of the hyper-
plane providing a 2-dimensional mapping of the separation. Upon
completion of training, 103100 Wj were computed.

4.2. TESTING
The DDE outputs for the six testing subjects were computed and
put into a matrix Tk,j using the SVD and least-square-error scheme
previously defined. A coefficient-error matrix Tk,j was computed
for each of the 103100 model-delay pairs with each matrix con-
taining the information for all 300 windows (2 classes× 3 sub-
jects× 50 windows). The outputs for the CO class were placed
into k = 1:150 and the outputs for the PD class were placed in

k = 151:300. The previously computed weight matrices Wj were
tested against Tk,j. Thus,

Tk,j ·Wj = dk , (6)

where dk is the positive or negative distance from a predefined
hyperplane for each window. dk provided the information nec-
essary to generate a receiver operating characteristic (ROC). The
model-delay pair classification capability was assessed by comput-
ing the area under the ROC curves, A′ (28). A ROC curve is a plot
of the cumulative distribution function of the CO class against the
cumulative distribution function of the PD class [see (28), p. 173
for exact definitions]. To compute the area A′ under the ROC curve
[following the approach introduced in Ref. (28)], we ranked the
distances from the hyperplane d from the largest positive value to
the most negative value. Let ri be the rank of the ith control subject
point. The area under the ROC curve is approximated by

A′ =
S0 − n0(n0 + 1)/2

n0n1
(7)

where S0 is the sum of the ranks of the control subject points, n0

the number of CO subjects, and n1 the number of PD subjects. For
each set of training and testing, a total of 103100 A′s were gener-
ated. As previously mentioned, the grouping process was repeated
84 times and the 84 A′s found for each model-delay pair were
averaged in order to find the best performing model-delay pairs.
Importantly, 84 Wj were also generated for each model-delay pair
and the Wj corresponding to the best performing model-delay
pair were averaged. The averaged-best-performing model-delay
pair and weight vector were then tested on the data set.

5. NUMERICAL EXPERIMENTATION AND RESULTS
5.1. ADDITIONAL DATA AND NEW SUBJECTS
In any data derived classification technique, there is always a risk of
over-fitting (29) to a training data set such that there is exceptional
performance on the data set in question but poor generalization
when additional data sets are tested. We chose to employ repeated
random sub-sampling validation (30) to ensure that our classi-
fication did not over fit the data. We validated this assumption
through two separate experiments that were meant to either prove
or disprove an over-dependence on the training data. First, every
subject had an additional 50 random 1 s data segments taken from
its attractor: additional data. The previously found best model-
delay pair and weight matrix were tested against coefficient-error
matrices found via SVD for the new data sets (Section 4). The
resulting d is shown graphically (Figure 4) with varying degrees
of noise. Second, we generated an entirely new subject pool that
was held to the same constraints as the original Rössler data with
each class, PD and CO, given nine additional subjects. The data
sets were based on the bifurcation parameter b where subjects of
the PD and CO classes fell within the previously defined ranges:
new subject data. Again, the top performing model-delay pair and
weight matrix (Section 4) were used to classify the newly created
subjects (Figure 4). The newly generated subject outputs show
a clear relationship between the bifurcation parameter b and the
distance d from the hyperplane. The addition of new subjects to
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Table 1 |Two- and three-term models.

Model no. a1x1 a2x2 a3x2
1 a4x1x2 a5x2

2 a6x3
1 a7x2

1 x2 a8x1x2
2 a9x3

2 Model type

1 x x S, L

2 x x 1

3 x x

4 x x 1

5 x x

6 x x

7 x x

8 x x

9 x x

10 x x

11 x x S

12 x x 1

13 x x

14 x x

15 x x

16 x x

17 x x S

18 x x S

19 x x x

20 x x x S

21 x x x

22 x x x

23 x x x

24 x x x

25 x x x 1

26 x x x

27 x x x

28 x x x

29 x x x

30 x x x

31 x x x

32 x x x

33 x x x

34 x x x

35 x x x

36 x x x

37 x x x

38 x x x S

39 x x x

40 x x x

41 x x x

42 x x x

43 x x x

44 x x x

45 x x x

46 x x x

47 x x x S

48 x x x S

49 x x x

50 x x x

An “x” denotes that the term a* is non-zero. The different types of models are: “L,” linear; “S,” symmetric; “1,” single delay DDE. All other DDEs are non-linear and

have two non-interchangeable delays.
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FIGURE 4 | Classification of different data sets at different SNRs. Each
subplot maps the output d value against the input b. Small dots signify the
classification of each, individual trial of the 50 trial set. The PD subjects
(dark green dots) have more negative d values and the CO subjects (light
green dots) have more positive d values with zero selected as the
hyperplane and plotted as a continuous red line. The larger circles represent
the mean d for over all 50 trials for each subject; black circles correspond to

PD and blue circles correspond to CO groups. The performance of the DDE
classification algorithm on the training data, new data, and new subject
data is plotted from left to right respectively. SNR ranges 10:−10 dB and
decreases from top to bottom. The system shows noise invariance up to
−5 dB after which the ability to discriminate between the two classes
decreases dramatically. At high SNR the bifurcation parameter b is linearly
correlated to the output d.
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each class and the continued high performance of the classifica-
tion scheme indicates that provided the underlying dynamics of
two classes of subjects are different, it is possible to differenti-
ate between the two classes. Moreover, a subject’s distance from
the hyperplane provides a meaningful measure of how different
its underlying dynamics are from other subjects both within and
outside of its own class.

5.2. NOISE
In order to understand how the repeated random-sub-sampling
DDE selection algorithm would perform against real EEG data it
was employed in regimes with varying levels of noise. Specifically,
white noise was added to the Rössler data until signal to noise
ratios (SNR) of 10, 5, 0,−5,−30 dB were attained. Biasing of the
classification scheme for increased performance was avoided by
retraining and retesting on the newly created noisy data afford-
ing a measure of noise invariance. Each SNR implementation
went through training and testing in order to generate a differ-
ent average-best-model-delay pair and weight matrix. This means
we re-trained and re-tested at each level of SNR. The distance d
from the predefined hyperplane was calculated for each trial of
each subject along with the mean over all 50 trials. The resulting
50 d ’s and mean d were plotted with respect to the bifurcation
parameter given to each subject at the various SNRs (Figure 4).
Noise was applied to the initial training data set, new data, and
to the new subject data. While the inclusion of extreme amounts
of noise does appear to make the classification task more difficult,

especially for outlier bifurcation parameters that are situated near
the range of the other class, it is still possible for the classification
scheme to perform at a high level. Importantly, the bifurcation
parameter b is correlated to the distance d from the hyperplane
(Table 2). The linear correlation indicates that the classification
scheme is identifying predominant underlying dynamical differ-
ences of the system and is able to quantify these differences in a
meaningful way. Furthermore, the ability to classify signals at an
SNR of−5 dB, a situation where there is more noise than signal, is
an indication of noise invariance within the classification scheme.

5.3. DATA SHUFFLING
Non-linear classification of pathological and healthy states
assumes that there is a quantifiable dynamical difference between
the two states. When comparing PD and CO classes, it is expected
that the dynamical features isolated by DDE analysis have mean-
ing such that all PD subjects fall into a specific feature set and all
CO subjects fall into a different feature set. The Rössler system
simplifies the identification of the feature set by making the long
term behavior of the system dependent on a single feature, the
bifurcation parameter b. Grouping bifurcation parameters into
classes that are made up of specific ranges of b is valid only if
all b values in a given range correspond to the particular class
at the output of the DDE system. Shuffling the data, whereby the
ranges of PD and CO subjects are no longer separable (Figure 5A),
provides evidence as to how our classification technique will per-
form if there are no dynamical differences between groups being

Table 2 | Correlation coefficients between the dynamical parameter b and the distance d from the hyperplane for different levels of noise.

SNR Training data New data New subjects SNR Training data New data New subjects

10 1.00 1.00 1.00 −15 0.61 0.10 0.04

5 1.00 0.99 0.99 −20 0.61 −0.09 −0.08

0 0.97 0.99 0.97 −25 0.61 0.21 −0.28

−5 0.88 0.92 0.86 −30 0.66 0.25 −0.00

−10 0.68 −0.02 −0.15

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
−0.5
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b
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A B

FIGURE 5 | Subject shuffling. (A) PD subjects, red, and CO subjects, blue, are randomly placed in the bifurcation range without any separation between their
ranges. (B) After retraining and retesting, b is plotted against d. There is no longer a correlation between input b and output d of the classification system.
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compared. After shuffling the data, model-delay pair selection and
testing was performed (Section 4). It can be seen from the graphi-
cal results of the best performing model-delay pair (Figure 5B)
that classes with no dynamical differences will not be separa-
ble by a hyperplane, regardless of weight matrix or model-delay
pair selected. Thus, if classes of EEG waveforms have highly over-
lapping feature sets, such that they are inseparable in dynamical
feature space, it is expected that dynamical analysis will be unable
to classify the waveforms into separate groups.

Additionally, it is important to investigate the consequences
of subjects with outlier bifurcation parameters and their effect on
training and testing. In order to observe the effects of large outliers,
a single subject from each class was switched into the opposite class
and training and testing was performed on the training data, addi-
tional data, and new subject data. The switching of subjects was
performed in two ways. First, the subject with the largest bifur-
cation parameter in the PD class and the subject with smallest
bifurcation parameter in the CO class were switched. This has
the effect of lengthening the parameter range for each class such
that the ranges now overlap. Second, an outlier was created for
each class by selecting and switching the subject with a bifurcation
parameter closest to the mean of the bifurcation range for each
class. The newly created subjects were then labeled to the opposite
class. Both experiments were performed at −5 dB. Overlapping
the classes (Figure 6) by switching the largest parameter in the PD
class and the smallest parameter in the CO class does not appear

to have a significant affect on classification unless the bifurca-
tion parameters fall within the crossover range. Indeed, a lack of
true separation between bifurcation parameter ranges would be
expected to make classification within the crossover range exceed-
ingly difficult. Extrapolation to new subjects provides a similar
result where the subjects falling into the crossover range are dif-
ficult to classify. In Figure 6 the classification algorithm is shown
to be robust to a single gross outlier. The classification scheme is
still able to classify the subject properly within the training data
by calculating the PD subject to be a negative distance from the
hyperplane and the CO subject to be a positive distance from the
hyperplane. Thus, even with wrong labels, the model is able to
find the right dynamics and sparse outliers do not appear to have
a significant effect. Testing on the additional data shows similar
results (Figure 6). Finally, testing on the new subjects that retained
the initial bifurcation ranges (Section 2) shows great classifica-
tion. Again, the correct classification of additional subjects that
fall within the previously defined separable parameter ranges pro-
vides strong evidence that the algorithm is robust to single gross
outliers.

5.4. COMBINING MODELS
Up to this point, classification has been performed with a sin-
gle model-delay pair and a single weight matrix and has yielded
good performance. As is the case with other analytical tech-
niques, it should be possible to increase performance by combining

atadtcejbuswenatadwenatadgniniart
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FIGURE 6 | Single outlier in each class: in the upper row the subject
with the largest bifurcation parameter in the PD class and the
subject with smallest bifurcation parameter in the CO class were
switched (outlined in red). In the lower row the subject with a

bifurcation parameter closest to the mean of the bifurcation range for
each class was switched (outlined in red). The green dots refer to the 50
single trials in each subject while the circles denote the mean values
(black for PD and blue for CO).
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well performing model-delay pairs. Horizontally concatenating
previously calculated Ai,j for well performing model-delay pairs,

Ci,N = (Ai,j1
, Ai,j2

, . . . , Ai,jn
) (8)

leads to a model-delay pair combination of carefully selected
terms. N is defined as the number of non-zero terms in a sin-
gle row of the horizontally concatenated matrix. The number and
type of model-delay pairs chosen was limited in order to elicit
the best performance without over-fitting the training data set.
Initial training and testing calculated the top performing model-
delay pairs based on averaged A′s (Section 4). The top performing
pairs were combined such that if the model combination was lim-
ited to five model-delay pairs then only the top five performing
model-delay pairs were used for the combination classification.
Combinations of up to 30 model-delay pairs were implemented in
order to search for increased performance in high noise regimes.
A new weight matrix WN is generated by constraining,

Ci,N ·WN = Si =

{
1 i ∈ CO(i ≤ 300)

−1 i ∈ PD(i > 300)
(9)

Importantly, there are still 600 data windows in the concate-
nated matrix and the training of the weight matrix WN is iden-
tical with the previous technique (Section 4). The performance
of different model combinations at varying SNRs are shown in
Figures 7A,B with both plots displaying the same information in
different formats. At high SNRs, a single model-delay pair already
provides close to maximum performance (A′= 1.0) for all data
cases and thus increasing model number is not beneficial. As
expected, the classification performance decreases when introduc-
ing additional data and new subjects, however, the performance
remains well above chance (A′= 0.5) for all data sets down to and
including −5 dB. Classification capabilities decrease significantly
after −5 dB regardless of model combination. Increasing model

number appeared to only increase the classification of the train-
ing data set with negligible effects, good or bad, on the additional
data and new subjects. Further displaying the discrimination capa-
bilities of the present algorithm, the sensitivity index d ′ (31) was
calculated (Figure 7C). The sensitivity index d ′ (not to be confused
with the distance from the hyperplane d) shows similar behavior
to the traditional ROC in that the signal is easily discerned at high
SNR but SNRs lower than−5 dB make signal discrimination much
more difficult.

6. DISCUSSION
Analyzing the Rössler system while only varying the bifurcation
parameter allowed for a simplified proof of the capabilities of the
DDE classification scheme to identify underlying dynamical dif-
ferences between waveforms with many similarities in the time
and spectral domain. The continued classification of dynamical
systems in high noise regimes provides further support to the
argument that the method presented here is applicable to the
classification of measurements taken from high noise systems,
e.g., EEG. The Rössler system is one of many possible oscilla-
tors (e.g., the Lorenz system, Colpitts oscillator, or neural mass
models) that may be used for this analysis. However, the primary
reason for using the Rössler system was the ease of varying specific
dynamical parameters without greatly changing the observable
time series. As such, the results presented in this paper are meant
as a proof-of-concept of the DDEs ability to classify a system based
on its underlying dynamical parameters using only the informa-
tion obtained from an observable time series. Additionally, this
experiment made no attempt to analyze or classify coupled or
synchronized systems. The complete understanding of the under-
lying dynamics of a neurological system and its pathologies will
require additional analysis of large scale coupling and is considered
a future direction of this project. However, it should be empha-
sized that the classification technique presented here has been
shown to be highly correlated to Parkinson’s disease pathology
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FIGURE 7 | Combination of models. (A) Line of plot of A′ with respect to
SNR. Training data set performance is in blue, new data is in green, and new
subject data is in red. Each model-delay pair number: 1, 5, 10, 15, 20, 25, 30 is
plotted with a separate line with each data set having seven lines. The black

line A′ = 0.5 indicates 50% probability of correct classification. (B) Bar graph
of classification performance on each data set. Each model-delay pair
combination is plotted separately. (C) Sensitivity index d ′ at various levels of
SNR for model-delay combinations of length 1, 5, 10, 15, 20, 25, and 30.
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and furthermore to the gradation of pathological severity in our
companion paper (Lainscsek et al., submitted).

Perhaps the most profound finding of this experiment is not
the ability to classify Rössler signals into their respective classes,
but rather the ability to linearly correlate the bifurcation parame-
ter b to the output d (Figure 7 and Table 2). Indeed, the output d
appears to grade the input parameter b of the dynamical system.
Grading is step beyond binary classification, providing a means to
differentiate between subjects within a class and objectively rate
the degree of difference. Additionally, as the bifurcation parame-
ter of a specific class takes on values close to the range of the
other class, it becomes increasingly difficult for the classification
scheme to correctly classify which class the waveform originated
from. This is quite similar to the onset of chronic pathological
states that are indolent at the beginning and tend to get progres-
sively worse with time. Thus, distance from the hyperplane may
be correlated with disease level when applying the classification
technique to pathological EEG. Extrapolating the grading system
for use on chronic disease states requires that the distance d be
mapped against a known measure, e.g., UPDRS scores. The cor-
relation between the DDE outputs of Parkinson finger-tapping
movement data and UPDRS scores was shown previously (26).
Whether or not d will continue to correlate with known units of
measure for pathological states is an open question with many
profound implications.

It is interesting that at very low SNRs, increasing the model
number serves only to increase the classification performance of
the training data set (Figures 7A,B and Table 2). While similar
to what would be expected in over-fitting, the overall trend is
different. With decreasing SNR there is an expected monotone
decrease in classification performance. However, the classification
performance on the new data and new subjects does not appear
to be related to the number of model-delay pair combinations. If
this was simply a case of over-fitting, we would expect decreased
classification performance when increasing the number of model-
delay pairs. Furthermore, the performance should be worse at
each increment of total model-delay pair number when classifying
new subjects, but this is not the case (Figures 7A,B). Increasing
the number of model-delay pair combinations appears to only
improve classification of the initial training data in high noise
regimes, with the increased number of model-delay pairs allow-
ing the classification scheme to “lock-in” on the data on which it
was trained without affecting performance on new data. As previ-
ously stated, analyzing only nine subjects for each class results in
an incomplete dynamical description of the unknown underlying
dynamical system. It is conceivable that increasing the amount of
training subjects and data would provide enough information such
that increasing model number would be useful when attempting
to classify new data. It is important to be mindful that training
and testing of this data driven technique was only performed on
18 subjects taken from two distinct 9 subject classes. Training on
such a limited data set is unlikely to permit complete extrapolation
of the underlying dynamics of a given class of data. Yet, when tak-
ing additional data from the training subjects and even with the
inclusion of entirely new subjects restricted to the defined classes
the classification technique was still able to perform well above

chance at SNRs as low as −5 dB. The inclusion of more subjects
would be very computationally intense and is beyond the scope of
paper, but it is likely the more robust the training, the greater the
performance, and generalizability of the classification system.

Applying the DDE classification method toward the differen-
tiation of human brain states will require that it is capable of
recognizing signals that vary in many different dynamical features
rather than a single parameter. While there may be many dynam-
ical differences between pathological and healthy control states,
these differences may be small, making the resolution of the clas-
sifying scheme very important for correct classification. Ideally,
variance in an increased number of dynamical features will offset
the small differences between features within the brain states and
permit correct classification. Additionally, some feature differences
may simply arise due to normal variation between healthy indi-
viduals. Any classification scheme meant to differentiate pathology
from healthy states will need to perform a selective search for rel-
evant dynamical features. Thus, for the DDE to correctly classify
pathological and normal EEG states, it will be necessary for the
selected model-delay pairs to isolate only those features that are rel-
evant to a specific pathology. Such features are unknown at present
and may prove difficult to elucidate. However, the implementation
of the random sub-sampling validation on pathological and non-
pathological EEG waveforms may allow for the identification of
unknown dynamical differences without any direct knowledge of
processes that generated the differences, providing a classification
scheme that is able to both diagnose and grade pathology based
on non-invasive measurements.

7. CONCLUSION
This manuscript outlines a new dynamical approach to time series
classification. In order to describe the capabilities of delay dif-
ferential equations to classify dynamical differences, two classes
differing only in a single dynamical parameter were used for time
series construction. The Rössler system was chosen for this analysis
because of its ease of implementation and the ability to isolate and
change a single dynamical parameter. Method testing and valida-
tion was performed using repeated random sub-sampling in order
to find model-delay pairs and a weight matrix that behaved well
across the entire data set, regardless of which subjects were used
for training and testing. Additional data and additional subjects
were created and used to test the previously computed best model-
delay pair and weight matrix in order to see how generalizable
the algorithm was to data generated from an identical non-linear
dynamical system as well as data generated from a parameter that
fell within one of the previously outlined classes. In order to fur-
ther emulate realistic conditions, high levels of noise were added to
the simulated data and the method was shown to be noise invari-
ant up to−5 dB. Finally, data shuffling was implemented to show
that the classes of data must be separated dynamically in order
for any type of classification to occur with the DDE method. We
conclude that DDEs are able to identify and classify small changes
in underlying dynamical systems that are not immediately recog-
nizable in the observable time series. Such methods may prove to
be extremely useful in the classification of time series observed in
real world situations.
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