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Among the U.S. military personnel, blast injury is among the leading causes of brain injury.
During the past decade, it has become apparent that even blast injury as a form of mild
traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as
neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized
by blast overpressure, blast duration, and blast impulse. While the blast injuries of a vic-
tim close to the explosion will be severe, majority of victims are usually at a distance
leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI
is its complex manifestation occurring in concert at different organ levels involving sys-
temic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with
other forms of brain trauma such as acute brain injury and other neuropsychiatric disor-
ders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure
involves complex cascades of chronic psychological stress, autonomic dysfunction, and
neuro/systemic inflammation. These factors render blast injury as an arduous challenge
in terms of diagnosis and treatment as well as identification of sensitive and specific bio-
markers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric
disorders with similar symptoms. This is due to the “distinct” but shared and partially
identified biochemical pathways and neuro-histopathological changes that might be linked
to behavioral deficits observed. Taken together, this article aims to provide an overview of
the current status of the cellular and pathological mechanisms involved in blast overpres-
sure injury and argues for the urgent need to identify potential biomarkers that can hint at
the different mechanisms involved.

Keywords: biomarkers, blast injury, brain injury, neurotrauma, blast overpressure, mildTBI, PTSD, neuropsychiatry

INTRODUCTION
Traumatic Brain Injury (TBI) represents a major public health
problem with an over 150,000 military personnel diagnosed with
form of mild traumatic brain injury (mTBI), due to the exposure
to blast resulting in a wide range of neurological and psychological
symptoms (1, 2). Blast-related brain injuries can be provoca-
tively described as “a silent epidemic of an invisible wound.”
Current Explosive mechanisms [improvised explosive devices
(IEDs), landmines, and rocket-propelled grenades (RPGs)] are
believed to account for 56–78% of Operation Enduring Freedom
(OEF), Operation Iraqi Freedom (OIF), and Operation New Dawn
(OND) related injuries (3, 4). This has led to labeling the blast-
induced TBI (bTBI) as the signature brain injury for combat troops
in today’s military (5, 6).

Between 2000 and 2010, the Department of Defense (DoD)
reported ∼200,000 head injuries as a consequence of combat-
related incidents as well as events occurred in a non-deployed
environment (civilian injuries) (7). However, even this number
may be an underestimate due to the fact that the majority of blast-
related mTBIs go misdiagnosed and untreated as a consequence
of in-appropriate approaches of screening, invalidated diagnostic
criteria or specific detectable abnormalities, and lack of diagnos-
tic tools. Acute blunt penetrating injuries comprised 2.8% of this
total, the rest were classified as mTBI (7).

Out of more than 8,000 cases of TBI reviewed by the Defense
and Veterans Brain Injury Center, ∼50% were related to blast-
related barotrauma (8). The clinical features observed in mTBI
resulting from blast exposure vary, these include: headache, fatigue,
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tinnitus, and irritability which have been highly recognized in
recent conflicts. Blast overpressure (BOP) injury has been con-
sidered the main cause of both morbidity and mortality in neu-
rotrauma (9, 10). Furthermore, blast TBI has been the center
for military medical concern in the context of polytrauma, since
blast-induced injury, due to its complex components (primary,
secondary, tertiary, and quaternary injuries) is often accompanied
by hemorrhagic blood loss, multiple fractures, burns, and systemic
injury coupled with TBI (11–13).

The recognition of the high incidence and impact of bTBI; in
addition, to the need for a more accurate diagnosis and effective
therapeutic interventions, led to an impressive number of experi-
mental and human blast injury studies aiming at investigating the
complex interconnected pathways involved in the blast-induced
neuropathological/behavioral changes.

This review will focus on three major questions: (i) What is
the experimental and human evidence that blast is associated with
progressive alterations in the brain and via what mechanism(s)
they are mediated? (ii) What is the relation between blast-induced
brain injury and the development of neuropsychological disorders
such as post-traumatic stress disorder (PTSD)? (iii) What are the
biochemical markers that can identify, track and predict the injury
and symptoms observed in patients exposed to blast injury?

BIOMECHANICS OF BLAST INJURY
Blast overpressure-induced injury results from an explosion char-
acterized by an abrupt release of energy in such a short period of
time within a small volume creating a non-linear shock and pres-
sure wave (14). The blast shock wave of the primary blast is solitary
supersonic pressure wave (peak overpressure) characterized with
a rapid (sub-milliseconds–milliseconds) increase in pressure fol-
lowed by sharp fall in pressure, often to sub-atmospheric levels
before returning to ambient pressure (15, 16). This is coupled
with the “blast wind” (forced super-heated air flow) that gives rise
to a very large volume of gas that may throw victim’s body against
other objects. Blast wind, along with the shock wave are the main
components of the “blast wave” (17, 18). Blast waves comprise the
shock front followed by the blast wind (19). Blast waves impinge
on the head-brain complex while mechanical pressure pulses in
the brain; the severity of the injury is dependent upon the magni-
tude and duration of the pressure cycle (20). The net loading at a
material point in the brain comprised of a direct transmissive load
and deflection-induced indirect loads. The pressure pulse in the
brain is governed by the acoustic impedance mismatches between
the head and the brain, and the flexural rigidity of the skull (20).

Blast can cause four different types of insults: (i) the primary
injury resulting from the BOP waves due to the shock-wave over-
pressure or/and under pressure. This event is usually associated
with contusion, edema, hemorrhage, and diffuse axonal injury
(DAI) (11, 17, 21, 22). (ii) The secondary injury that is due to
shrapnel or hard objects propelled at the body. (iii) The tertiary
insult involves head translation/rotation coupled with accelera-
tion/deceleration due to blunt impact arising from blast wind and
finally (iv) the quaternary insult resulting from thermal burns or
the probable use of toxic gases or chemicals.

Compared to previous past conflicts, the majority of war zone
wounds have been attributed to secondary blast injury (shrapnel

propelled by explosions), while tertiary and quaternary blast
injuries were related to terrorist-linked acts involving structural
collapse and the use of toxic material. Previous studies on primary
injury (BOP) have traditionally focused on gas-containing hollow
organs such as the lungs and gastrointestinal tract (14, 23).

In one study by Clemedson discussing blast injury, the term
“blast injury” has been used to describe the biophysical and patho-
physiological events post exposure to high explosion or the shock
wave associated with it (24). The greatest interest was devoted
to study the peak pressure, as well as the impulse relevant to
pulmonary injuries produced (25–28). Interestingly, on the patho-
physiology focused on the sudden alteration in the body ambient
pressure, primarily in gas-air filled organs including the lungs,
intestines, or in tissues with different specific weight such as the
ear and intestines; this occurred at the interface between media
with very large differences in density (16, 24, 29, 30).

Furthermore, BOP can induce a mild form of brain injury
with significant neurological conditions involving cerebral edema,
neuroinflammation, and vasospasm along with DAI and neuronal
death. This neuronal injury phase is followed by a series of complex
neuropsychiatric symptoms which may include memory loss and
behavioral changes (5, 13, 31–33). As such, exposure to complex
blast waves can be viewed as the inducer of multitude of injuries or
even polytrauma involving several organ injuries interaction that
exacerbates blast insult outcome (13). Finally, blast wave propaga-
tion to the brain parenchyma is another controversial mechanism
which may involves both direct propagation through the skull or
in an indirect propagation via blood vessels which has a direct
implication on vascular disturbance (31, 34).

Blast wind passage to the skull causes acceleration/rotation to
the brain comprising the direct injury. Indirect injury involves
the compression of the abdomen and chest transferring kinetic
energy to the body’s biofluid. This rippling effect generates oscil-
lating waves from blood to the brain distant from the contact
point. In turn, this kinetic energy transfer will induce functional
and morphological changes in brain structures which represent a
distinct complex feature of blast-induced brain injury not present
in other traditional brain injury models (21, 31, 35). The complex
mechanism of blast injury involves consequences of primary blast
effects on autonomous nervous system. Taken together, it should
be comprehended that the mechanics of neurotrauma due to blast
injuries are quite different from that of other types of injuries aris-
ing from motor vehicle accidents (blunt) or penetrating injuries
(ballistics).

NEUROPATHOLOGICAL ALTERATION IN BLAST INJURY
Experimental studies of primary blast brain injuries (though
limited) have shown evidence of altered cellular, molecular and
biochemical processes, and behavioral outcomes. For instance,
different studies have shown a heterogeneous profile of brain-
associated cellular impairments including: elevation in β-amyloid
precursor protein, altered expression of protooncogenes c-Myc, c-
Fos, and c-Jun and impaired axonal transport along with oxidative
stress with elevated nitric oxide generation (8, 33, 36–44). In addi-
tion, neuronal injury and glial activation (discussed later) coupled
with elevation of biochemical markers such as, neuron specific
enolase (NSE), ubiquitin C-terminal hydrolase 1 (UCH-L1), and
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glial fibrillary acidic protein (GFAP) have been also reported.
Other studies have shown evidence of axonopathy, edema, and
hypertrophic astrogliosis with pronounced altered gene expres-
sion post-injury event (40, 44–46). However, there were a lot of
ambiguity in the overpressure and duration utilized and the meth-
ods used to measure these parameters which were often unclear
and not standardized (33, 43, 47).

Furthermore, such heterogeneous neural profile has been
attributed to several factors including the suitable experimental
model systems that can closely mimic “composite” primary, sec-
ondary, tertiary, and quaternary components of blast exposure, the
lack of standardized blast wave instruments, different body local-
ization and body armor, and the use of different animal species
(31, 32, 41, 48) (see Table 1).

Several studies have been performed to assess neuropatholog-
ical effect of BOP coupled with other comorbid factors (17, 29,
47–51). In these studies, several parameters were varied (different
blast injury models, intensity, animal species used) or other mod-
ifications were included (protective vests, stressors, and animal
localization).

One representative study is that of Kamnaksh et al. where they
assessed different stressors and their contribution to blast injury.
These stressors included transportation and blast sound with or
without blast injury. Of interest, all groups exhibited increased
anxiety,while injured and blast noise-exposed rats showed elevated
corticosterone, interferon-c (IFN-c), and interleukin-6 (IL-6) in
the amygdala and hippocampus. Injured animals showed ele-
vated Iba1, GFAP, and apoptotic immunoreactivity (52). These
data demonstrate that exposure to biological stressors can lead
to behavioral changes and trigger specific neuropathological
alteration even in the absence of detectable injury.

Pun et al. using a rat model, assessed the effects of a single
sublethal blast over pressure (BOP) exposure (48.9–77.3 kPa) in
an open-field set up. Histopathological analysis of inflicted brains
revealed“darkened”and shrunken cortical neurons with narrowed
vasculature at day 1 post-injury. Signs of recovery were demon-
strated at days 4 and 7 post-blast exposure. Oligodendrocytes
and astrocytes showed TUNEL-positivity in the white matter at
day 1. Acute axonal damage was observed in the white matter
as indicated by elevated amyloid precursor protein immunore-
activity with no sign of macrophages/microglia change. Major
gene changes were observed at day 1 and 4 post-blast pointing
toward signs of repair at day 4 and 7. These findings suggest
that the BOP levels in the study resulted in mild cellular injury
and white matter perturbations (47). In another study by Koli-
atsos et al. primary (BOP) wave effect of mild BOP (68, 103,
and 183 kPag) was compared to secondary and tertiary effects.
Using a shock tube generating shock waves, the effects of blast
on parenchymatous organs including brain, were evaluated. The
main injuries in non-brain organs included hemorrhages in the
lung interstitium, hemorrhagic infarcts in liver, spleen, and kid-
ney. Neuropathological changes and behavioral outcomes were
evaluated at mild blast intensity showing signs of multifocal
axonal injury in the cerebellum, the corticospinal system, and
optic tract. These findings were accompanied with prolonged
behavioral and motor abnormalities (deficits in social recogni-
tion, spatial memory, and in motor coordination). Interestingly,

shielding of the torso ameliorated axonal injury and behavioral
deficits (50).

In a different study, de Lanerolle et al. used a swine model
to assess different scenarios of blast exposure including: simulated
free field (blast tube), high-mobility multipurpose wheeled vehicle
surrogate, and building 4-walled structure. Of interest, histologi-
cal changes in the three blast scenarios showed minimal neuronal
injury with fiber tract demyelination and intra-cranial hem-
orrhage. Neuropathological changes involving increased astro-
cyte activation coupled with proliferation and periventricular
axonal injury detected were observed with β-amyloid precursor
protein (53).

Long et al. assessed blast-induced physiological, neuropatho-
logical, and neurobehavioral changes coupled with Kevlar protec-
tive vest encasing the thorax and part of the abdomen using a
compression-driven shock tube (at 126- and 147-kPa). Kevlar vest
effect reduced air blast mortality and also ameliorated the wide-
spread fiber degeneration in rat brains. BOP was shown to induce
abnormal neurologic and neurobehavioral performance along
with cardiovascular disruptions involving hemorrhagic hypoten-
sion with disruption in cardio-compensatory resilience (reduced
peak shed blood volume, etc.) (10). Similarly, Rafaels et al.
using a male ferrets with protected thorax and abdomen, eval-
uated intra-cranial hemorrhage and cardiorespiratory coupling
at different ranges of blast exposures. Increasing severity of blast
exposure demonstrated increasing apnea immediately after blast
accompanied by hemorrhages in proximity to the brain stem (51).

In an interesting study, Garman et al. characterized the neu-
ropathological changes produced by a single blast exposure in rats
with body shielding using a helium-driven shock tube (exposure
of 35 Psi with left side-head-only exposure) (54). Neuropatholog-
ical analysis was conducted at various time points (24 h, 72 h, or
2 weeks post-blast). Multifocal axonal degeneration was present
in all blast-exposed rats at all-time points coupled with dif-
fused axonal injury in the cerebellar and brainstem white matter
tracts. In addition, reactive microglial activation was also identi-
fied despite subtle GFAP, ED1, and Iba1 staining. Finally, increased
blood–brain barrier (BBB) permeability was seen at 24 h. Findings
from this study indicated axonal, dendritic, neuronal, and synap-
tic degeneration in the initial 2 weeks post exposure with body
shielding. Over time, there was also evidence of progression of
the axonal degenerative process characterized by increased axonal
fragmentation similar to the process of DAI that follows TBI which
is suggestive of a therapeutic window in the immediate post-blast
period (54).

In conclusion, these different blast studies presented distin-
guished heterogeneous results (summarized in Table 1); and
provided different insights into the associated neuropathological
changes occurring post-blast exposure. These findings highlight
the challenges encountered in modeling experimental blast injury
and translating the findings into preclinical brain injury stud-
ies to be evaluated and verified clinically (discussed in different
sections).

NEURONAL INJURY MECHANISMS
The exact mechanism by which BOP mediates neuronal injury
has not been fully elucidated (47). The neuropathological changes
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Table 1 | Recent major studies on experimental blast injury with different parameters assessed (behavioral, neuropathological, and biomarker

changes).

Reference Animal model/

device used-BOP

intensity

Time point

assessment

post injury

Repeats of blast

and time between

exposure

Additional

variables

studied

Behavioral

assessment

(if available)

Neuro, systemic, and other

organ-specific pathology/

biomarkers parameters

Abdul-Muneer

et al. (102)

Rat/primary

blast/shock

tube/123 kPa

1/6/6/24/

48 h/8 days

One or two

(24 h between

intervals)

None Vascular damage, BBB

leakage, neuroinflammation

MMPs changes, AQP-4,

oxidative stress (4HNE-3-NT),

and edema; S100B and NSE

(serum)

Ahmed et al.

(136)

Rat/compressed

air-driven shock

tube/138 kPa

1, 3, 7, 14,

26, 36, and

42 days

Single or five

(24 h between

each blast)

Repeated vs.

single blast

comparison

Oxidative stress, vascular

abnormalities, neuronal, and

glial cell death

Arun et al.

(137)

Mouse/A

compressed

air-driven shock

tube/21 psi

6 or 24 h Three blast

(1.5 min)

Mice restrained in the prone position

with a tautly-drawn net

Initial decrease and later

increase GFAP and total tau

proteins (liver, spleen, brain,

and plasma)

Zou et al.

(138)

Rat/5 kg TNT and

PETN detonation:

3 m distance (high

exposure, 480 kPa)

and 2 m distance

(low injury, 180 kPa)

24, 72 h and

2 weeks

Single None Retina injury: blast-dependent

increase in VEGF, iNOS,

eNOS, nNOS, AQP4, GFAP,

elevated inflm cytokines, and

chemokines

Prima et al.

(139)

Rat/composite

blast with head

acceleration and

Primary blast with

no acceleration/

230–380 kPa

6 h and 1 and

7 days

Single Primary blast vs. composite’ blast

animals are body armored

Thrombin generation (TG)

serum integrin α/β,

sE-selectin, sICAM-1, and

matrix metalloproteinases

MMP-2, MMP-8, and MMP-13

Tumer et al.

(104)

Rat/compressed

air-driven shock

tube ∼2 m

distance/358 kPa

for 10 ms/noise

level noise level

(100–105 dB)

6 h Single None Increased oxidative stress;

activation of the

sympatho-adrenal medullary

axis; (TH), dopamine-β

hydroxylase (DβH),

neuropeptide Y (NPY) plasma

norepinephrine (NE); diffused

neuronal injury

Genovese

et al. (135)

SD-rat/shock tube

airblast exposure

74.5 kPa

Every 7 days

for 8 weeks

1/day for 3 days None Conditioned

fear/PTSD

Neuronal pathology

Huber et al.

(131)

Mouse/compressed

gas-driven shock

tube

24 and

30 days

Single None Elevation of multiple

phospho-, cleaved-tau, and

(MnSOD or SOD2) levels

Sajja et al.

(140)

Rat/helium shock

tube/117 kPa

7.5 ms 24, 48 h Magic angle spinning 1H MRS

analysis

Elevated N -acetyl aspartate,

glutamate, and increased

GFAP, Bcl-2, Bax, caspase-3,

signs excitotoxicity

(glutamate/creatine;

hippocampal neuronal loss;

mitochondrial distress

(Continued)
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Table 1 | Continued

Reference Animal model/

device used-BOP

intensity

Time point

assessment

post injury

Repeats of blast

and time between

exposure

Additional

variables

studied

Behavioral

assessment

(if available)

Neuro, systemic, and other

organ-specific pathology/

biomarkers parameters

Skotak et al.

(141)

Rat/helium driven

shock tube/(130,

190, 230, 250, and

290 kPa)

24 h Single Biomechanical loading assessed

with pressure gauges (thorax,

cranial space, and nose)

Diffuse blood-brain barrier

breakdown in brain parenchyma;

fatality; lung hemorrhage; no

evident neuronal injury

Valiyaveettil

et al. (34)

Mouse/blast over-

pressure/20.6 psi

4, 24, and

72 h

Three times

(1–30 min)

None Platelet serotonin decreased at

4 h post blast; increase in the

plasma serotonin levels.

Increase in blood, plasma, and

brain myeloperoxidase enzyme

activity. Constriction of blood

vessels of the brain

Takeuchi

et al. (142)

Rats/laser-induced

shock waves/0.5–1,

0.5 J/cm2

14 days Single None Decrease in the CB (cingulum

bundle) axonal density

Turner et al.

(143)

Rats/tabletop

shock tube/31, 50,

72, and 90 psi

72 h Single Thorax and abdomen protection Neural degeneration; increased

glial activation (GFAP); extensive

intracranial bleeding leading to

death

Tweedie et al.

(144)

Mouse/concussive

head trauma

(weight drop with

metal protection)/

explosion shock

wave pressure

(7 m distance

∼2.5 psi–17.2 kPa)

7 days Single Comparison

between mild TBI

and blast injury

Altered cognitive and

emotional behaviors

(Y maze, novel object

recognition passive

avoidance/elevated

plus maze cognition

and anxiety

Altered hippocampal gene

expression

Cho et al.

(134)

Mouse/bast

chamber

(compression wave

attached to a PVC

tube)/94, 123, and

181 kPa

7, 14, 28 days

and 3 months

Single Body is protected with fiberglass

screen mesh/hearing loss model

Decreased spiral ganglion

neurons (SGNs) and afferent

nerve synapses, loss of outer

hair cells (OHCs), tinnitus,

hearing loss

Yeoh et al.

(103)

SD rat, rifle primary

shock tube (145,

232, and 323 kPa)

5 min and 24,

48 h

Single None IgG assessment cardiovascular

injury due to primary blast injury

is distinct from a typical TBI

Cho et al.

(134)

Male SD rat, shock

tube 129.23±

3.01 kPa for 2.5 ms

4, 24, 48 h

and 2 weeks

post BOP

Single None Short term memory Immunological assessment

(TMF-γ, MCP-1) neuronal loss

Ahlers et al.

(145)

Rat/pneumatically

driven shock tube

at 116.7, 74.5, and

36.6 kPa

6, 24 h and

1 week

Single or 12

blasts (24 h at

36.6 kPa)

Three body

orientation

(sideway, facing

away vs. frontal)

Morris water maze

task 116.7 kPa

demonstrated transient

alteration or loss of

consciousness,

74.5 kPa demonstrated

anterograde memory

deficits

Subdural hemorrhage and

cortical contusions

(Continued)
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Table 1 | Continued

Reference Animal model/

device used-BOP

intensity

Time point

assessment

post injury

Repeats of blast

and time between

exposure

Additional

variables

studied

Behavioral

assessment

(if available)

Neuro, systemic, and other

organ-specific pathology/

biomarkers parameters

Ahmed et al.

(146)

Swine/blast

overpressure/mild

(24–37 psi) or

moderate

(40–52 psi)

6, 24, 72 h

and 2 weeks

Single None CSF biomarkers (CK-BB NFH,

GFAP, S100B, VEGF, Claudin 5,

and NSE); neuronal and glial

cell damage, altered vascular

permeability, and inflammation

Balakathiresan

et al. (123)

Rat/air-driven shock

tube 120 kPa

3 and 24 h Short interval

(three times –

2 h), long interval

(three

times – 24 h each)

None CSF and serum miRNAs (let-7i)

Hines-Beard

et al. (147)

Mouse/primary

ocular blast injury;

pressurized air tank

with paintball

gun/23.6, 26.4, and

30.4 psi)

3,7, 14, and

28 days

Visual acuity deficit detected in

30 psi group eyes via optokinetics

Retinal damage was present in

the eyes from the 30 psi

group-corneal edema, corneal

abrasions, at optic nerve

avulsion

Bir et al.

(148)

Rat/gas-driven

shock tube, 90,

103, 117, 193, and

159 kPa

24, 48, and

72 h

Single None MRI analysis showed

hippocampal reduction in the

Cerebral Blood Flow

Kovesdi et al.

(150)

Rat/shock

tube/20.6 psi

8 and 45 days Single Minocycline

(50 mg/kg i.p.

NSAID); mitigate

neurobehavioral

changes/body

protection

Impaired memory

and increased

anxiety. (open field,

elevated plus maze,

and Barnes maze)

minocycline showed

neuroprotection

Elevated brain and Serum: CRP,

MCP-1, NFH, NSE, Tau, GFAP,

MBP, S100B, CRP, MCP-1,

TLR-9, Claudin 5, and AQP4

Li et al. (95) Macaca

fascicularis/120 kg

of TNT/80 and

200 kPa

3 days and

1 month

Single and double

(3 days interval at

80 kPa)

Monkey Cambridge neuropsychological

test automated battery motor

coordination and working memory

Increased (AQP-4) white matter

degeneration, astrocyte

hypertrophy; MRI revealed

ultrastructural in Purkinje

neurons in the cerebellum and

hippocampal pyramidal neurons

Rafaels et al.

(51)

Ferrets/8′ shock

tube/variable peak

overpressure

(98–818 kPa range)

1–5 h Direct recording Head exposure/thorax and

abdomen protection

Apnea; brain bleeding; fatality

Shridharani

et al. (153)

Pigs/compressed-

gas shock

tube/variable

(107–740 kPa range)

1.3–6.9 ms Direct recording Heads exposed/lungs and

thorax protected (ballistic

protective vests)

Apnea intracranial pressures

indicates pressure attenuation

by the skull up to a factor of 8.4

Sundaramurthy

et al. (96)

Rat/Nebraska’s

shock tube/100,

150, 200, and

225 kPa)

NA Single Variable Animal Placement

Location along the shock

tube (i.e., inside, outside,

and near the exit)

Surface and intracranial

pressure elevation linearly with

the incident peak

overpressures

(Continued)
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Table 1 | Continued

Reference Animal model/

device used-BOP

intensity

Time point

assessment

post injury

Repeats of blast

and time between

exposure

Additional

variables

studied

Behavioral

assessment

(if available)

Neuro, systemic, and other

organ-specific pathology/

biomarkers parameters

Svetlov et al.

(92)

Rat, external shock

tube (230–380 kPa)

1 and 7 days

post trauma

Single Primary and composite blast Persistent gliosis

accumulation of

GFAP/CNPase in circulation as

well as IL-1/IL-10 fractalkine,

orexin A, VEGF-R, NRP-2

increased after primary, and

composite; integrin-α/β,

ICAM-1, L-selectin, NGF-β

increased after primary blast

Elder et al.

(154)

Rat/air blast shock

tube (WRAIR)/74.5

4.5 months Three times (24 h) Anxiety and fear; locomotor

activity, MWM, rotarod, elevated

zero arm, predator scent exposure;

movement restricted with shielding;

contextual and cued fear conditioning

Elevation in the amygdala of

the protein stathmin 1

(proteomic changes)

Dalle Lucca

et al. (155)

Rat/compressed

air-driven shock

tube/120 kPa

0.5, 3, 48,

72, 120, and

168 h

Two None Hemorrhage and edema in

the brain cortex; elevated

TNF-α, C3/C5b-9, and AQP-4;

increased leukocyte

infiltration

Arun et al.

(22)

In-vitro 96 well

plates-SH-SY5Y

human

neuroblastoma

cells bTBI

model/compressed

air-driven shock

tube (13.68, 18.03,

and 21.05 psi)

24 h Sing1e or three

times (2 min

intervals at

21.05 psi)

Plate orientation (horizontal vs.

vertical)

Decreased ATP levels,

increased LDH, and ROS;

downregulation of CyPA

protein

Chavko et al.

(62)

Rat/air-driven shock

tube/36 kPa

point-pressure

measurements of

cerebral ventricles

∼2.94 ms Single Head orientation (head facing

blast, right side exposed, head

facing away)

Pressure wave propagation

and head orientation

dependence

Kuehn et al.

(156)

Rat/cranium only

blast injury

apparatus/137.9–

515 kPa

24 h and 7

and 10 days

Single None Accelerating rotarod;

apnea

H&E staining subarachnoid

hemorrhages; brain injury

(caspase-3, and β-amyloid

precursor protein (β-APP), IgG

labeling, and Fluoro-Jade C);

cardiac arrest; vasogenic

edema

Cernak et al.

(157)

Mouse/helium

modular,

multi-chamber

shock tube/mild

(183 kPa) moderate

(213 kPa), severe

(295 kPa)

1–5, 7, 10, 14,

21, and

30 days

Single Supine vs. prone

position)

Motor, cognitive, and

behavioral) outcomes,

assessed via : rotarod,

anxiety learning, and

memory via active

avoidance procedure

Inflammation elevated in

tissue CCL, osteopontin,

MRP8, ED1, and GFAP at

different time points

(Continued)
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Table 1 | Continued

Reference Animal model/

device used-BOP

intensity

Time point

assessment

post injury

Repeats of blast

and time between

exposure

Additional

variables

studied

Behavioral

assessment

(if available)

Neuro, systemic, and other

organ-specific pathology/

biomarkers parameters

Koliatsos

et al. (50)

Mouse/helium multi

chamber shock

tube/high (25–45 psi),

low (2.1 psi)

3, 5 days

(biochem

testing) and

7–14

(behavioral)

Single Either Head or

Torso Covered

Rotarod, Y maze

open field social and

spatial recognition

memory and motor

deficits

Axonal swellings (injury), APP,

but degeneration staining

7–14 days after exposure

Kovesdi et al.

(149)

Rat/compression-

driven shock

tube/20.6 psi

15, 44,

66 days

(behavioral)

and 66 days

(biochemical)

Single Enriched

environment

(EEN)

contribution

Memory problems,

increased anxiety,

and depression;

improved spatial

memory in EEN

Axonal degeneration; elevation in

IL-6, IFNγ VEGF, and tau protein

levels; hippocampal GFAP and

DCX

de Lanerolle

et al. (53)

Swine/explosive blast

levels in three

scenarios: simulated

free field (35 psi),

high-mobility, vehicle

(65 psi), and building

setup (63 psi)

72 h and

2 weeks

Single Blast varied settings: blast tube,

high mobility; multipurpose

wheeled vehicle, and four-sided

structure

Little neuronal injury, fiber tract

demyelination, or intracranial

hemorrhage observed; increased

astrocyte activation; bulbs

positive for BAPP

Pun et al. (47) Rat/120 kg of

2,4,6-trinitrotoluene

(TNT)/48.9 kPa (7.1 psi)

or 77.3 kPa (11.3 psi) at

24 or 40 m

1, 4, and

7 days

Single Concrete block was placed

between the animals and the

explosive source at a distance

of 1.5 m from the animals

Cortical neurons were

“darkened” and shrunken with

narrowed vasculature (day 1, not

at 4–7 days); no Iba-1 change;

TUNEL-positive cells in the white

matter of the brain (day 1); an

increase in APP in the white

(acute axonal damage);

genomics analysis showed signs

of repair at day 4 and 7 post-blast

Reneer et al.

(151)

Rat/multi-mode shock

tube, the McMillan

blast device

(compressed air/

helium driven tube

mode, or

oxyhydrogen – RDX

explosives mode/ 100,

150, and 200 kPa)

3 min post

blast

Single Two overpressure

modes (air vs.

explosives),

Kevlar vest body

protection

Rats exposed to compressed

air-driven blasts had more

pronounced vascular damage

than those exposed to

oxyhydrogen-driven blasts of the

same peak overpressure

Risling et al.

(152)

Rat/blast tube with

pressure wave/130

and 260 kPa

2 h, 1, 3,

5 days, and

3 weeks

Three groups comparison – (1)

fixed no head acceleration forces;

(2) controlled penetration of a

2-mm thick needle; and (3)

high-speed sagittal rotation

angular acceleration

Diffuse axonal injury (DAI) in

penetration and rotation models;

genomics changes in the

expression in a large number of

gene families cell death,

inflammation, and

neurotransmitters in the

hippocampus (acceleration and

penetration injuries);

downregulation of genes

involved in neurogenesis and

synaptic transmission

(Continued)
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Table 1 | Continued

Reference Animal model/

device used-BOP

intensity

Time point

assessment

post injury

Repeats of blast

and time between

exposure

Additional

variables

studied

Behavioral

assessment

(if available)

Neuro, systemic, and other

organ-specific pathology/

biomarkers parameters

Rubovitch

et al. (93)

Mouse/open field

explosives ∼500 g

TNT detonation (1 m

elevated)/5.5 and

2.5 psi

30 days Mice in plastic

net 4 or 7 m; MRI

and DTI analysis

Significant decrease in

cognitive and

behavioral (Y maze;

hippocampal function

and spatial memory;

novel object

recognition task

Increased BBB permeability;

1 month post-blast; increase in

fractional anisotropy (FA); no

visible organ damage; and

elevated MnSOD2

Connell

et al. (158)

Female Guinea

pig/2.5-cm strips of

shock tubing/(23, 41,

and 64 kPa

30 min Ex vivo model of spinal cord

white; shock tubing (explosive

lining of 0.1 grain/foot composed

of tetranitramine and aluminum)

Nervous tissue compression, and

increased axonal permeability

Garman

et al. (54)

Rat/helium-driven

shock tube/35 psi

(4 ms)

24, 72 h and

2 week

Head exposure

with body armor

Increased blood–brain barrier

permeability; elevated APP, GFAP,

Iba1, ED1, and rat IgG.

Gyorgy

et al. (122)

Pig/compression-

driven shock

tube/∼20, 20–40,

and ∼40 psi

6, 24, 72 h

and 2 week

None Serum elevation of S100B, MBP,

and NF-H, but not NSE

Readnower

et al. (44)

Rat/air-driven shock

tube/120 kPa

3, 24 h and

5 days

Single None BBB breakdown: At 3 and 24 h post exposure; increase

in IgG staining in the cortex; brain oxidative stress:

(4-HNE) and (3-NT) were significantly increased at 3 h

post exposure and returned to control levels at 24 h

post exposure; and microglia activation: at 5 days

Cheng et al.

(159)

Rat/electric

detonator with the

explosive equivalent

of 400 mg TNT (100,

−400 kPa) (distance

of 5, 7.5, and 10 cm)

1, 2, 3, 5, and

7 days

Single Head orienta-

tion(frontal,

parietal, and

occipital head

exposure)

87% Rats developed

apnea, limb seizure,

poor appetite, and

limpness

Diffuse subarachnoid hemorrhage

and edema; cortical capillary

damage; and tissue water and

NSE

Cai et al.

(160)

Rat/5 g compressed

dynamite stick

(75 cm from chest)

3, 6, 12 h and

1, 2, 3, 7 days

Single Blast vs.

burn-blast

Serum neutrophil elastase (NE);

water lung content

Long et al.

(10)

Rat/compression-

driven shock

tube/126 and 147 kPa

24 h Single Kevlar – protective

vest (thorax –

abdomen)

MWM testing beam

walking and spatial

navigation(disrupted

neurologic

neurobehavioral

performance)

Heart rate, MAP, brain

axonopathy, and widespread fiber

degeneration

Säljö et al.

(42)

Rat shock tube/10,

30, and 60 kPa (4 ms)

0.5, 3, 6, and

10 h and 1, 2,

3, 5, and

7 days

Single Morris water maze: impaired

cognitive function: 48 h post

injury

Dose-dependent rise in

intracranial pressure ICP in rats

exposed to blast and an

increasing time delay in elevation

with decreasing intensity of

exposure. the ICP returned to

control levels after 7 days

(Continued)
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Table 1 | Continued

Reference Animal model/

device used-BOP

intensity

Time point

assessment

post injury

Repeats of blast

and time between

exposure

Additional

variables

studied

Behavioral

assessment

(if available)

Neuro, systemic, and other

organ-specific pathology/

biomarkers parameters

Säljö et al.

(41)

Pig – Howitzer (9

and 30 kPa);

Bazooka (42 kPa);

automatic rifle

(23 kPa)

3 and 7 days Three (exposure

in air; 15 min

intervals) two

(exposure under

water; 6–7 min)

Comparison of pressure time of

different blast overpressure in: air,

underwater, and localized blast

In pig study: small parenchymal and

subarachnoid hemorrhages,

predominately in the occipital lobe,

cerebellum, and medulla oblongata;

no observation in rat study

Rat/shock tube

(8.7 kPa)

Cernak

et al. (45)

Rat/large-scale BT-I

shock

tube/3389 kPa and

small-scale BT-III

shock tube

(440 kPa)

3, 24 h and

5 days

Single Protected head

vs. whole body

exposure

Deficits in active

avoidance task

Swellings of neurons, glial reaction,

and myelin debris in the

hippocampus, laminal body and

vacuoles formation (electron

microscope)

B APP, B-amyloid precursor protein; GFAP, glial fibrillary acidic protein; AQP-4, aquaporin-4; MnSOD or SOD2, manganese superoxide-dismutase l; UCH-L1, ubiq-

uitin C-terminal hydrolase; vWF, von Willebrand factor; NA, not applicable; NSE, neuronspecific enolase; Mwm, Morris water maze; CK-BB, brain-specific creatine

kinase; MAP, mean arterial pressure; H&E, hematoxylin and eosin; 4-HNE, 4-hydroxynonenal; 3-NT, 3-nitrotyrosine; TNT, 2,4,6-trinitrotoluene; RDX, oxyhydrogen; ms,

milliseconds; MMP8, matrix metalloproteinase 8; BOP, blast over pressure; NF-H, neurofilament-heavy chain.

evoked by BOP are different than those described following acute
models of brain injury (i.e., acceleration–deceleration injury or
direct impact) (10, 55–58) highlighting at the complex pathways
involved. Elegant work with experimental data by Cernak et al.
has shown that primary closed non-impact blast injury-induced
neurotrauma involves the interaction of cerebral, local, and sys-
temic responses (31, 32, 45, 48). These experimental data seem to
highlight the fact that blood vessels vasculature (venous as well as
arterial) may be acting as a conduit for blast energy transfer to the
brain contributing to blast pressure-induced fiber degeneration.

In non-blast brain injury, the primary injury occurs as a con-
sequence of mechanical force due to direct contusion of the brain
against skull’s rough interior or due to shearing and stretching
forces against the brain tissue (31, 59). This may also involve vas-
cular injury including subdural hematoma from ruptured blood,
brain edema from elevated permeability of cerebral vasculature
along with reduced blood flow due to intra-cranial pressure or
infarction (59). Taken together, these complications represent the
secondary and tertiary phases of blast injury.

Cernak et al. assessed the contribution of body-central ner-
vous system (CNS) cross talk involved in blast-induced trauma
related to the activation of autonomous nervous system and the
neuroendocrine–immune system which contributes significantly
to the mechanism of blast injury. Inflammation has been proposed
to play an important role in the pathogenesis of long-term neu-
rological deficits due to blast (31). Experiments using rigid body-
or head-protection in animals subjected to blast showed that head
protection failed to prevent inflammation in the brain while body
protection was able to alleviate blast-induced brain functional
impairments highlighting the role of body-CNS interaction (31).

Cernak et al. studies have demonstrated that blast exposure
(mild-to-moderate) induces the activation of autonomous ner-
vous system in rabbit exposed to BOP. Distinct pathological

components in the brain including impaired energy metabo-
lism, and increase in the sodium–potassium ATPase measured
in the brainstem and erythrocyte membranes were coupled with
edema formation (48, 60). In addition, to link systemic alter-
ation and cerebral inflammation to long-term neurological deficits
caused by blast, migration, and accumulation of polymorphonu-
clear leukocytes as key inflammatory markers of host response
were assessed after helium-driven shock tube delivering mild blast
injury (103 kPa). In vivo real time imaging of myeloperoxidase
(MPO) inflammatory enzyme activity of activated phagocytes was
conducted on three groups of rats: (1) whole-body blast; (2) blast
with “body armor,” (chest and abdomen) with the head exposed;
or (3) blast with “helmet” as head protection (neck and skull)
while the rest of the body exposed. One day post-blast exposure,
MPO activity was observed in the gastrointestinal tract and the
diaphragmal mediastinal parts of the lungs (61).

In the brain, this activity was observed at 7, 14, and 30 days
post-blast injury. Of interest, MPO increase in the brain was
independent of head protection at 14 and 30 days post-injury
suggesting chronic inflammation and highlighting the role of
systemic origin of the inflammatory activation mediating brain
injury which highly reflects on the role of the vagal afferent
neurons mediating gut–brain communication. Taken together,
the results of this study clearly demonstrate the importance
of the indirect, i.e., blast–body interaction as well as the deci-
sive role of autonomous nervous–neuroendocrine–immune sys-
tems interaction in the pathogenesis of blast-induced brain
trauma (31).

Similarly, Chavko et al. assessed the theory of the indirect effect
of kinetic energy transfer via the blood vessels and the surround-
ing cerebrospinal fluid (CSF) to the CNS (62). In their work, they
evaluated the contribution of direct versus indirect transfer and its
correlation to the head orientation and the surface area exposed.
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Brain biomechanical responses involving pressure inside the brains
were assessed in rats exposed to low blast exposure (35 kPa) and
positioned in three different orientations with respect to primary
blast wave. These positions included: frontal exposure (i.e., head
facing blast) right side exposed and head positioned away from
blast. Frontal exposures showed higher traces of pressure ampli-
tude and longer duration, suggestive of dynamic pressure transfer
(62). On the other hand, the pressure wave inside the brain in the
head facing away was similar to hydrodynamic pressure within the
brain. It has become more evident that the primary pressure wave
can induce functional, biochemical, and morphological alterations
in different ways than those observed in other types of traumatic
injuries (penetrating head injury).

MILD TBI AND NEUROPSYCHIATRIC IMPAIRMENTS IN
BLAST INJURY AND PTSD COMORBIDITY
Another significant aspect of blast injury is psychological health
which is highly affected. Many injured troops returning from war
zones are afflicted with blast-induced BI experiencing post con-
cussive symptoms (PCS), characterized by memory and cognitive
disruption, irritability, anxiety, and fatigue (63). Among these with
mTBI, PCS can persist long after exposure leading to major func-
tional impairments (64). Unlike casualties suffered from moderate
to severe TBI patients diagnosed with mTBI present with no appar-
ent structural injury and are conscious with typical symptoms
including headache, confusion, dizziness, memory impairment,
and behavioral changes.

The nomenclature of mTBI has been a challenge for both civil-
ian and military settings as described by Rosenfeld et al. (65).
mTBI, according to the DoD, involves head trauma with loss of
consciousness for <30 min or exhibiting post-traumatic amne-
sia for <24 h (66). Patients with mTBI have a Glasgow coma
score of 13–15 usually experiencing poor unspecific diagnostic
symptoms involving headaches, cognitive dysfunction, etc. inde-
pendent whether mTBI is blast related or not. It is of high interest
to deliver accurate diagnosis for such condition due to the overlap-
ping symptoms mistaken with neuropsychiatric disorders. This in
contrary to the moderate and severe blast-related TBI which have
9–12 and 3–8 Glasgow coma score respectively and require spe-
cial treatment as they exhibit intra-cranial hemorrhage and brain
edema (2, 67, 68). Patients with blast-related severe TBI are charac-
terized with delayed vasospasm, and pseudoaneurysm formation
requiring early intervention (2, 67). Severe blast-related TBI cases
are usually due to the primary and secondary (penetrating injury)
phases of blast and would require strict clinical guidelines that are
similar to those in non-blast-related severe TBI cases (65).

Mild traumatic brain injury is the most frequent form of brain
trauma among deployed military populations (69). It has been
shown that repeated exposure to multiple low levels of blast injury
account for the majority of mTBIs cases. These victims remain
conscious and often are redeployed without proper diagnosis
and treatment while they undergo severe mental stress (70, 71).
The heterogeneous presentation of BOB injuries among mTBI
patients depends on several factors (similar to what is observed in
experimental blast injury studies) including: device composition,
environment (e.g., presence of intervening protective barriers),
distance from blast, and the use of protective shields, etc. (11, 72).

Primary blast component of blast injury is among the main
contributors in developing neuropsychiatric impairments associ-
ated with the primary phase profile (30, 73). There had been an
urgent quest to for future research examining the impact of blast
concussion (particularly recurrent concussion) on neuropsycho-
logical performance. Neuropsychological evaluation of cognitive
status post-blast exposure can be challenging for a variety of rea-
sons. In particular, clinicians may have difficulty assessing: true
concussion severity due to limited knowledge of the blast events
which may be reflective of self-report months or years post the
event(s) occurrence. In addition, the lack of several features of
the blast environment may complicate the accuracy of the “blast
self-report” involving distance from the blast, concussion sever-
ity which these are often unavailable from primary records (74).
Thus, the lack of reliable information pertaining to injury charac-
teristics makes it challenging to determine the course of cognitive
recovery and rehabilitation. Usually, concussion severity is usually
determined based on current PCS on screening instruments which
are not necessarily specific to concussion and can be shared with
depression or PTSD or even these PCS may be reflective of PTSD
itself as elegantly discussed by Nelson et al. (74). Of interest, Hoge
et al. reported that more than 40% of soldiers who experienced
symptoms associated with mTBI (loss of consciousness) met the
criteria for PTSD (1). This same study suggested that increased
rates of health problems reported by soldiers exposed to mTBI are
mediated mainly via neuropsychiatric disorders such as PTSD or
depression, rather than mTBI (1).

Post-traumatic stress disorder, a psychiatric condition that
arises after exposure to a life threatening experience such as con-
ditions experienced in combat war zone with or without blast
exposure as a form of mTBI (75). This, by itself, poses a challenge
in the clinical diagnosis in veterans who are exposed to mTBI since
the symptoms may overlap between these conditions exacerbated
by other comorbid conditions such as drug abuse or other neu-
ropsychiatric complications (75, 76). A Rand Corporation study
indicated that ∼20% of returning service personnel (∼300,000)
have had a TBI and that there was substantial overlap of TBI with
the occurrence of PTSD (77).

Psychological stress resulting from exposure to blast wave leads
to an altered psychological health status which contribute signif-
icantly to the development of PTSD (52, 70). However, a major
recurring question arises-due to the similarity of blast injury clin-
ical symptoms and those of PTSD, is how do we clinically differ-
entiate between these two conditions and other neuropsychiatric
conditions?

Post-traumatic stress disorder is deemed an effect of psycho-
logical and emotional determinants/trauma (i.e., event associated
with threat of harm or loss of life to which the individual responds
with extreme fear or horror), while mild bTBI is a result of
destructive biomechanical forces acting on the brain (78). There is
substantial overlap in symptom profile associated with these two
conditions (1). For instance, impaired concentration, increased
irritability, insomnia, and lack of interest are among the symptoms
shared in the diagnosis for mTBI and PTSD (79). Additionally,
blast TBI is a well-documented risk factor for the development of
PTSD (80–82). The association between the two conditions is fur-
ther supported by structural and functional neuroimaging studies
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showing similar abnormalities in patients with blast-related mTBI
as well as in those with PTSD (83–86).Such overlap and link
determines and contributes to several ambiguities emphasizing
the urgent need for finding reliable objective test to make an accu-
rate diagnosis and to improve the understanding of the nature of
the interaction and pathophysiology of PTSD and mild bTBI.

Clinical evaluation of a blast-exposed personnel can be chal-
lenging as symptoms may range from neurologic problems, psy-
chiatric, or emotional difficulties which may be attributed to blast
or due to other psychiatric disorder where in several instances
the occurrence of TBI and PTSD may be suggested (81, 87). For
neurological assessment in TBI, similar criterion-based method-
ology to that in PTSD has been used rendering a specific diagnosis
to either condition or even to those with both conditions (PTSD
or TBI-exposed) uncertain (87–89). Thus, in many cases, clinical
diagnosis may result in high rate of inaccurate PTSD diagnosis in
persons exposed to TBI (87).

Based on the above, it is of high interest that an accurate
detailed knowledge of blast injury biophysics and injury thresh-
old may assist clinicians in better diagnosis (87). This includes
expanded neuropsychological studies of blast injury (both exper-
imental and clinical) to identify accurate, specific and sensitive
anatomic, pathophysiologic, and behavioral responses to blast
injury as discussed by Bass et al. (87). This is complicated by the
complex nature of blast injury involving several combinations of
primary or other phases of blast injury (secondary, tertiary, and/or
quaternary blast).

ANIMAL MODELS OF BLAST INJURY
Over the last several decades, a number of experimental ani-
mal models have been implemented to study the mechanisms
of blast wave impact which included rats, mice, ferrets, rabbits,
and larger animals involving sheep and swine (33, 90–97). These
experimental models exhibited heterogeneous outcomes and even
contradictory findings which have been attributed to several fac-
tors. A summary of the recent and major blast injury studies (2001,
2009–2013) is summarized in Table 1. In addition, there is a lack
in the reproducibility of blast injury models and a need to develop
blast injury generators that precisely control blast injury parame-
ters similar to other well-defined acute brain injury models such
as (controlled cortical impact (CCI) and the fluid percussion (FP)
which have been well characterized with predictable neurolog-
ical, histological, physiological, and behavioral outcomes. Thus,
the need of establishing well characterized reproducible models
(animal and blast framework) is vital to identify relevant path-
ogenic pathways involved that can assist in the development of
effective diagnostic, prognostic blast specific-biomarkers (panel of
biomarkers) (98). Several blast injury instrumentations are avail-
able which include: compressed gas-driven shock tubes which
are driven by air, helium, or nitrogen gas which may result in
unrealistic duration of the overpressure wave leading to an in-
appropriate scaling between species (humans and animal models;
Table 1) (99).

CHALLENGES IN ANIMAL MODELS OF BLAST INJURY
There are limited available basic and translational studies rele-
vant to the mechanisms of primary blast-induced brain injury.

A better understanding of injury mechanisms is required for the
development of protection and treatment options and biomarker
identification for prognosis.

Several animal models have been proposed at translating intra-
cranial biophysics and pathophysiology experienced in human
blast exposure (87). These models have a number of limitations
including: neuronal tissue biomechanical properties, anatomical
differences as well as physiological differences (87). In addition,
other factors that are challenging for proper scaling between
experimental and human blast injury are associated with neu-
roanatomy and physiology involving: size of different brain struc-
tures, neural mass (brain size, head, body, position, and architec-
ture), as well as body fluid composition (thickness, volume, and
components) (87). Other key factors that need to be considered
are the potential for exposure scaling, consistency in experimental
protocols, frequency of exposure, and overpressure levels, which
should be mimicking real life exposure or at least translate equally
to human exposure (Figure 1). Other external factors include:
distance from the blast, the use of protective shields and the
presence or absence of noise stressors, etc. (12) (Figure 1). In
real life situation, soldiers are often deployed several times and
exposed to numerous psychological stressors such as blast noise
with or without blast injury (87). Such conditions can induce
adverse physiological changes leading to post-traumatic symp-
toms without sustaining any prior physical injury (discussed pre-
viously). Taken together, these challenging factors contribute to
the difficulty of truly modeling blast injury in animals result-
ing in an in-appropriate neuropathological and neurobehavioral
assessment.

BLOOD–BRAIN BARRIER AND SECONDARY INJURY IN
BLAST OVERPRESSURE
Traumatic brain injury leads to progressive pathophysiological
changes resulting in a reduction in cerebral blood flow and a
decrease in tissue oxygen levels leading to ischemia, BBB disrup-
tion with brain edema (100). Death of resident cells of the CNS
has traditionally been accepted to take place in two phases: an
early necrotic and an on-going long-term apoptotic phase. Sec-
ondary brain injury develops in minutes to months following the
original insult, progressively contributing to the worsened neu-
rological impairment. This complex phenomenon is defined by
the activation of various neurochemical cascades and the systemic
physiological responses which manifest following the traumatic
event (101).

At the cellular level, the biphasic nature of secondary injury
is mediated by numerous disturbed pathways which include: (a)
excitotoxicity caused by an excess of the neurotransmitter gluta-
mate; (b) free radical generation by mitochondrial dysfunction,
causing damage to proteins and phospholipid membranes of neu-
rons and glia; and (c) the neuroinflammatory response which takes
place due to both CNS and systemic immunoactivation. Thus, dif-
fuse brain injury mediated immune responses, BBB alterations,
and neuroinflammation seem to play an important role in the
pathology of BOP. The increase in BBB permeability was shown
to recover by the third day after the blast exposure (44, 102). Fol-
lowing blast injury, loosening of the vasculature and perivascular
unit is mediated by the activation of matrix metalloproteinases and
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FIGURE 1 | Challenges associated with “experimental blast injury”
modeling real life blast exposure. Several factors contribute to the
heterogeneous behavioral, neuropathological, and systemic profile observed
in the several experimental blast injury models. Even with models using the
same injury parameters (animal model, blast shock tube, and intensity levels,
etc.); reproducing the same results is rather challenging (refer toTable 1).
These challenging variables are summarized in the following: (A) various
animal models and interspecies variation, (B) blast injury frequency and

intensity levels ranging from single blast up to five blast with some
overpressure intensities reaching 515 kPa (C) the heterogeneous selection of
biochemical/behavioral testing conducted and the several time points
selected (hours to few months) (D) the non-standardized blast and not well
characterized blast injury instrumentation (E) technical variation inherent to
experimental design related to animal setting, body armor, head protection,
and the distance from the blast. These factors contribute to the variable
outcome observed in published work in blast injury field.

water channel aquaporin-4, promoting edema, enhanced leakiness
of the BBB, and progression of neuroinflammation and neuronal
degeneration (102). Although many studies demonstrate a simi-
lar pathophysiologic progression as the conventional TBI, a recent
study reported that cerebrovascular injury due to primary blast is
distinct from it; suggesting that BBB disruption in blast injury was
an acute one, not resulting from a delayed inflammation as it is in
the conventional ones (103).

Recent work from our laboratory has shown that blast injury
leads to oxidative stress and autonomic dysfunction (104). Gen-
eration of free radicals and hypoxia leads to the failure of the
Na+, K+-ATPase, a membrane-bound enzyme required for cel-
lular transport. Dysfunction of this pump is a common fea-
ture in CNS pathologies related to ischemic conditions and
TBI. The activity of Na+, K+-ATPase pump is very sensitive
to free radical reactions and lipid peroxidation. Reductions in
this activity can indicate membrane damage indirectly. Thus,
Na+, K+-ATPase is clearly down regulated under low O2 con-
ditions which in turn triggers brain edema, enhances the loos-
ening of tight junctions and causes BBB breakdown. MPO
activity, an index for neutrophil infiltration, also increases as
an evidence of inflammation (105). In summary, failure of
pumps, cerebral edema, BBB permeability, neuroinflammation,
and oxidative damage are among the major mechanisms that play
important roles in the development of secondary brain injury
following TBI.

TRAUMATIC BRAIN INJURY AND AUTONOMIC
DYSFUNCTION
One deleterious consequence of brain injury is autonomic nervous
system dysregulation and/or dysautonomia. Autonomic nervous
system dysfunction has been documented after TBI but is not well
understood. Ninety percent of TBI patients demonstrate signs of
autonomic dysfunction during the first week after injury, with
about one third of the patients developing longer lasting auto-
nomic dysfunction. Autonomic dysregulation is characterized by
distinct changes in cardiovascular hyperactivity, sleep function,
and specific biomarkers of neural damage. System dysregulation
might lead to a range of comorbidities such as hypertension,
endothelial dysfunction, and end-organ perfusion abnormali-
ties. Specifically, TBI disruption of autonomic function most
often results in sustained sympatho-activation. This sympathetic
hyperactivity after TBI remains poorly understood, although sym-
pathetic hyperactivity likely contributes to the high morbidity
and mortality associated with TBI. Sympathetic hyperactivity
contributes to systemic stress, including neuroinflammation and
oxidative stress in the autonomic nervous system. Eventually these
disturbances lead to cardiovascular dysfunction (31, 32, 106) and
sleep complications (107). Systemic stress is associated with acti-
vation of the hypothalamic-pituitary-adrenal (HPA) axis (108)
and the hypothalamic sympatho-adrenal medullary axis (109).
It is known that TBI activates the HPA, however little is known
regarding the TBI-induced activation of the sympatho-adrenal
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medullary axis, and there are limited therapeutic options to treat
this sympatho-activation.

We recently demonstrated selective biochemical markers of
autonomic function and oxidative stress in male Sprague Dawley
rats subjected to head-directed overpressure insult (104). There
were increased levels of tyrosine hydroxylase (TH), dopamine-
β hydroxylase (DβH), Neuropeptide Y (NPY) along with plasma
norepinephrine (NE). In addition, blast-induced injury signifi-
cantly elevated TH in the nucleus tractus solitarius (NTS) of the
brain stem while AT1 receptor expression and NADPH oxidase
activity, a marker of oxidative stress, was elevated in the hypo-
thalamus suggesting that single BOP exposure results in increased
sympatho-excitation. The mechanism may involve the elevated
AT1 receptor expression and NADPH oxidase levels in the hypo-
thalamus. Taken together, such effects may be important factors
contributing to pathology of brain injury and autonomic dysfunc-
tion associated with the clinical profile of patients following BOP
exposure (104).

BLAST BRAIN INJURY AND OXIDATIVE STRESS
The primary effects of BOP have been generally attributed to its
external physical impact on the body, causing internal mechani-
cal damage. The pathophysiological effects on hollow organs have
been extensively studied, but little attention has been given to
the biochemical manifestations and molecular mechanism(s) of
injury occurring in the brain after BOP exposure. Due to the
biochemical nature of BOP compared to physical nature of TBI
(impact or penetrating injury), subtle molecular changes such as
free radical-mediated oxidative stress occur and contribute to the
manifestation of BOP-induced brain injury (40, 44, 110). Previ-
ous studies have demonstrated that reactive oxygen species such as
the superoxide radicals and nitric oxide can form peroxynitrite, a
powerful oxidant that impairs cerebral vascular function following
blast-induced brain injury (46, 111). Cernak et al. reported that
bilateral vagotomy successfully mitigated bradycardia, hypoten-
sion, and apnea caused by blast; prevented extreme metabolic
alterations and brain edema; but failed to eliminate oxidative stress
in the brain due to blast (48). More recently, it was reported that
the induction of oxidative and nitrosative damage leads to cere-
brovascular inflammation in an animal model of mTBI induced
by primary blast (102). Brain-specific oxidatively modified pro-
tein markers that are indicative of biochemical/proteomic and
functional changes occurring post-BOP need to be considered.
Insufficient published data are available to describe the long-term
effects of TBI on central noradrenergic systems, particularly on
neuroplastic adaptations within numerous targets of central nora-
drenergic projections. In addition, understanding the etiology of
these changes may shed new light on the molecular mechanism(s)
of injury, potentially offering new strategies for treatment.

BLAST INJURY BIOMARKERS IDENTIFICATION AND
LIMITATIONS
The widespread recognition of the brain vulnerability to blast
exposure and inadequate approaches to diagnose blast-related TBI
led to design an mTBI Diagnostics Workshop (66) and the founda-
tion of the Demographics and Clinical Assessment Working Group
of the International and Interagency Initiative (112) to assess the

current diagnostics technologies that can be used to detect brain
injury following mTBI and BOP. One of the major recommen-
dations was the use of biomarkers to supplement functional and
imaging-based assessments for significant improvements in the
diagnosis and characterization of the effects of blast exposure on
brain and for distinguishing bTBI from other neuropsychiatric
disorders including PTSD.

Current available imaging modalities, such as computed
tomography (CT) and magnetic resonance imaging (MRI), pri-
marily detect major structural changes in the brain (113); how-
ever, their utility has not been fully optimized following blast-
related mTBI. More advanced neuroimaging techniques such
as DTI, while have shown abnormalities post-blast-related TBI
(114), have not been able to show consistent relationship to
mild bTBI diagnosis (115). Additionally, there is no consensus
on the ideal scan method or timing. Therefore, multiple stud-
ies have been conducted to identify ideal sensitive, inexpensive,
non-invasive biochemical markers that can offer diagnostic and
prognostic information, and reflect bTBI pathogenic mechanisms
and pathology (116, 117).

To date, several biomarkers such as GFAP (118), UCH-L1 (119),
and S-100ß(120) have been identified as potential excellent “can-
didates” of blast TBI. However, a limited number of studies did
specifically evaluate biochemical brain damage markers in the set-
ting of blast-induced brain injury (43, 121). In one study by Svetlov
et al. they assessed temporal pattern of serum putative biomarkers
that have been characterized in acute TBI including GFAP, NSE,
and UCH-L1 in brain tissue, CSF, and blood. Serum biomarkers
levels distinctively increased 24 h post-blast, followed by a decline
thereafter, indicating a potential use to assess blast-induced brain
damage acutely after injury (33). Supporting these observations,
Gyorgy and colleagues, using reverse phase protein microarray
(RPPM) technology to determine serum protein levels, showed
a rise in S-100B, MBP, NF-H, and NSE protein levels in serum
after injury in a large-animal model of bTBI. Remarkably, serum
NF-H was reported to increase in an overpressure dose-dependent
manner reflecting the extent of the damage caused by bTBI (122).

More recently, Balakathiresan et al. proposed microRNAs as
novel serum diagnostic biomarkers of bTBI. They investigated
microRNA signatures in CSF and serum of rats exposed to BOP
injury. Specifically, microRNA let-7i was elevated in both CSF and
serum post-blast wave exposure and was considered as an ideal
candidate biomarker of brain injury (123). Importantly, microR-
NAs can be considered the third generation molecular signature
after proteomics and genomics studies (123). Elevated concentra-
tions of serum vascular endothelial growth factor, associated with
neuroinflammation and vascular pathology in blast-related TBI
have also been reported (124).

Studies investigating biomarkers of mTBI in humans continue
to be limited as illustrated in one study by Ingebrigtsen and
Romner (125). In their research paper, MEDLINE database was
surveyed for biochemical serum markers specific to mild head
injuries. Three serum markers including creatine kinase isoen-
zyme BB (CKBB), NSE, and S-100B were evaluated. Of these
markers, S-100B protein was proposed as the most promising
marker for mTBI while the other two lacked specificity, sensi-
tivity, or injury correlation (125). In an another study by Blennow
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et al. military personnel exposed to explosions or repeated firing
of heavy weapons did not show any evidence of brain damage as
assessed by CSF biomarkers. (126). Conversely, the New Zealand
Breacher Study demonstrated a degree of brain perturbation as
assessed by serum biomarker levels, neurocognitive performance,
and self-reported symptoms in members of the New Zealand
Defense Force exposed to repeated low-level blast (127). Taken
the controversial results of these different studies, these findings,
in fact, stimulate the need for further research to evaluate the use-
fulness of biochemical markers after repeated exposure of different
blast levels.

Interestingly, recent experimental and human studies are sug-
gesting a link between blast exposure and chronic traumatic
encephalopathy (CTE), a tau protein-linked neurodegenerative
disease (128–131). To date, no biofluid marker has been shown
to assist with diagnosis of CTE. However, future studies to identify
biomarkers tracking chronic processes and on-going degeneration
and able to predict the development of neurodegenerative diseases
of bTBI are of a critical need.

FUTURE RECOMMENDATIONS
For long, TBI has been considered one of the “signature injuries”
of current conflicts in Iraq and Afghanistan which attracted
concern from the DoD, Department of Veteran Affairs, and
National Institutes of Health, encouraging combined efforts to
understand brain injury pathophysiology and identify therapeu-
tics and assess different approaches for rehabilitation platforms
as well as deciphering novel blast specific biomarkers (7, 11).
Better understanding of the biophysics of blast shock injury
and its body propagation to the neural tissue may enhance the
development body armor protection. Given the complexity of
blast TBI pathobiology, the development of an objective, spe-
cific, and quantifiable panel of biomarkers is highly needed for
the purpose of providing better monitoring of the real time
injury mechanism and progression post-blast exposure (121, 122,
132, 133). An important consideration is that a panel combin-
ing different biomarkers be assembled that can establish the
nature and severity of the head injury and reflect the con-
tributing pathogenic mechanism(s) of the acute phase as well
as the neurodegeneration and recovery (rehabilitative stages).
Additionally, the integration of such bTBI diagnostic markers
into routine clinical care will require a thorough validation and
extensive standardization protocols coupled with well-defined
recommendations for immunoassay and different measurement
technologies.

A non-trivial and urgent issue in biomarker-panel design will
be determining an appropriate instrument platform that is suited
to measure these biomarker changes. At present, biomarkers are
analyzed in clinical laboratories using closed, high throughput
immunoassay analyzers allowing for high performance in terms
of accuracy and precision which are suitable for major hospitals.
Future recommendation is to focus research on the develop-
ment of a miniaturized point-of-care (POC) system, which can be
transported in the “field” (military and civilian) providing accu-
rate measurements at a reasonable cost with short turnaround
time (116).
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