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Accumulating clinical- and scientific
research-based evidence is driving our
increased awareness of the significance
of the human microbiome (HM) to the
healthy and homeostatic operation of the
human central nervous system (CNS).
HM communities occupy several different
but distinct microbial ecosystems on and
within the human body, including nasal,
oral, and otic cavities, the surface of the
skin and the urogenital and the gastroin-
testinal (GI) tracts. The complex symbiotic
inter-relationship between the GI-tract
microbiome and its host is strongly influ-
enced by diet and nutrition, and when
optimized can be highly beneficial to food
digestion, nutrient intake, and immune
health (1–6). For example, dietary com-
position ultimately affects the structure,
organization, function, and speciation of
the HM occupying the GI tract, in part by
supplying multiple substrates for microbial
metabolism. Typical Western diets contain-
ing high fat–cholesterol, low amounts of
soluble and insoluble fiber, and sugar- and
salt-enrichment not only impart deleteri-
ous nutrition but also dietary constraints
on the HM. This in turn impacts the sup-
ply of microbiome-generated molecules
absorbed into the systemic circulation for
transport into the extensive neurovascula-
ture of the CNS. This short communication
will focus on emerging ideas concerning
the contribution of the GI-tract micro-
biome to human neurological disease with
emphasis on Alzheimer’s disease (AD)
wherever possible.

It is the HM of the GI tract that con-
tains the largest reservoir of microbes in

humans, containing about 1014 microor-
ganisms from at least 1000 distinct
microbial species, and outnumbering
human somatic cells by about 100 to
1 (1, 7). The total HM has been esti-
mated to encode about 4 × 106 genes
versus the ~26,600 genes of the human
host, so again the quantity of HM genes
outnumbers host genes in the order of
about 150 to 1 (4). Of the 55 bacterial
divisions currently identified, only two are
prominent in mammalian GI-tract micro-
biota, including the anaerobic Bacteroidetes
(~48%) and Firmicutes (~51%), with the
remaining 1% of phylotypes distributed
amongst the Proteobacteria, Verrucomicro-
bia, Fusobacteria, Cyanobacteria,Actinobac-
teria, and Spirochetes, with various species
of fungi, protozoa, viruses, and other
microorganisms making up the remainder
(http://www.genome.gov/pages/research/
sequencing/seqproposals/hgmiseq.pdf ).
Interestingly, microorganisms making up
the smallest proportion of the HM seem
to have a disproportionately large effect
on host health and disease (see below). Of
all GI-tract microbiota, bacterial den-
sities of 1011–1012/ml are the highest
recorded density in any known micro-
bial ecosystem of any living organism
(1, 4, 7–10). There is currently expand-
ing interest in the ability of these high
density GI-tract bacteria to influence host
innate-immune, neuromodulatory-, and
neurotransmission-functions (3, 4, 11–14).
Established pathways of GI–CNS commu-
nication and mutualism currently include
the autonomic nervous system (ANS),
the enteric nervous system (ENS), the

immune system, and the neuroendocrine
system (15–21). Remarkably, neuronal sig-
naling pathways along this bidirectional
GI–CNS axis remain incompletely under-
stood despite their important roles: (1) in
coordinating metabolic-, nutritive-, and
homeostatic-functions, and (2) in their
functional disruption in chronic diseases
such as anxiety, autoimmune-disease, dia-
betes, metabolic-syndrome, obesity, and
stress-induced and progressive neuropsy-
chiatric diseases including AD (3, 11, 12,
20, 22–24).

Here we list six specific, highly illus-
trative examples and recent insights into
the interactive nature of the HM with a
healthy, homeostatic CNS, and examples of
a dysfunctional or altered HM contribu-
tion to the development of age-associated
neurological disease:

(1) studies of the ENS in germ-free
“gnotobiotic” mice, i.e., those missing
their microbiome, indicate that com-
mensal GI-tract microbiota are criti-
cally essential for membrane electri-
cal characteristics, including ion fluxes,
action potentials, and GI-tract sen-
sory neuron excitability, thus pro-
viding a potential mechanistic link
for the initial exchange of signal-
ing information between the GI-
tract microbiome and the ANS, ENS,
CNS neuroimmune–neuroendocrine
systems (4, 5, 20, 23, 25);

(2) GI-tract-abundant Gram-positive fac-
ultative anaerobic or microaerophilic
Lactobacillus, and other Bifidobac-
terium (Actinobacteria) species such
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as Lactobacillus brevis and Bifi-
dobacterium dentium are capable of
metabolizing glutamate to produce
gamma-amino butyric acid (GABA),
the major inhibitory neurotransmit-
ter in the human CNS (26). Increased
GI-tract GABA appears to corre-
late with increased CNS GABA lev-
els, but the systemic pathways that
contribute to this gut–brain linkage
require additional study (3, 26). In
CNS dysfunctions in GABA-mediated
neuromodulatory and neurotransmis-
sion functions have been linked to
the development of anxiety, behav-
ioral deficits, epilepsy, defects in synap-
togenesis, depression, and cognitive
impairment including AD (16, 17, 23,
27–29). Interestingly, epileptic activi-
ties including complex partial-seizures
and non-convulsive seizures are com-
monly associated with AD, especially
in its early stages, but the contribu-
tion of GI-tract microbiome to epilep-
tiform events via GABA modulation is
not well understood (30);

(3) the secreted, dimeric, 238 amino
acid brain-derived neurotrophic fac-
tor (BDNF) essential in the mainte-
nance and survival of neurons, has
pleiotropic effects on neuronal devel-
opment, differentiation, synaptogen-
esis, and the synaptic plasticity that
underlies neuronal circuit formation
and cognition, and has been found
to be decreased in brains and serum
from patients with anxiety, behavioral
defects, schizophrenia, and AD (27,
31, 32). Interestingly, mice deficient
in BDNF have altered development
of GI-tract innervations including the
vagus nerve, which normally serves as
a major constitutive, modulatory com-
munication pathway across the GI–
CNS axis (33, 34). In experimental
infection models known to lead to sig-
nificant alterations in the microbiota
profiles, BDNF expression was found
to be reduced in the hippocampus
and cortex of germ-free “gnotobiotic”
mice, and the reduction in the expres-
sion of BDNF was found to specifi-
cally associate with increased anxiety
and progressive cognitive dysfunction
(20, 31, 32);

(4) glutamate is the most abundant exci-
tatory neurotransmitter in the human

CNS; the N -methyl-d-aspartate
(NMDA) glutamate receptor, a CNS-
enriched transmembrane sensor that
regulates synaptic plasticity and cog-
nition has some intriguing and poten-
tially direct interactions with the HM;
for example, the NMDA-, glutamate-
targeting, glutathione-depleting, and
oxidative-stress-inducing neuro-
toxin β-N -methylamino-l-alanine
(BMAA), found elevated in the
brains of patients with amyotrophic-
lateral sclerosis (ALS), the Parkinson-
dementia complex of Guam, and
AD, has been hypothesized to be
generated by Cyanobacteria of the
GI-tract microbiome, and anxiety,
stress, chronic intestinal inflamma-
tory disease, or malnutrition may
further induce BMAA generation to
ultimately contribute to neurological
dysfunction (13, 35). Interestingly,
BMAA, a neurotoxic amino acid
not normally incorporated into the
polypeptide chains that constitute
brain proteins, has been linked with
intra-neuronal protein misfolding,
a hallmark feature of the amyloid
peptide-enriched senile plaque lesions,
and resultant inflammatory neurode-
generation, that characterize AD,
ALS, PD, and prion disease (21, 23,
36). These and other HM-resident
Cyanobacteria-generated neurotoxins
including saxitoxin and anatoxin-α
may further contribute to neurologi-
cal disease, especially over the course
of aging when the intestinal epithe-
lial barrier of the GI tract becomes
significantly more permeable (13, 37);

(5) the HM not only secretes nutritive
molecules, including essential vita-
mins of the B and K group, but
also release molecular factors that may
potentially modulate or alter systemic-
and CNS-amyloidosis, CNS neuro-
chemistry, and neurotransmission. For
example, HM organisms widely uti-
lize their own naturally secreted pep-
tides and amyloids as structural mate-
rials, adhesion molecules, and neu-
rotoxins that ultimately function in
host auto-immunity and immune-
protection. The specific contribution
of the HM and bacterial amyloid
to protein misfolding and amyloido-
genic diseases such as AD are however

not well understood, although bac-
terial components such as endotox-
ins are often found within the senile
plaque lesions that characterize the
AD brain (5, 21, 38). The HM fur-
ther appears to condition host immu-
nity to foreign microbes, including
viral infection and xenobiotics, while
regulating autoimmune responses that
can impact homeostatic metabolic-
and neural-signaling functions within
the CNS (4, 14, 23, 39). Progres-
sive neurological disorders such as
AD have been increasingly linked to
altered autoimmune and faulty innate-
immune responses (12, 40, 41). An
increased incidence of auto-immunity,
exposure to pathogens both pre- and
postnatally, and findings of anti-
bodies to brain-specific antigens are
common in disorders as diverse as
anxiety, autism, depression, obsessive–
compulsive disorder, schizophrenia,
Parkinson’s disease (PD), and AD,
together suggesting that differences
in exposure and genetic vulnerability
toward HM-mediated auto-immunity
may be significant determinants of
age-related neurological disease course
and outcome as humans age (14,17,23,
39, 42–46);

(6) secretory products of the GI-tract
microbiome and translocation of these
signaling molecules via the lymphatic
and systemic circulation through-
out the CNS are just beginning
to be identified. Recent advances
in metagenomics, RNA sequenc-
ing, metatranscriptomics, metapro-
teomics, and metabolomics continue
to clarify our perceptions of the GI-
tract HM and its contribution to health
and disease. Just as each individual
has a unique“stoichiometrically propor-
tioned” composition of microorgan-
isms in their microbiome, individuals
appear to be variably sensitive to age-
related neurological disorders such as
AD through the concept of “human
biochemical individuality” (11, 16, 47).
Importantly, dietary and GI-tract HM
manipulation and the emergence of
personalized medicine may be poised
to revise and modernize our reme-
dial efforts in the clinical manage-
ment of brain disorders including AD,
and the progressive transformation
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to more favorable clinical outcomes
(30, 48, 49).

In summary, the human GI tract is a
natural habitat for large, diverse, and host-
specific microbial communities including
multiple species from the kingdoms of
Archaea, Bacteria, the Viruses, and other
symbiotic microbiota. How humans co-
evolved with these complex microbial
ecosystems, and how certain microbial
species were specifically selected for mutual
symbiotic benefit is of extreme interest
when assessing critical HM–host interac-
tions involving food digestion, nutrition
supply and uptake, metabolic interactions,
protection against pathogens and immune
system development, maintenance, and
dyshomeostasis in both health and disease.
To cite another relevant example, abundant
evidence suggests that human mitochon-
dria originated from bacteria via endosym-
biotic relationships from very early in
the evolutionary history of eukaryotes, so
cross-reactivity of mitochondria and host
immunological responses to selective bac-
terial GI constituents may have deleteri-
ous effects on human mitochondrial func-
tion through molecular mimicry (4, 12,
42). This is evidenced by multiple findings
in common autoimmune, inflammation-
linked systemic, and neurological disorders
including ALS, anxiety, diabetes, epilepsy,
metabolic disease, obesity, rheumatic fever,
schizophrenia, Sydenham’s chorea, PD, AD,
and other age-related pathologies, includ-
ing transgenic animal models for these
diseases (2, 4, 12, 23, 44–46, 50–54).

Lastly, since the early investigations of
Koch, Metchnikoff, Pasteur, Von Leeuwen-
hoek, and others on the microbial basis
of pathogenicity and disease transmission,
Westernized societies have very successfully
reduced the incidence of microbial-borne
infectious disease, while an environment
of autoimmune, cardiovascular, metabolic,
and neuroinflammatory diseases contin-
ues to flourish. We have only recently
begun to truly appreciate the potential for
complex and beneficial contributions of
the GI-tract HM to host genetics, pheno-
type, and the development and course of
CNS disease. With advancement in next-
generation, high throughput sequencing
and metagenomic technologies our further
investigations into the complex microbial
ecosystems within us should yield novel

HM manipulative strategies for both the
optimization of our health and the more
effective clinical management of human
metabolic, neuropsychiatric, and neuro-
logical disorders.
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