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Magnesium: potential roles in neurovascular disease
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INTRODUCTION

Objective: Magnesium therapy has been studied extensively in pre-clinical and clinical
trials in multiple organ systems. Cerebrovascular diseases may benefit from its neuropro-
tective properties. This review summarizes current studies of magnesium in a wide range
of neurovascular diseases.

Methods: \We searched relevant terms in the National Library of Medicine PubMed data-
base and selected research including basic science, translational reports, meta-analyses,
and clinical studies.

Results: Studies examining magnesium administration in ischemic stroke have failed
to show any benefit in clinical outcome. Data on magnesium for intracerebral hemor
rhage (ICH) are limited. Preliminary investigations in subarachnoid hemorrhage (SAH) were
promising, but definitive studies did not reveal differences in clinical outcome between
magnesium and placebo-treated groups. Studies examining magnesium administration in
global ischemia following cardiac arrest suggest a trend toward improved clinical outcome.
The strongest evidence for clinically relevant neuroprotection following magnesium admin-
istration derives from studies of pre-term infants and patients undergoing cardiac bypass
and carotid endarterectomy procedures. Magnesium was found to have an excellent safety
profile across all investigations.

Conclusion: Magnesium is easy to administer and possesses a favorable safety profile. Its
utility as a neuroprotectant in cardiac surgery, carotid endarterectomy, and pre-term infant
hypoxia remain promising. Value as a therapeutic agent in ischemic stroke, ICH, and SAH
is unclear and appears to be limited by late administration. Ongoing clinical trials assessing
magnesium administration in the first hours following symptom onset may help clarify the
role of magnesium therapy in these disease processes.

Keywords: magnesium, neuroprotection, intracerebral hemorrhage, subarachnoid hemorrhage, all cerebrovascular
disease/stroke

agents, Mg has shown potential efficacy in a wide variety of clinical

Cerebrovascular diseases are the fourth leading cause of death in
the United States, claiming one life every 4 minutes and affecting
15 million people worldwide yearly (1, 2). The identification of
safe, effective, inexpensive, and easily applicable treatments is of
enormous public health importance. Cerebral ischemia is the most
common neurovascular disease, followed by intracerebral hem-
orrhage (ICH) and subarachnoid hemorrhage (SAH). Although
these disorders have distinct mechanisms of brain injury, the neu-
rovascular unit is principally affected in each. Treatments targeting
both neuronal and vascular mechanisms may have efficacy in
wide-ranging processes.

Magnesium (Mg) exhibits beneficial effects through both neu-
ronal and vascular mechanisms, rendering it an attractive thera-
peutic agent in cerebrovascular diseases. Mg, an essential element
for life, is found in virtually every biological system. All cells
require Mg as an essential ion that allows ATP to be biologically
active in DNA and RNA synthesis. Unique among neuroprotective

settings.

This review aims to summarize the current state of clinical
knowledge regarding Mg therapy in the setting of cerebrovascu-
lar diseases. We begin with a brief summary of pre-clinical data.
However, extensive review of experimental results is beyond the
scope of the article. We focus on reported clinical trials and meta-
analyses, segregated according to disease process. We conclude
with a discussion of a current clinical trial and future directions in
research.

PRE-CLINICAL DATA FOR MAGNESIUM

Mg exhibits multiple complementary neuroprotective mech-
anisms. Physiological extracellular Mg concentrations (250—
1000 pmol/L) inhibit glutamate release (3), potentiate adenosine-
mediated inhibition of glutamate release (4), restore blood-brain-
barrier (BBB) integrity, decrease brain edema (5), and non-
competitively antagonize NMDA receptor activation via blockage
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of voltage-dependent calcium channels (6). In rat brain injury
models, intracellular Mg has been linked to alterations in cerebral
energy metabolism and inhibition of mitochondrial function (7).
Finally by competing with calcium at voltage-gated calcium chan-
nels in intracellular and cell surface membranes and by serving as
an antagonist at N-type, P-type, and L-type channels, Mg impedes
calcium influx into ischemic neurons and prevents a recognized
final common pathway for cell death (8).

Mg possesses vasoactive properties, which can improve cere-
bral blood flow via interactions with the regional vasculature and
more distant effects in the heart and systemic circulation. In the
cerebral vasculature, Mg exhibits direct effects on large, medium,
and small vessels by inhibiting the actions of endothelin-1, neu-
ropeptide Y, and angiotensin II (9, 10). In rabbit models, inhibition
of L-type smooth muscle Ca channels suggests a potential role in
vasospasm prevention (11). Augmentation of cerebral blood flow
via vasodilatation results in improved outcomes following exper-
imental middle cerebral artery occlusion in animal models (12).
Systemically, Mg promotes vasodilatation by increasing synthe-
sis of prostacyclin and inhibition of angiotensin (13). Mg also
augments cardiac output, increasing cardiac index despite a mild
transient lowering of systemic blood pressure (14).

EVALUATION OF PHYSIOLOGICAL MAGNESIUM
CONCENTRATION

Low serum Mg levels (<0.76 mmol/L), coupled with advanced
atherosclerosis, are associated with a 3.29-fold increased adjusted
risk of adverse cerebrovascular events (95% CI 1.34-7.90,
p=0.009) (15) and promote coronary and carotid atherosclero-
sis (16). These studies did not demonstrate a correlation between
serum Mg levels and Glasgow Coma Scale. However, lower cere-
brospinal fluid (CSF) Mg levels were present in patients with
ischemic strokes compared to controls (p = 0.006) and established
a positive association between mortality after 7 days and signifi-
cantly lower CSF levels of Mg (p=0.002) (17). During cardiac
bypass surgery (CABG), intra-operative serum Mg levels were
found to be low during an initial stage of the operation (18).

The ability of Mg to permeate intact BBB and enter CSF
spaces has remained controversial. Initial studies on preeclamp-
sia patients revealed that CSF concentrations were only modestly
but consistently elevated in patients who received intravenous Mg
therapy (19). Brain penetration of Mg is thought to be enhanced
by BBB dysfunction (20). However, patients with chronic neu-
rological diseases with presumed mild BBB disruption do not
have significant differences in CSF Mg concentrations compared to
healthy controls (21). In addition, patients with acute neurological
injury and induced intravenous hypermagnesemia were shown to
produce only modest increases in CSF levels of total and ionized
Mg (22).

CLINICAL TRIALS OF MAGNESIUM SULFATE IN
NEUROVASCULAR DISEASE

CEREBRAL ISCHEMIA

Six phase 2 trials have examined Mg sulfate administration in
ischemic stroke (23-28). Each of the phase 2 trials demonstrated
safety with Mg, but did not demonstrate improved clinical out-
come with Mg. A meta-analysis of four of the phase 2 randomized

controlled trials with analogous data in 162 patients found a trend
toward improved clinical outcome, with late disability or death
seen in 44.3% of Mg sulfate patients compared with 52.7% of
placebo patients (OR =0.67, 95% CI =0.35-1.26) (29). Further-
more, individual phase 2 trials optimized a dosing regimen to
achieve target doubling of serum Mg levels and demonstrated
feasibility of pre-hospital initiation of therapy (24, 27).

The largest study to date that examined Mg therapy in acute
ischemic stroke was the phase 3 intravenous magnesium efficacy
in stroke (IMAGES) trial (28). IMAGES enrolled 2589 patients
within 12 h of symptom onset. Patients were randomized to either
20g Mg sulfate (4g bolus followed by 16 g maintenance given
over 24 h) or matched placebo treatment. The primary endpoint
as measured by death and disability at 3 months and identified
by the joint binary outcome of Barthel score <95 and a modi-
fied Rankin score (mRS) > 1, did not reach statistical significance
(OR = 0.95, 95% CI = 0.80-1.13).

Intravenous magnesium efficacy in stroke had three critical
shortcomings. First was late enrollment with median time to treat-
ment of 7 h. Only 71 patients (3.1% of the entire IMAGES cohort)
were enrolled within 3 h of onset and only 16 (0.6%) were enrolled
in the first 2 h. Second, IMAGES required that a patient’s deficit be
persistent for atleast 1 h before enrollment could occur, precluding
initiation of Mg within the first 60 min of stroke onset. Third, as
Mg is an endogenous ion and Mg serum levels were not evaluated
nor hypomagnesemia screened, it is unclear whether there was a
difference in Mg levels between the Mg and control group.

And although aggregate results did not demonstrate improved
clinical outcome with Mg, the trial suggested a potential bene-
fit in patients who were administered treatment at earlier time
points. Among patients enrolled in the first 3 h, favorable trends
were noted: a non-disabled outcome (mRS 0-1) was achieved in
45.9% of Mg patients vs. 33.3% of placebo patients and death was
observed in 26% of placebo vs. 19% of Mg patients (OR = 0.65,
95% CI=0.23-1.92) (28). These trends allowed the possibility
that a sufficiently powered trial utilizing earlier administration of
Mg could provide evidence for potential efficacy of Mg in ischemic
stroke.

INTRACEREBRAL HEMORRHAGE
The largest study to date examining Mg in ICH is IMAGES. Use
of Mg prior to brain imaging resulted in 168 (8.3%) of the total
enrolled patients being diagnosed as ICH. The point estimate of
effect in reducing death or disability was favorable (OR =0.84,
95% CI =0.41-1.74) in this cohort, although the sample size was
too small to draw definitive conclusions (28). Of particular rele-
vance to ICH are the vasodilatory and antihypertensive effects of
Mg. At the dose tested in IMAGES and FAST-MAG, Mg can lower
systolic blood pressure by 3—4 mm Hg. Although failing to meet
its primary outcome, INTERACT?2 did show a trend suggesting
decreased death and major disability with intensive blood control
(p=10.06) and did show significantly lower mRS via ordinal analy-
sis (p=0.04) (30). Whether Mg can improve clinical outcome in
ICH through blood pressure control or neuroprotection remains
to be seen.

In the FAST-MAG Phase 3 trial, initial evaluation of the first 750
enrolled patients yielded 24% of patients with a final diagnosis of
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ICH, which anticipates a subgroup of approximately 400 patients
to further explore potential benefit of Mg in ICH.

DELAYED CEREBRAL INFARCTION AFTER SUBARACHNOID
HEMORRHAGE

Hypomagnesemia occurs in about 50% of SAH patients and is
associated with a high risk of delayed cerebral ischemia and poor 3-
month outcome. The promise of Mg as both a neuroprotective and
vasodilatory agent led to clinical pilot trials in aneurysmal SAH
where Mg administration was associated with reductions in symp-
tomatic vasospasm and favorable trends in clinical outcome (31,
32). These pilot trials led to the magnesium and acetylsalicylic acid
in subarachnoid hemorrhage (MASH-1) trial, a European phase
2b trial that randomized 283 patients with aneurysmal SAH to Mg
sulfate (64 mmol/L/day) or placebo. Mg therapy tended to reduce
the incidence of delayed cerebral infarction on 3-month head CT
by 34% (HR =0.66, 95% CI =0.38-1.14) and the 3-month risk
of death or disability by 23% (OR=10.77, 95% CI = 0.54-1.09).
However, only improvement in excellent outcome as assessed by
Rankin scores of 0 was significant (33).

Unfortunately, subsequent phase 3 SAH trials have not been
confirmatory. In IMASH (Hong Kong Coordinating Center), 327
patients with aneurysmal SAH within 48h of onset were ran-
domized to serum Mg concentrations twice that of baseline or
placebo therapy for 10-14 days. Serum Mg levels were signifi-
cantly higher in the Mg group (1.67 mmol/L) than the placebo
group (0.91 mmol/L) (p <0.001). Primary 6-month favorable
outcome rates — measured by an extended Glasgow Outcome
Scale score of 5-8 — in the Mg (64%) and placebo group (63%)
were similar (OR = 1.0, 95% CI=0.7-1.6). Secondary outcome
measures — Rankin scores (<2), Barthel Index (>85), clinical
vasospasm, decrease in Glasgow Coma Scale (>2), and relevant
complications — were similar between the two groups (34).

The subsequent phase 3 MASH-2 trial (1204 patients, Nether-
lands Coordinating Center) also revealed no difference between
patients treated with 64 mmol/day of Mg sulfate or placebo ther-
apy. Inclusion criteria required aneurysm presence and participa-
tion within 4 days of onset. Duration of Mg treatment was 20 days
post SAH-onset or until hospital discharge. Primary outcome
was dichotomized. Poor outcome, defined as 3-month Rankin
scores of 4-6, was similar for the Mg (26.2%) and placebo groups
(25.3%) (RR=1.03,95% CI = 0.85-1.25). Distribution of Rankin
scores was not statistically different between the two groups. Sub-
group analysis did not identify specific subgroups that might have
benefited from Mg (35).

The time window for Mg administration may have limited the
potential efficacy of Mg in these trials. The mean time to initiation
of therapy was 31.7h in IMASH and 33 h in MASH-2. However,
the processes leading to delayed cerebral ischemia after vasospasm
may be present by that time, and this latency may not have been
detrimental. Another possible contributor to lack of efficacy may
be BBB penetration. Large, acute ischemic strokes typically open
the BBB over substantial regions, allowing CSF penetration of Mg.
However, the vasospasm associated with SAH is of subacute onset
and may be associated with less disruption of the BBB at the time
of ischemia. Therefore, Mg may not be able to effectively cross
into the CSF spaces at relevant time points. Further complicating

the analyses is that serum Mg levels were not measured as study
parameters in MASH-2.

GLOBAL CEREBRAL ISCHEMIA AFTER CARDIAC ARREST

Pre-hospital administration of magnesium sulfate showed favor-
able trends toward neuroprotection in resuscitated cardiac arrest
patients in the brain-cardiopulmonary resuscitation (B-CPR)
trial. The B-CPR trial tested Mg sulfate and diazepam in a 2 x 2
factorial, placebo-controlled design. Paramedic personnel ran-
domized subjects and administered study medications to out-
of-hospital cardiac arrest patients immediately following return
of spontaneous circulation. Three hundred patients were ran-
domized to intravenous Mg sulfate (2 g) or placebo, and then to
diazepam (10 mg) or placebo. Treatment was administered in the
field by paramedics but was not continued during hospitalization.
Patients receiving Mg demonstrated significantly higher serum
Mg levels (3.0 mg/dL in the Mg group vs. 2.1 mg/dL in the placebo
group).

The pre-specified primary outcome measure of awakening at
any time by 3 months after cardiac arrest was seen in 46.7%
of patients treated with Mg and 37.3% of those treated with
placebo (risk difference 9.3%, CI=6.4-25.1%). The diazepam
cohort showed no evidence of treatment effect. No adverse effects
of pre-hospital administration of Mg sulfate therapy were noted.
Limitations of this study included failure of randomization to pro-
duce balanced treatment groups and uncertainty as to whether
continuation of treatments may have altered final outcomes (36).

PRE-TERM INFANT HYPOXIC-ISCHEMIC INJURY AND
INTRAVENTRICULAR HEMORRHAGE

Pre-term infants are at high risk of hypoxic—ischemic perinatal
brain injury and resultant cerebral palsy or death. Although a
small, early trial (MAGnet) suggested increased mortality (37) and
other trials raised concerns for possible lenticulostriate vasculopa-
thy and intraventricular hemorrhage (38), subsequent larger trials
have allayed these concerns and indicated a neuroprotective ben-
efit of Mg in averting fetal brain injury in pre-term deliveries.
Meta-analyses have demonstrated reduced mortality in the cohort
of infants that received Mg (RR =0.73,95% CI = 0.61-0.89) (39)
and shown that antenatal Mg given to women at risk of pre-term
birth substantially reduced the risk of cerebral palsy in their child
(RR=0.69, 95% CI=0.54-0.87) and gross motor dysfunction
(RR = 0.61, 95% CI = 0.44-0.85) (40).

Three large randomized controlled trials have investigated the
neuroprotective effects of Mg on the fetal brain when administered
to mothers within 24 h of pre-term delivery. In ACTOMgS04 Trial,
evaluation at 2 years showed lower frequency of gross motor dys-
function (3.4% Mg vs. 6.6% placebo; RR =0.51, 95% CI = 0.29—
0.91) and combined death or substantial gross motor dysfunction
(17.0% Mg vs. 22.7% placebo; RR =0.75, 95% CI=10.59-0.96)
in the Mg cohort (41). In the PREMAG Trial, infants receiving
Mg demonstrated trends toward a decreased frequency of severe
white matter injury (10.0% Mg vs. 11.7% placebo; OR =0.78,
95% CI=0.47-1.31) and total mortality (9.4% Mg vs. 10.4%
placebo; OR=0.79, 95% CI =0.44-1.44) (42). Finally, a multi-
center, placebo-controlled, double-blind trial showed that infants
treated with Mg had significantly less frequent moderate or
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severe cerebral palsy (1.9% Mg vs. 3.5% placebo; RR = 0.55, 95%
CI=0.32-0.95), suggesting a potential neuroprotective role for
Mg in pre-term infants who survive (43).

Mg has also been promising for prevention of intraventricu-
lar hemorrhage in pre-term infants. In a prospective study of 125
patients, 4 g of Mg sulfate and aminophylline was added to corti-
costeroids and ritodrine to treat newborns born before 30 weeks.
This group was compared to newborns only receiving the standard
regimen of corticosteroids and ritodrine. The rate of intraven-
tricular hemorrhage in the Mg and aminophylline group was
significantly lower (5.1%) than that of the control group (20.6%)
(p <0.001) (44).

The greater capacity for BBB penetration in pre-term infants
may account for the substantial differences in neuroprotective effi-
cacy between infants and adults treated with Mg sulfate therapy.
However, Mg toxicity must be monitored in pre-term infants, who
may be more vulnerable than adults owing to underdeveloped
renal function and greater BBB penetration.

CARDIAC BYPASS SURGERY AND INTRA-OPERATIVE BRAIN ISCHEMIA

Neuropsychological dysfunction is evident in up to 50-80% of
CABG patients at the time of hospital discharge. Hypomagne-
semia may result in cardiac tachyarrhythmias such as ventricular
fibrillation, which may contribute to intra-operative hypoperfu-
sion and subsequent neurological deficits. The Cleveland Clinic
trial randomized 350 patients undergoing elective CABG to intra-
operative Mg sulfate or placebo treatment that was continued for
the first 24 post-operative hours. Patients received a 2-g loading
dose and subsequent titration of a continuous infusion to maintain
serum Mg levels at twice normal. The Mg cohort demonstrated sig-
nificantly lower frequencies of neurologic decline and neurologic
death at 96 h after surgery, when compared to the placebo-treated
group (p = 0.01). At 3 months post-operatively, there were no per-
formance differences between groups. This long-term data may
reflect a test ceiling effect, as placebo patients appeared to improve
over time (45).

CAROTID ENDARTERECTOMY AND NEUROPROTECTION

A preliminary prospective dose escalation study in 80 patients
undergoing elective carotid endarterectomy established that Mg
and placebo groups had statistically significant different serum
levels of Mg (p <0.01) and no significant difference in adverse
events (p = 0.66) (46). The neuroprotective effect of Mg in carotid
endarterectomy was evaluated in a randomized, double-blinded,
placebo-controlled study of 108 patients. Patients undergoing
carotid endarterectomy were divided into three stratified levels
of Mg dosing (total intra-operative infusions of 10, 18, and 20 g)
or placebo treatment. Another 35 patients undergoing lumbar
laminectomy served as controls. Overall, patients treated with
Mg had less post-operative neurocognitive impairment than those
administered placebo (OR =0.27,95% CI = 0.10-0.74, p =0.01).
However, stratification by Mg levels did not affect outcomes in
a dose-dependant manner. In fact, the low-dose Mg groups (10
and 18g) demonstrated the greatest improvement (OR=0.09,
95% CI=0.02-0.50, p =0.01), whereas the high-dose Mg group
(20 g) showed no difference when compared to the placebo-treated
cohort (47).

FUTURE DIRECTIONS FOR MAGNESIUM IN
CEREBROVASCULAR DISEASE

As outlined in Table 1, magnesium therapy has demonstrated evi-
dence of clinically relevant of clinically relevant neuroprotection in
neurovascular disorders and procedures including global cerebral
ischemia, pre-term neonatal hypoxia, carotid endarterectomy, and
CABG. To date, however, pre-clinical promise has not translated
to effective therapy in acute ischemic stroke, ICH, and SAH.

Over the past several decades, more than 70 neuroprotective
agents have been tested in randomized controlled clinical trials
in acute ischemic stroke (48). Several agents, including Mg, have
shown promising preliminary results followed by disappointing
outcomes in definitive phase III trials. No neuroprotective ther-
apy has been approved by the FDA for an indication of ischemic
stroke. Leading neuroscientists have identified four key design fail-
ures in prior human clinical trials of neuroprotectants: (1) failure
to select patients who will respond to the mechanisms of action of
the study drug, (2) failure to administer study agents at neuropro-
tective doses in humans, (3) failure to employ sample sizes large
enough to detect modest benefits of a study agent, and (4) failure to
treat patients early enough after stroke onset (48—57). These four
areas of design failure have now been addressed in more recent,
sophisticated trials, starting with FAST-MAG. Primary results have
yet to be published.

Future directions for Mg are likely to include combination
neuroprotectant therapy. Mg may hold some benefit to ischemic
stroke patients treated with reperfusion therapies, by preserv-
ing threatened brain tissue until restoration of blood flow. This
hypothesis will be tested in sub-analyses of FAST-MAG where
approximately 400 randomized patients will have received throm-
bolysis (58). In addition, studies have demonstrated an additive
benefit when Mg is combined with hypothermia in rat ischemic
stroke models (59-61). Currently, hypothermia combined with
intravenous thrombolysis is being studied in a phase 3 clinical trial.
Future treatment paradigms may include combination strategies
with pre-hospital Mg administration and hypothermia followed
by intravenous thrombolysis. The established safety profile of Mg
may lead to an emerging role as a promising adjunct treatment.
Sub-analyses from the completed FAST-MAG trial, coupled with
the established body of research, will help determine Mg’s future
role in cerebrovascular disease.
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