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INTRODUCTION

Introduction: Obstructive sleep apnea syndrome (OSAS) is a frequent breathing disorder
occurring during sleep that is characterized by recurrent hypoxic episodes and sleep frag-
mentation. It remains unclear whether OSAS leads to structural brain changes, and if so, in
which brain regions. Brain region-specific gray and white matter volume (GMV and WMV)
changes can be measured with voxel-based morphometry (VBM). The aims of this study
were to use VBM to analyze GMV and WMV in untreated OSAS patients compared to
healthy controls (HC); examine the impact of OSAS-related variables (nocturnal hypoxemia
duration and sleep fragmentation index) on GMV and WMV; and assess the effects of ther
apeutic vs. sham continuous positive airway pressure (CPAP) treatment. We discuss our
results in light of previous findings and provide a comprehensive literature review.

Methods: Twenty-seven treatment-naive male patients with moderate to severe OSAS and
seven healthy age- and education-matched HC were recruited. After a baseline fMRI scan,
patients randomly received either active (therapeutic, n=14) or sham (subtherapeutic,
n=13) nasal CPAP treatment for 2 months.

Results: Significant negative correlations were observed between nocturnal hypoxemia
duration and GMV in bilateral lateral temporal regions. No differences in GMV or WMV
were found between OSAS patients and HC, and no differences between CPAP vs. sham
CPAP treatment effects in OSAS patients.

Conclusion: |t appears that considering VBM GMV changes there is little difference
between OSAS patients and HC. The largest VBM study to date indicates structural
changes in the lateral aspect of the temporal lobe, which also showed a significant neg-
ative correlation with nocturnal hypoxemia duration in our study. This finding suggests
an association between the effect of nocturnal hypoxemia and decreased GMV in OSAS
patients.

Keywords: obstructive sleep apnea syndrome, volumetric brain morphology, functional magnetic resonance
imaging, continuous positive airway pressure, gray matter volume, white matter volume, nocturnal hypoxemia

abnormalities are the most consistent finding across different

Obstructive sleep apnea syndrome (OSAS) is a frequent but insuf-
ficiently recognized breathing disorder occurring during sleep that
affects at least 2—4% of the population aged 30-60 years and up to
20-50% of the elderly population, with a 2:1 men/women ratio in
Caucasians (1,2). Itis characterized by recurrent hypoxic episodes
during sleep, sleep fragmentation, and changes in sleep archi-
tecture, resulting in increased cardiovascular comorbidity, neu-
rocognitive impairment, and mood disorders, as well as excessive
daytime sleepiness (3-8).

Several studies have examined whether OSAS also induces mor-
phological brain changes that could underlie those impairments
(9-15). To date, results vary widely across structural neuroimaging
studies of OSAS, with both positive and negative results. How-
ever, among studies that reported structural changes, hippocampal

neuroimaging techniques (10, 11, 14, 16, 17).

Voxel-based morphometry (VBM) is a widely used neuroimag-
ing technique that allows non-invasive, region-specific measure-
ment of gray and white matter volume (GMV and WMYV) changes
in the brain. Previous VBM studies in OSAS patients have reported
conflicting results, which cannot be entirely explained by dif-
ferences in methodologies or disease severity (9-12, 14, 18).
The observation that much of the VBM differences in GMV
observed in OSAS patients are reversible using continuous pos-
itive airway pressure (CPAP) treatment led to the hypothesis that
these decreases reflect either neuronal or vasogenic changes, or
both (14, 15).

The interest in determining whether OSAS leads to structural
brain changes is explained by the fact that some OSAS-related
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deficits are irreversible, which could be related to OSAS-induced
cellular loss. Therefore, determining whether OSAS leads to struc-
tural brain changes and if so, mapping their anatomical distri-
bution and extent, as well as understanding their nature, will
greatly impact OSAS disease prevention, early diagnosis, and
management.

Therefore, the aim of this study was to use VBM analysis to (a)
compare GMV and WMV in untreated OSAS patients to those in
healthy controls (HC); (b) examine the impact of OSAS-related
variables (nocturnal hypoxemia duration and sleep fragmentation
index) on GMV and WMYV; (c) assess the effects of therapeutic vs.
sham CPAP treatment; and (d) examine our findings in light of
previously published research.

MATERIALS AND METHODS

PARTICIPANTS

Twenty-seven treatment-naive male patients with moderate to
severe OSAS [apnea-hypopnea index (AHI)>15] and seven
healthy age- and education-matched control subjects (AHI < 5)
were recruited from the Stanford Sleep Disorder Clinic through
advertisements. All participants were right-handed non-smokers
and had regular sleep schedules. Exclusion criteria were other
sleep disorders, any neurological or psychiatric disorder, and tak-
ing psychotropic medications or medication liable to affect the
hemodynamic response (e.g., vasodilators or vasoconstrictors).

After a baseline functional magnetic resonance imaging (fMRI)
scan, patients were randomly assigned to either the active (ther-
apeutic, n=14) or sham (subtherapeutic, n=13) nasal CPAP
group. A CPAP titration study was conducted on all patients in
both groups: the active group was effectively titrated to the appro-
priate nasal CPAP pressure, and the sham group slept with the
subtherapeutic nasal CPAP previously used in sham CPAP studies
(19). The sham CPAP device closely simulated the active CPAP
device with respect to airflow through the exhalation port and
operating noise. A prior study using a functionally similar sham
CPAP device revealed that oxygen saturation, end-tidal CO,, and
mean temperature and humidity measured at the CPAP mask were
the same for active and sham CPAP (19), and no significant differ-
ence was found in sleep parameters or the number of abnormal res-
piratory events between the sham CPAP group and a no-treatment
group in 10 men with OSAS matched for age and AHI.

Subjects in both groups were treated for 2 months and treat-
ment compliance was monitored using an Encore® Pro Smart-
Card® system. At the end of the treatment period, the sham CPAP
group underwent a second CPAP titration night, were provided
with therapeutic CPAP treatment, and left the study.

The study was approved by the Stanford Institutional Review
Board (IRB approval No: 5129), and all participants signed an
informed consent form. This study was a research fMRI sub-study
conducted at one center of a multi-centric clinical trial (APPLES),
including five centers and 1200 participants randomized into
CPAP and sham CPAP groups (ID No: NCT00051363).

OVERNIGHT SLEEP STUDIES

Overnight polysomnography (PSG) recordings were performed
on all participants at baseline. In OSAS patients, PSG recordings
confirmed the moderate to severe OSAS diagnosis (AHI > 15). In
healthy volunteers, PSG recordings confirmed the absence of sleep

disorders, including OSAS (AHI < 5). PSG recordings included
electroencephalography, electrooculogram, electrocardiogram,
electromyogram for chin and legs, nasal air flow with nasal
cannula, abdominal and thoracic respiratory belts, and pulse
oximetry. Measures were scored according to AASM criteria (20).
PSG recordings were performed using the CleveMed ambulatory
Crystal Monitor®or Sandman in-house software.

MAGNETIC RESONANCE IMAGING

All participants underwent an fMRI scan at baseline and after
2 months of either sham or therapeutic CPAP treatment. Imag-
ing data were obtained with a 3.0-T GE scanner (Milwaukee,
WI, USA) using a custom quadrature birdcage head coil. Head
movement was minimized with foam padding. High-resolution
T1-weighted images (TR = 3000 ms, TE = 68 ms, flip angle =11°,
FOV =25 cm, matrix =256 x 256, 124 axial slices, slice thick-
ness=1.2mm) were collected on each participant using an
IR-prep FSPGR sequence for T1 contrast.

VOXEL-BASED MORPHOMETRY AND STATISTICAL ANALYSES
Imaging data were preprocessed and analyzed using SPM8 soft-
ware (Wellcome Department of Cognitive Neurology, London,
UK)! and the VBMS Toolbox? with default parameters in MatLab
7.9.0. Preprocessing steps included tissue segmentation, high-
dimensional DARTEL normalization of modulated data by the
non-linear components derived from the normalization matrix
(modulated GMV and WMV), and spatial smoothing with a
Gaussian kernel of 8 mm full width at half maximum (FWHM).
Untreated OSAS patients were compared to HC at baseline on
sleep and treatment compliance variables using one-way ANOVA
and two-sample f-test. Brain morphology was analyzed with
a one-way ANOVA for baseline comparisons between the two
groups of untreated OSAS patients and HC. Treatment effects
were explored with a flexible factorial model in 21 OSAS patients
(11 sham CPAP and 10 therapeutic CPAP), as six patients were
excluded for low treatment compliance (<50% of treatment days
at >4h of CPAP use). The effects of sleep fragmentation (mea-
sured with AHI) and nocturnal hypoxemia duration (in minutes)
were assessed by multiple regression analysis in untreated OSAS
patients.

RESULTS

At baseline, untreated OSAS patients were equivalent on all sleep
and breathing variables. Patients were then randomly assigned
to either treatment group. Both OSAS treatment groups demon-
strated similar CPAP compliance (see Table 1).

GRAY MATTER VOLUME

Using topological false discovery rate (FDR) correction for multi-
ple comparisons at cluster level (p < 0.05, voxel level p=0.005
uncorrected), we found no difference in GMV between OSAS
patients and HC and no effects of CPAP vs. sham CPAP treatment
in OSAS patients. In OSAS patients, we found a significant negative
correlation between nocturnal hypoxemia duration (<90% Sa0O,)
and GMV in bilateral lateral temporal regions [middle and inferior
temporal gyri: Brodmann Area (BA) =20, 21] (see Figure 1).

http://www.filion.ucl.ac.uk/spm
Zhttp://dbm.neuro.uni-jena.de/vbm/
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Table 1| Baseline demographics, sleep, and treatment compliance variables for patients with obstructive sleep apnea syndrome (OSAS) treated

with sham continuous positive airway pressure (CPAP) device or active CPAP device.

Controls Sham CPAP Active CPAP p-Value
n=7 n=13 n=14

Age (years) 414431 44.0+£2.0 429422 0.782; 0.48°; 0.71¢; 0.70¢
BMI (kg/m?) 241+£12 26.1+£0.6 28.7+1.1 0.012; 0.12°; 0.02°; 0.059
Total sleep time (min) 349.8+53.5 376.6+11.7 378.7+£19.4 0.74?; 0.66°; 0.53¢; 0.934
Stage 1TST (%) 41407 11.3+18 10.7+£2.2 0.207; 0.04%; 0.01¢; 0.844
Stage 2TST (%) 61.8+£6.9 61.6+£25 66.3+3.1 0.50?; 0.97°; 0.52°; 0.25¢
Stage 3TST (%) 51+18 59+15 42412 0.642; 0.76°; 0.73¢; 0.36¢
Stage 4 TST (%) 0.7+04 15+08 21412 0.75%; 0.56°; 0.53°; 0.68¢
REMTST (%) 23.4+6.1 19.6 £ 1.1 16.7+15 0.012; 0.25°; 0.01¢; 0.144
AHI 21408 34.0+4.8 434459 0.0032; <0.001°; 0.002°; 0.23¢
Sleep efficiency (%) 84.8+5.4 83.442.1 82.5+3.6 0.932; 0.78; 0.76°; 0.849
Average SPO; (%) total 104.7 75 95.440.3 93.7+1.0 0.012; 0.30°; 0.24¢; 0.11¢
Number days range N/A 721451 78.3+5.7 0.43d

Average usage — all days (h/night) N/A 4.7+05 44+04 0.574

Percent days >4 h — all days N/A 671+8.5 62.0+6.9 0.644

2Data presented as mean+ SEM. Statistical comparison of the three groups was done with a one-way ANOVA, followed by two-by-two group comparisons with

independent t-test.
bControl vs. sham.
¢Control vs. active.
9Sham vs. active.
N/A, not applicable.

Z-score

FIGURE 1 | Brain regions showing negative correlation between
nocturnal hypoxemia duration and gray matter volume (GMV) in
bilateral lateral temporal regions of the middle and inferior temporal
gyri (BA =20, 21) [topological false discovery rate (FDR) correction for
multiple comparisons at cluster level p < 0.05, voxel level p =0.005
uncorrected].

Using a voxel-wise p < 0.001 threshold uncorrected for multi-
ple comparisons with a 20-voxel extent threshold for exploratory
analysis, we found significantly higher GMV in HC compared to

OSAS patients in the left middle frontal gyrus (BA = 46). Signif-
icantly higher GMV was found in untreated OSAS patients com-
pared to HC in the right precuneus (BA = 7) and fusiform/lingual
gyri (BA =18) (see Table 2).

A significant positive correlation was found between GMV and
AHI in the left inferior parietal lobule (BA = 40). Significant neg-
ative correlations were found between GMV and AHI in the right
uncus (BA = 36), left gyrus rectus (BA=11), and left precuneus
(BA=7) (see Table 2).

Four OSAS patients were excluded from the multiple com-
parison analysis due to incomplete nocturnal saturation data. A
significant positive correlation was found in the left precuneus
(BA=7). Significant negative correlations between GMV and
nocturnal hypoxemia duration were found in the left middle tem-
poral gyri (BA =21), right superior temporal gyrus (BA=38),
left inferior temporal gyrus (BA =20), and uncus (BA =36) (see
Table 2).

No regions showed a significant group x session interaction.
Furthermore, no correlations were found between CPAP compli-
ance and GMYV in bilateral hippocampal regions of interest (ROIs),
and no negative correlations with nocturnal hypoxemia.

WHITE MATTER VOLUME

Using a voxel-wise p <0.001 threshold uncorrected for multi-
ple comparisons with a 20-voxel extent threshold for exploratory
analysis, we found significantly higher WMV in HC compared to
OSAS patients in the right occipital lingual gyrus and the left mid-
dle occipital gyrus (see Table 3). Similarly to the GMV analyses,
four OSAS patients were excluded from the multiple comparison
analysis due to incomplete nocturnal saturation data. Significant
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Table 2 | Gray matter volume (GMV) analysis results: (A) brain regions showing significant differences in GMV between healthy controls (HC)

and obstructive sleep apnea syndrome (OSAS) patients; (B) brain regions showing significant correlation with the apnea-hypopnea index (AHI)
or with nocturnal hypoxemia duration in OSAS patients (MNI coord.; 20 vox., uncorrected p < 0.001).

Region Brodmann area X Y z Z-score Cluster size
(A) COMPARISON BETWEEN HC AND OSAS PATIENTS
HC > OSAS L middle frontal gyrus 46 —43 44 9 3.31 52
HC < OSAS R precuneus 7 18 -52 41 3.74 161
R occipital fusiform gyrus 18 26 -87 -19 3.56 69
R occipital lingual gyrus 18 2 —86 -7 3.41 123
(B) CORRELATIONS IN OSAS PATIENTS
AHI positive L postcentral gyrus/inferior parietal lobe 40 —45 -27 26 3.74 123
AHI negative L medial frontal gyrus " -1 48 -17 4.07 229
R uncus 36 21 1 —-35 3.80 187
R precuneus 7 18 =71 44 3.78 97
Desaturation positive L precuneus 7 -17 —60 44 4.70 96
Desaturation negative R superior temporal gyrus 38 46 15 —-33 417 602
L middle temporal gyrus 21 —52 6 —-22 3.94 383
R uncus 36 24 1 =30 3.79 198

Table 3 | White matter volume (WMV) analysis results: (A) brain
regions showing significant differences in GMV between healthy
controls (HC) and obstructive sleep apnea syndrome (OSAS) patients;
(B) brain regions showing significant correlation with nocturnal
hypoxemia duration in OSAS patients (MNI coord.; 20 vox.,
uncorrected p < 0.001).

Region X Y Z Z-score Cluster size

(A) COMPARISON BETWEEN HC AND OSAS PATIENTS

HC > OSAS R occipital 20 -50 -3 3.87 351
lingual gyrus
L middle -23 -85 15 3.54 23
occipital gyrus
(B) CORRELATIONS IN OSAS PATIENTS
Desaturation L medial -7 1 48 3.88 69
positive frontal gyrus
R frontal 20 —-10 52 3.87 64

positive correlations between WMV and nocturnal hypoxemia
duration were found in the left medial frontal gyrus and the right
frontal gyrus (see Table 3).

DISCUSSION

Voxel-based morphometry (VBM) allows voxel-wise comparisons
of brain structures by performing statistical analyses of MR images
that have undergone standard preprocessing, including gray mat-
ter (GM) and white matter (WM) segmentation, normalization
to an MNI anatomical template, and spatial smoothing. How-
ever, normalization introduces a distortion in the local MR sig-
nal due to individual structural variability, resulting in overes-
timation of a given structure’s signal if it has been stretched,
or underestimation if it has been reduced to fit the standard
anatomical template. To circumvent this issue, Good et al. (21)
proposed an additional data treatment step in which GM voxel
values are multiplied by Jacobian determinants (representing

deformation parameters obtained after normalization), result-
ing in modulated data. Modulated (GM or WM volume) and
unmodulated (GMor WM concentration) data yield different
information about examined brain structures. Modulated GM or
WM volume (GMV or WMV) images allow comparing absolute
brain volume, thus inferring the presence of atrophy in a given
brain structure, whereas unmodulated GM or WM concentra-
tion (GMC or WMC) images allow comparing the ratio of GM
or WM to other brain tissue present in a given brain struc-
ture (22). However, unmodulated images do not allow infer-
ences about structural volume differences between brain struc-
tures indifferent subjects or groups of subjects. Moreover, GMC
can be misinterpreted as meaning the concentration of neu-
rons in a given voxel, leading to erroneous interpretations of
potential cellular injury. Therefore, to respond to the question
of whether the brain of OSAS patients presents global or focal
parenchymal atrophy compared to the brain of HC, analyzing
GMYV and WMV appears more appropriate than analyzing GMC
and WMC.

Although VBM studies of OSAS patient brains have obtained
highly inconsistent results, GMV analyses show few or no differ-
ences between patients and HC. Moreover, the majority of studies
reporting GMYV differences present results that are uncorrected for
multiple comparisons, suggesting that the observed effects are of
small magnitude (see Table 4).

The first VBM-based study in OSAS patients was published by
Macey et al. (10) (1.5T) in 21 patients with a mean respiratory
disturbance index (RDI) of 38+ 24 events/h. The analysis was
performed on unmodulated data (GMC), and patients were not
screened for cardiovascular or psychiatric comorbidities. Results
were reported for p =0.001 uncorrected for multiple comparisons
at a 350-voxel extent.

Higher GM signals were reported in OSAS patients compared
to HC in the right postcentral gyrus, posterior lateral parietal and
anterior superior frontal cortex bilaterally, and bilateral parahip-
pocampal gyri, among others. No regions showed higher GM
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posterior parietal cortex, right superior frontal
gyrus, and left parahippocampal gyrus. A
negative correlation with AHI, desaturation

family-wise error correction,

p < 0.005 uncorrected at

voxel level, effects of

3 months of CPAP treatment

duration <90%, and GM-volume in left

posterior parietal cortex

GM-volume showed no increases in patients

Global cortical GM- and WM-volumes were

different between groups

GM-volume showed no significant reduction

in patients following CPAR

GM-volume increased in patients in the

hippocampal and frontal structures following
CPAR which was also correlated with AHI
and desaturation duration in the right

entorhinal cortex and left subiculum

signals in OSAS patients compared to HC, and no differences in
WM were found.

Morrell et al. (11) (1.5T) also examined unmodulated data
(GMC) in seven male OSAS patients with a mean AHI of 28
events/h and found lower GMC in OSAS patients compared to
HC in the left hippocampal region of interest (p = 0.004, corrected
for multiple comparisons, small volume correction). They found
no differences between HC and patients on whole brain com-
parison, p =0.05 corrected for multiple comparisons. The same
research group found similar findings in 22 patients in another
study, with decreased GMC in bilateral posterior hippocam-
pal regions (p=0.001, ROI analysis, uncorrected for multiple
comparisons) (23).

The first study to use modulated VBM data (GMV) and to
investigate the effects of 6 months of CPAP treatment was per-
formed by O’Donoghue et al. (12) (3 T) in 27 patients with severe
OSAS (AHI: 74 events/h) without comorbidities. Using a p thresh-
old of 0.001 uncorrected for multiple comparisons, they observed
scattered areas of GM deficit in patients compared to control sub-
jects, including the posterior and mesial temporal lobe bilaterally
and the left insular region. A reverse contrast showed increased
GMYV in OSAS patients compared to HC in the right basal gan-
glia, and less prominently in scattered frontal lobe and parietal lobe
areas. However, using multiple comparison correction, they found
no differences between OSAS patients and HC, and no changes in
OSAS patients after 6 months of CPAP treatment.

Yaouhi et al. (24) (1.5 T) examined brain structure in 16 newly
diagnosed OSAS patients (AHIL: 38 events/h) using both PET
and VBM (unmodulated VBM data). Voxel-wise GMC analysis
at p=0.005 uncorrected for multiple comparisons (p =0.05 cor-
rected at cluster level) revealed scattered sites of GMC loss in OSAS
patients in the frontal and temporo—parieto—occipital cortices, the
thalamus, some of the basal ganglia, and the cerebellar regions. No
results were provided on the opposite contrast, that is, whether
OSAS patients also showed regions of higher GMC compared
to HC. Macey et al. (10) found similar results in subjects with
cardiovascular comorbidities.

A study by Joo et al. (16) (1.5T) examined both modulated
and unmodulated data from 36 male OSAS patients without
cardiovascular, neurological, or psychiatric comorbidities (AHI:
52.5 events/h). Using FDR correction for multiple comparisons
(p=0.05 and cluster size >200), they found no differences in
GMYV between OSAS patients and HC, and no brain regions with
significant correlations between clinical parameters (age, AHI,
arousal index, and Epworth Sleepiness Scale) and GMV. How-
ever, GMC was significantly reduced in OSAS patients compared
to HC in the bilateral superior frontal gyri, left gyrus rectus, bilat-
eral frontomarginal gyri, bilateral anterior cingulate gyri, right
anterior insular gyrus, bilateral caudate nuclei, bilateral thalami,
bilateral amygdalohippocampal gyri, bilateral inferior temporal
gyri, and bilateral cerebellar cortices. No region showed higher
GMC in patients compared to HC.

Canessa et al. (14) (3T) conducted another VBM study to
examine the effects of CPAP treatment on GMV in OSAS patients
compared to HC. They studied 17 treatment-naive OSAS patients
(AHI: 55.8 events/h) without associated comorbidities. Using
a family-wise error (FWE) cluster-level correction for multiple
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comparisons (p = 0.05, voxel level p =0.005), they found signif-
icantly reduced GMV in pretreatment patients compared with
control subjects in the left posterior parietal cortex and right supe-
rior frontal gyrus. No region showed higher GMV in patients with
OSAS compared to HC. A significant negative correlation was
found between AHI and time of nocturnal desaturation below 90%
Sa0, and GMV in the left posterior parietal cortex. Furthermore,
specifically in the hippocampal region of interest with an uncor-
rected p = 0.005 at voxel level, they found decreased GMV in OSAS
patients compared to HC. After 3 months of CPAP treatment,
specific hippocampal (left subiculum and bilateral entorhinal cor-
tex) and frontal (superior and middle frontal gyri and medial
orbitofrontal cortex) clusters showed increased GMV (FDR cor-
rected at cluster level, p = 0.05). Moreover, after CPAP treatment,
overall GMV was significantly increased in patients with OSAS,
despite no significant increase in total intracranial volume.

The largest VBM study to date, recently published by Mor-
rell et al. (25), investigated GMV in 60 OSAS patients (AHI: 50
events/h) without comorbidities examined at two different sites
(1.5and 3 T). Using topological FDR correction for multiple com-
parisons (p = 0.05, cluster level), they found lower GMV in the
right middle temporal gyrus and cerebellar regions in patients
with OSAS compared to HC. No information was provided as to
whether results were provided on higher GMC in OSAS patients
also displayed regions of higher GM-concentration compared
to HC.

Torelli et al. (17) examined GMV in 16 newly diagnosed OSAS
patients (AHI: 63 events/h) without major cardiovascular disor-
ders (3 T). They found reduced cortical GMV in OSAS patients
compared to controls (p=0.01, multiple comparison correction
data not provided), as well as a region of decreased GMV in the
right hippocampus when applying cluster-wise FWE correction
for multiple comparisons (p = 0.05).

The above studies indicate that decreased GMV in OSAS
patients compared to HC, when applying a statistical correction
for multiple comparisons, were found only in the right tempo-
ral cortex (25) and the left posterior parietal and right superior
frontal corci (14). Increased GMYV after 3 months of CPAP treat-
ment were found in the hippocampal and frontal regions, differing
from brain regions that showed decreased GMV compared to HC
at baseline (14).

The results of our study are in line with previous observa-
tions, as we found no GMV or WMV differences between 27
treatment-naive OSAS patients and HC when data were corrected
for multiple comparison. Using a more lenient threshold (voxel-
wise p =0.001 uncorrected, 20-voxel extent threshold), we found
small GMV decreases in the left frontal cortex, but also increases
in the right parietal and occipital regions. Given that our subjects
had less severe disease (AHI, nocturnal hypoxemia) than subjects
in previous studies, our results extend previous observations to a
more moderate range of OSAS and support the finding that GMV
changes are not prevalent in the brain of OSAS patients.

Interestingly, compared to the findings of Morrell et al., we
found a significant negative correlation (p = 0.05, FDR corrected
at cluster level) between nocturnal hypoxemia duration and GMV
in the same region of the temporal lobe as their finding of

decreased GMV in OSAS patients compared to HC. This sug-
gests an association between the effect of nocturnal hypoxemia
and decreased GMV in OSAS patients compared to HC. We did
not expect the lateral temporal regions to show a negative corre-
lation with hypoxemia, whereas the hippocampal regions did not.
However, as Morrell et al. noted, this area is susceptible to hypoxic
damage in an animal model of OSAS (25). Neurons in the dentate
gyrus of the hippocampal formation have been shown to maintain
their ability to regenerate throughout adult life, and this neuroge-
nesis can be inhibited by sleep fragmentation or deprivation (26).
The fact that hippocampal neurons can regenerate even though
they are sensitive to oxidative injury, but that the neurogenesis can
be inhibited by insufficient sleep, could explain the inconsistent
VBM findings in the hippocampus of OSAS patients.

The fact that we found no difference between patients and con-
trols, or between treatment groups while finding a significant cor-
relation with nocturnal hypoxemia in the temporal lobe GMV may
appear contradictory, but in reality reflects two different aspects
of OSAS effects. On one hand, it indicates that OSAS-related mor-
phological changes, if present, are of small magnitude. On the
other, it demonstrates that between AHI and nocturnal hypox-
emia duration, the latter is the OSAS-related factor that has the
most consistent effect on GMYV, particularly in the temporal lobes.
Lateral temporal regions that showed correlation with hypoxemia
in our study and differences in GMV in Morrell et al.’s work (11,
23, 25) are involved in various associative processes, particularly
memory processing. However, in order to better understand the
relationship between these cortical areas and cognitive deficits in
OSAS patients, further larger patient sample studies that simulta-
neously measure both GMV and cognitive impairment are needed.
Moreover, more severe hypoxemia is often seen in overweight or
obese patients with OSAS. A larger group of patients would allow
investigation of findings in normal weight and overweight OSAS
patients and of the role of obesity by dissociating OSAS from
obesity.

It is unclear why disease severity appears to correlate poorly
with GMV changes in OSAS patients. One possible explanation
is that factors other than disease severity or vascular comorbid-
ity could be at play. In particular, Alchanatis et al. (27) showed
that high intelligence (measured by I1Q) has a protective effect on
the cognitive function of patients with OSAS. No VBM studies to
date have included a measure of education level (which is a surro-
gate for many personal, socioeconomic, and cognitive variables) in
their analysis, and further studies are needed to determine whether
patients’ education level can explain the discrepancies observed in
structural brain studies.

Another question that remains unanswered is which patho-
physiological processes are represented by changes in VBM, GM, or
WM signals. It has been postulated that decreased GMV represents
cellular loss, as seen in local and diffuse brain atrophy. However,
in view of the fact that both decreased and increased signals have
been observed in OSAS patients, Canessa et al. (14) proposed that
changes in VBM signals may be less specific, and may represent
neuronal or vascular processes, or both. Future studies could aim
to elucidate this question by combining VBM with perfusion and
water-sensitive imaging.
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In conclusion, in terms of VBM changes in GMYV, there is lit-
tle difference between OSAS patients and HC. The largest VBM
study to date points to structural changes in the lateral aspect of
the temporal lobe, which also demonstrated a significant negative
correlation with nocturnal hypoxemia duration in our study. Fur-
ther research is needed to elucidate the potential protective role
of cognitive reserve and to distinguish the neuronal and vascular
glial contributions to VBM-measured GMYV signal changes.
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