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Introduction: Neurointensive care of traumatic brain injury (TBI) patients is currently based
on intracranial pressure (ICP) and cerebral perfusion pressure (CPP) targeted protocols.
There are reasons to believe that knowledge of brain tissue oxygenation (BtipO2) would
add information with the potential of improving patient outcome.The aim of this study was
to examine BtipO2 and cerebral metabolism using the Neurovent-PTO probe and cerebral
microdialysis (MD) in TBI patients.

Methods: Twenty-three severe TBI patients with monitoring of physiological parameters,
ICP, CPP, BtipO2, and MD for biomarkers of energy metabolism (glucose, lactate, and
pyruvate) and cellular distress (glutamate, glycerol) were included. Patients were grouped
according to injury type (focal/diffuse) and placement of the Neurovent-PTO probe and MD
catheter (injured/non-injured hemisphere).

Results: We observed different patterns in BtipO2 and MD biomarkers in diffuse and focal
injury where placement of the probe also influenced the results (ipsilateral/contralateral).
In all groups, despite fairly normal levels of ICP and CPP, increased MD levels of gluta-
mate, glycerol, or the L/P ratio were observed at BtipO2 <5 mmHg, indicating increased
vulnerability of the brain at this level.

Conclusion: Monitoring of BtipO2 adds important information in addition to traditional ICP
and CPP surveillance. Because of the different metabolic responses to very low BtipO2 in
the individual patient groups we submit that brain tissue oximetry is a complementary tool
rather than an alternative to MD monitoring.

Keywords: brain tissue oxygenation, cerebral metabolism, traumatic brain injury, cerebral ischemia, Neurovent-PTO

INTRODUCTION
Traumatic brain injury (TBI) remains a major cause of mor-
bidity and mortality (1, 2). The management of TBI patients is
largely based on intracranial pressure (ICP) and cerebral perfusion
pressure (CPP) targeted treatment protocols in order to prevent
secondary brain injury and to improve patient outcome (3–7).
Cerebral hypoxia and ischemia frequently occur after severe head
injury (8–10) and are major factors causing secondary brain injury
(11, 12). The occurrence and duration of both entities are nega-
tively correlated with patient outcome (12–14). Multi-modality
monitoring of brain tissue oxygenation (BtipO2) and cerebral
metabolism [e.g., with microdialysis (MD)], provides informa-
tion for early detection of brain ischemia and could possibly be
used to avoid secondary ischemic brain injury (15). In the last
decades, extensive amount of research has been done regarding
cerebral MD and Clark-type electrochemical BtipO2 monitors (16,
17). Recently, a new fiber optic probe (Neurovent-PTO, NV) was
introduced. The device has a great clinical advantage of measur-
ing BtipO2, ICP and brain temperature, simultaneously in a single
probe. The clinical experience of the new NV probe is not exten-
sively reported and its potential benefits and limitations needs to
be further explored. We also need further knowledge to understand
the clinical significance of low BtipO2 levels. We have previously

reported the accuracy and stability of the NV probe in vitro (18)
and defined the BtipO2 threshold level of ischemia (19) in a stan-
dardized pig brain death model (20). To our knowledge, however,
there is no published study clarifying the relation of BtipO2 and
cerebral metabolism using the new NV probe and cerebral MD in
TBI patients. Therefore, the aim of the present study was to exam-
ine the cerebral metabolism and cerebral oxygen levels with MD
and the new NV probe. The secondary objective was to determine
if the response pattern differed depending on type of injury and
probe localization.

MATERIALS AND METHODS
PATIENT MATERIAL AND NEUROINTENSIVE CARE
This study included 23 patients (21 men and 2 women) with
severe TBI [including cerebral contusions, diffuse axonal injury
(DAI), and extracerebral hematomas]. Mean age was 46 years
(range 16–82). All patients were admitted to the neurointensive
care unit (NICU) at the Uppsala University Hospital between
year 2008 and 2012. Patients with Glasgow Coma Scale of ≤8
(not obeying commands or worse) at the NICU were included.
CT scans were performed in all patients. All patients received
continuous propofol infusion 1–4 mg/kg/h (Propofol-Lipuro®, B
Braun Melsungen AG, Melsungen, Germany) as sedation and
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morphine as analgesia, 1–3 mg intermittently (Morfin Meda®,
Meda, Sollentuna, Sweden). In all patients, advanced multipa-
rameter neuromonitoring was applied for ICP, CPP, BtipO2,
and for cerebral metabolism. The BtipO2 and MD probes were
inserted into the brain as soon as possible after the injury or
if a patient deteriorated during the stay in NICU (see below).
The treatment was based on ICP and CPP guided protocols (ICP
<20 mmHg; CPP >60 mmHg) including mild hyperventilation
(PaCO2 30–35 mmHg) and head elevation to 30°. Normoventila-
tion was applied as soon as possible. Mass lesions were removed
when indicated. High ICP was controlled with hyperventilation,
cerebrospinal fluid drainage, barbiturate coma treatment (Pen-
tothal Natrium, Abbott Laboratories, IL, USA), and decompressive
craniectomy in an escalated manner.

BRAIN TISSUE OXIMETRY
A multiparameter Neurovent-PTO® (NV) probe (Raumedic,
Munchberg, Germany) for continuous measurements of ICP,
BtipO2, and brain temperature was inserted via a burr hole usually
in the right frontal lobe. The probes were placed in the left frontal
lobe in cases when hemicraniectomy or evacuation of mass lesion
was indicated on that side.

MICRODIALYSIS
A MD catheter [71 High Cut-Off Brain Microdialysis Catheter,
M Dialysis AB (formerly CMA Microdialysis) Solna, Sweden] was
placed through a separate burr hole in close proximity to the NV
probe. The MD catheter was connected to a microinjection pump
(106 MD Pump, M Dialysis AB) and perfused with Perfusion Fluid
CNS (M Dialysis AB) with a flow rate of 0.3 µL/min. The MD
samples were collected in 1-h intervals and analyzed for lactate,
pyruvate, glucose, glutamate, and glycerol with enzymatic tech-
niques using a bedside analyzer (CMA 600, CMA Microdialysis,
Solna, Sweden). The analyzers were automatically calibrated when
started as well as every sixth hour using standard calibration solu-
tions from the manufacturer. The total imprecision (coefficient
of variation) of the analyzed method was <10% for all analytes.
In all patients, the first 6 h of the monitoring time was excluded
due to the time needed for the measurement stabilization of the
BtipO2 probe. The time periods with barbiturate induced coma
were excluded from this study. Bold line on Y -axis (Figures 1–3)
shows the tentative normal MD values based on Reinstrup et al.
(21) and Schulz et al. (22). No correction for relative recovery
(extraction efficiency) was made.

CLASSIFICATION OF TYPE OF INJURY AND PROBE PLACEMENT
The type of injury was classified as focal (extra cerebral hematomas
or contusions) or as DAI (Table 1). The patient group with focal
lesions was subdivided into two groups based on probe placement:
ipsilateral (injured hemisphere) and contralateral (non-injured
hemisphere).

DATA COLLECTION AND STATISTICAL METHODS
Intracranial pressure, CPP, MD, BtipO2, and physiological data
(heart rate, arterial blood pressure, and peripheral oxygen satu-
ration) were acquired and processed using the Odin software for
multi-modality monitoring in the NICU, developed at Uppsala

University and Edinburgh University (23). The trend data were
stored in a minute by minute time format. Artifacts, which mainly
occurred during the probe recalibration or nursing interventions,
were manually removed from the datasets. For the correlative
MD data analysis, the continuous data of BtipO2 and CPP were
averaged for 1-h intervals to match the MD sampling periods tak-
ing the 17 min time lag owing to MD catheter dead space into
account. Statistical analyses and graphical views were done using
Statistica 10.0 for Windows (StatSoft Inc., Tulsa, OK, USA). All
data were evaluated for normal distribution and did not meet the
assumptions for parametric analysis. Therefore a non-parametric
analysis was performed using Kruskal–Wallis analysis of variance
(ANOVA) on the full set of evaluated BtipO2 levels and MD data,
and if this was significant, Mann–Whitney U test was used to
determine at which levels of BtipO2 there were significant differ-
ences (ICP, CPP, and MD). Results were considered significant
if p < 0.05. The data are presented as mean values ± standard
deviation (SD).

ETHICS
The regional ethical review board in Uppsala has approved this
study for human research. Informed consent to participate in the
study was obtained for all patients from the nearest kin.

RESULTS
The BtipO2 and MD probes were inserted 35 ± 23 h (mean ± SD)
after the injury. The mean duration of the BtipO2 was 199 h
(range 13–496 h). Table 2 and Figures 1–3 summarizes the
measurements of ICP, CPP, and MD values (L/P ratio, glu-
tamate, glycerol, glucose) at different BtipO2 levels for all
patient groups. The results are presented divided in focal
(with ipsilateral or contralateral measurements) and diffuse
injury.

FOCAL BRAIN INJURY AND PROBE PLACEMENT ON THE
CONTRALATERAL SIDE
ICP, CPP, and BtipO2

During monitoring ICP mean values ranged between 12 and
17 mmHg and CPP was in the range 70–90 mmHg at BtipO2 levels
of ≥10 mmHg. When BtipO2 decreased below 10 mmHg ICP was
significantly higher (21.0 ± 3.2 mmHg) and CPP was significantly
lower (61.4 ± 6.1 mmHg) (p < 0.01) (Table 2; Figures 1A,B).

MD-glutamate and BtipO2

In this group of patients, MD-glutamate was around 3–9 µmol/L
at BtipO2 levels higher than 5 mmHg (Table 2; Figure 1C). When
BtipO2 was below 5 mmHg we observed a significant (p < 0.05)
increase of MD-glutamate (15.8 ± 6.7 µmol/L).

MD-glycerol and BtipO2

Similarly, in all patients in this group MD-glycerol was 44–
66 µmol/L when BtipO2 was >10 mmHg. BtipO2 5–10 mmHg
was accompanied with a slight increase of MD-glycerol to
97.5 ± 134.9 µmol/L (Table 2; Figure 1D). A significant increase
of MD-glycerol to 291.3 ± 144.5 (p < 0.01) was observed at very
low oxygen levels (<5 mmHg).
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FIGURE 1 | Focal injury and contralateral probe location. ICP (A), CPP (B),
glutamate (C), glycerol (D), L/P ratio (E), and glucose (F) at different BtipO2

levels in TBI patients with focal injury and probe (MD and NV) placement on
the contralateral side from the injury (non-injured hemisphere). Bold line on

Y -axis shows tentative normal MD values based on Reinstrup et al. (21) and
Schulz et al. (22). All values are expressed as mean ± SD. *Denotes a
statistically significant difference (p < 0.05) compared to each of the higher
BtipO2 levels (Mann–Whitney U test).
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FIGURE 2 | Focal injury and ipsilateral probe location. ICP (A), CPP (B),
glutamate (C), glycerol (D), L/P ratio (E), and glucose (F) at different BtipO2

levels in TBI patients with focal injury and probe (MD and NV) placement on
the ipsilateral side from the injury (injured hemisphere). Bold line on Y -axis

shows tentative normal MD values based on Reinstrup et al. (21) and Schulz
et al. (22). All values are expressed as mean ± SD. *Denotes a statistically
significant difference (p < 0.05) compared to each of the higher BtipO2 levels
(Mann–Whitney U test).
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FIGURE 3 | Diffuse injury and probe location on the right side. ICP (A),
CPP (B), glutamate (C), glycerol (D), L/P ratio (E), and glucose (F) at different
BtipO2 levels. TBI patients with diffuse axonal injury and probe (MD and NV)
placements in the right frontal hemisphere. Bold line on Y -axis shows

tentative normal MD values based on Reinstrup et al. (21) and Schulz et al.
(22). All values are expressed as mean ± SD. *Denotes a statistically
significant difference (p < 0.05) compared to each of the higher BtipO2 levels
(Mann–Whitney U test).
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Table 1 |Traumatic brain injury patients investigated: type of injury,

NV probe, and MD catheter location.

Patient no. Extra cerebral

hematoma

Cerebral

contusions

Diffuse axonal

injury

Probe

location

1 X Contra

2 X Contra

3 X Contra

4 X Contra

5 X Contra

6 X X Contra

7 X X Ipsi

8 X X Ipsi

9 X Ipsi

10 X Ipsi

11 X Ipsi

12 X Ipsi

13 X Ipsi

14 X Ipsi

15 X Ipsi

16 X Ipsi

17 X Ipsi

18 X Ipsi

19 X Right side

20 X Right side

21 X Right side

22 X Right side

23 X Right side

Ipsi, probe placement frontal in injured hemisphere; contra, probe placement

frontal in non-injured hemisphere; right, probe placement in right frontal hemi-

sphere.

MD–L/P ratio and BtipO2

The MD–L/P ratio remained stable and within the normal levels
(mean range 16–19) when BtipO2 was >5 mmHg. The MD–L/P
ratio was significantly increased to 24.4 ± 3.0 (p < 0.01) at BtipO2

levels below 5 mmHg (Table 2; Figure 1E).

MD-glucose and BtipO2

Table 2 and Figure 1F shows the mean MD-glucose concentra-
tions at different BtipO2 levels. We did not observe any significant
differences between MD-glucose and BtipO2.

FOCAL BRAIN INJURY AND PROBE PLACEMENT ON THE IPSILATERAL
SIDE
ICP, CPP, and BtipO2

Table 2 and Figure 2A show the ICP corresponding to different
BtipO2 levels in patients with a focal injury and probe placement
in the ipsilateral side. Mean ICP was within the normal levels,
between 12 and 17 mmHg for all levels of BtipO2. The lowest
mean ICP (12.5 ± 6.1 mmHg) was seen at the highest BtipO2 levels
(≥40 mmHg), but the differences were not statistically significant.

The mean CPP values with BtipO2 levels below 10 mmHg
were significantly p < 0.05) lower than mean CPP at BtipO2

>10 mmHg (Table 2; Figure 2B). When the BtipO2 levels were
between 5 and 10 mmHg, the mean CPP was 68.8 ± 11.4 mmHg.

And at the BtipO2 level below 5 mmHg the mean CPP was
65.5 ± 12.0 mmHg. At BtipO2 levels above 10 mmHg the CPP
levels were stable and somewhat high (mean range 78–82 mmHg).

MD-glutamate and BtipO2

The mean MD-glutamate concentration ranged between 5 and
8 µmol/L at BtipO2 above 10 mmHg. A slight but not significant
increase in MD-glutamate concentration was observed at levels
of BtipO2 5–10 mmHg (Table 2; Figure 2C). A drop of BtipO2

below 5 mmHg resulted in a significant increase (p < 0.05) of
MD-glutamate concentration (14.8 ± 11.4 µmol/L).

MD-glycerol and MD–L/P ratio
No differences were seen between BtipO2 levels MD-glycerol. No
significant differences observed between BtipO2 and MD–L/P ratio
(Table 2; Figures 2D,E).

Mean MD-glucose
Mean MD-glucose levels were 2.1 ± 0.4 mmol/L at the high-
est BtipO2 pressure and had a stepwise decreasing trend to
1.5 ± 0.5 mmol/L at BtipO2 levels 0–5 mmHg (Table 2; Figure 2F).
This difference did not reach statistical significance.

DIFFUSE AXONAL INJURY
ICP, CPP, and BtipO2

In patients with DAI, mean ICP ranged from 11 to 15 mmHg
when BtipO2 levels were >5 mmHg (Table 2; Figure 3A). At the
level of BtipO2 below 5 mmHg the mean ICP was even lower
(6.6 ± 4.7 mmHg) but not statistically significant. At all BtipO2

levels CPP remained within normal levels ranging from 72 to
82 mmHg (Table 2; Figure 3B). No correlation was found between
CPP and BtipO2 levels.

MD-glutamate and BtipO2

MD-glutamate was abnormally high in all patients within this
group (Figure 3C). It was significantly higher (78.2 ± 73.9 µmol/L;
p < 0.05) when BtipO2 level was <5 mmHg (compared to BtipO2

≥5 mmHg) (Table 2; Figure 3C). At BtipO2 levels of ≥5 mmHg
the mean MD-glutamate concentrations had no significant corre-
lation with BtipO2 and varied between 17.0 and 45.1 µmol/L.

MD-glycerol and BtipO2

Mean MD-glycerol concentration ranged between 44.1 and
67.1 µmol/L and had no significant correlation between different
BtipO2 levels (Table 2; Figure 3D).

MD–L/P ratio and BtipO2

Table 2 and Figure 3E presents the MD–L/P ratio correlation to
different BtipO2 levels. The mean MD–L/P ratio values ranged
between 18.1 and 26.9 and had no relation to BtipO2.

MD-glucose and BtipO2

Table 2 and Figure 3F shows the MD-glucose concentrations in
relation to different BtipO2 levels. MD-glucose remained normal at
all BtipO2 levels and varied between 1.8 and 2.5 mmol. Differences
in MD-glucose levels did not reach statistical significance.
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Table 2 | Brain tissue oxygenation and MD-dialyzate concentrations at different ICP and CPP levels.

BtipO2 ICP CPP Glutamate Glycerol L/P ratio Glucose Sample

size (MD)

FOCAL INJURY, CONTRALATERAL (n = 6)

<5 18.9 ± 6.0* 61.9 ± 8.4* 15.8 ± 6.7* 291.3 ± 144.5* 24.4 ± 3.0* 2.4 ± 0.7 12

5 ≤ 10 21.0 ± 3.2* 61.4 ± 6.1* 6.8 ± 5.5 97.5 ± 134.9 18.0 ± 2.8 2.4 ± 0.7 20

10 ≤ 20 15.3 ± 6.5 74.0 ± 20.6 9.2 ± 10.7 44.6 ± 20.5 16.8 ± 2.7 1.9 ± 0.7 22

20 ≤ 30 12.0 ± 5.4 89.0 ± 20.0 8.2 ± 7.7 41.0 ± 15.5 17.6 ± 4.6 1.6 ± 0.5 9

30 ≤ 40 14.7 ± 6.5 76.2 ± 16.5 5.7 ± 6.0 63.9 ± 25.8 19.2 ± 5.3 2.0 ± 0.4 262

≥40 17.1 ± 7.2 71.0 ± 11.7 3.3 ± 1.5 66.8 ± 22.3 16.5 ± 3.3 2.4 ± 0.4 228

FOCAL INJURY, IPSILATERAL (n = 12)

<5 14.9 ± 7.8 65.5 ± 12.0* 14.8 ± 11.4* 80.4 ± 35.8 22.8 ± 4.3 1.5 ± 0.5 30

5 ≤ 10 17.1 ± 6.8 68.8 ± 11.4* 9.3 ± 8.3 75.7 ± 45.8 23.2 ± 2.8 1.5 ± 0.8 48

10 ≤ 20 15.6 ± 6.3 78.2 ± 13.5 6.7 ± 7.1 87.4 ± 58.3 24.1 ± 2.9 1.6 ± 0.7 152

20 ≤ 30 14.9 ± 5.6 82.1 ± 13.8 8.2 ± 6.8 92.1 ± 67.3 24.4 ± 4.0 1.7 ± 0.7 123

30 ≤ 40 15.8 ± 6.2 79.0 ± 14.4 5.5 ± 5.1 100.1 ± 53.1 25.0 ± 4.5 1.7 ± 0.8 244

≥40 12.5 ± 6.1 80.6 ± 13.3 6.7 ± 5.5 74.2 ± 55.7 22.5 ± 5.5 2.1 ± 0.4 85

DIFFUSE INJURY (n = 5)

<5 6.6 ± 4.7 82.6 ± 13.3 78.2 ± 73.9* 65.8 ± 32.2 24.5 ± 11.2 2.3 ± 1.0 14

5 ≤ 10 11.8 ± 5.9 75.6 ± 11.6 20.0 ± 27.4 44.1 ± 21.7 18.1 ± 5.4 2.2 ± 0.7 33

10 ≤ 20 11.8 ± 5.1 74.0 ± 10.1 17.0 ± 21.7 62.9 ± 35.6 26.5 ± 8.1 1.8 ± 0.6 166

20 ≤ 30 12.5 ± 4.3 74.0 ± 10.6 19.2 ± 19.6 54.3 ± 30.3 26.7 ± 10.0 1.9 ± 0.8 270

30 ≤ 40 13.0 ± 4.2 77.4 ± 25.4 28.7 ± 25.4 62.2 ± 44.5 23.8 ± 6.2 2.2 ± 1.0 129

≥40 15.0 ± 4.6 72.8 ± 12.4 45.1 ± 21.8 67.1 ± 29.0 26.9 ± 7.4 2.5 ± 1.0 45

NV probe and MD catheter placement in focal (ipsi- or contra-lateral side) or diffuse axonal injury (right frontal hemisphere). All values are shown as mean ± SD.

*Denotes a statistically significant (p < 0.05) difference compared to each of the higher BtipO2 levels (Mann–Whitney U test).

DISCUSSION
We found that there were different response patterns of BtipO2

and cerebral metabolism depending on the injury type and probe
localization which will be discussed in the following sections.
Monitoring of BtipO2 in TBI patients is of considerable clinical
interest, but the exact threshold level of ischemia has been difficult
to establish despite progress on methodological issues. Measure-
ments of BtipO2 using the recently introduced NV probes have
shown to be safe and reliable in several experiments (18–20, 24).
In a pre-clinical study, we found that impaired cerebral metab-
olism determined according to intracerebral MD levels occurred
at a BtipO2 level below 10 mmHg using the new NV probe (19).
However, to our knowledge, there are no previously published clin-
ical studies using NV probes together with MD in order to relate
cerebral metabolism with critical BtipO2 levels in TBI patients.
Therefore, the objective of this investigation was to study BtipO2

and cerebral metabolism at different levels of ICP and CPP in
patients with focal and diffuse TBI using the new NV probe.

BRAIN TISSUE OXYGENATION AND INTRACRANIAL DYNAMICS
Results from our previous pre-clinical study showed a simulta-
neous decrease of CPP and BtipO2 during a gradual increase of
the ICP (19). There was also a threshold level of impaired cere-
bral metabolism observed at BtipO2 <10 mmHg. In the present
study,we found a significant correlation between low BtipO2 values
(<10 mmHg) and increased ICP (mean range 19–21 mmHg) or
decreased CPP (mean 61 mmHg) in TBI patients with focal injury
and the probe placed in the un-injured hemisphere (Figure 1;

Table 2). In patients with focal injury and probe placement in the
ipsilateral hemisphere, periods with BtipO2 <10 mmHg showed
significantly lower CPP but there was no relation to ICP (Figure 2;
Table 2). In patients with diffuse injury periods with BtipO2

<5 mmHg tended to be associated with lower ICP but there was
no relation to CPP. Thus, the type of injury and probe placement
appear to be factors determining the relation between BtipO2 and
ICP and CPP, respectively.

L/P RATIO
The L/P ratio is a balance between lactate and pyruvate reflect-
ing the state of cerebral oxidative metabolism and is known as a
sensitive marker of cerebral ischemia (25–28). MD–L/P ratio was
recently reported to be an independent positive predictor of poor
outcome in a large cohort of TBI patients (29). Normal MD–L/P
ratio values have been reported previously as approximately 15–20
(21, 22, 30, 31). Prior studies have used different L/P ratio thresh-
old levels of cerebral ischemia ranging from 25 to 40 (17, 19, 32,
33). Results from a study of focal TBI revealed that the L/P ratio
values are higher in the tissue “at-risk” (ipsilateral side) compared
to “normal” tissue (contralateral side) (32). Similarly, in the cur-
rent study L/P ratio seemed to be higher at all BtipO2 levels in
TBI patients with focal injury and when probes were placed in
the ipsilateral side and also in DAI patients. However, a decrease
of BtipO2 to very low levels (<5 mmHg) resulted in a significant
increase of L/P ratio only in patients with focal brain injury and
when probes were placed in contralateral side but not in the ipsi-
lateral side (Figures 1E and 2E). Thus, a somewhat provocative
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assumption appeared that in the case of injured tissue in which
the L/P ratio is already elevated, very low BtipO2 levels do not lead
to even higher L/P ratios. In relatively un-injured tissue (contralat-
eral side) with a normal L/P ratio, however, very low BtipO2 levels
do lead to increases in the L/P ratio. Further studies with increased
number of patients are needed to support this hypothesis.

GLUTAMATE
Glutamate is the main excitatory transmitter of the central ner-
vous system. In a healthy brain it is actively taken up by neurons
and astrocytes after it is released in the synaptic cleft. A signifi-
cant increase in interstitial glutamate indicates impaired cerebral
energy metabolism and impending cell damage (34). Increased
brain interstitial MD-glutamate has been reported earlier in TBI
(17, 35–40).

MD-glutamate basal concentration in humans ranges between
5 and 15 µmol/L (21, 22). A clinical BtipO2 TBI study identi-
fied MD-glutamate as the most sensitive and early marker of
cerebral ischemia (15). In that study, a significant increase of MD-
glutamate was observed at BtipO2 level below 10 mmHg. A positive
correlation has been demonstrated in TBI patients between high
levels of MD-glutamate and increased ICP and poor outcome (41).
Increased MD-glutamate levels have also been reported in TBI
patients mostly with CPP below 70 mmHg (37). In that study, the
authors also found patients with high MD-glutamate and CPP
above 70 mmHg. In addition, they did not specify the location of
the probe and the type of the injury which could explain poten-
tially different pathophysiological processes. The effect of MD
catheter location has also been studied in TBI patients with focal
injury, and higher MD-glutamate concentrations were found in
the most injured brain hemisphere (42).

In the present study in patients with focal TBI, we observed that
MD-glutamate increased significantly irrespective of the place-
ment of the probe when BtipO2 decreased to extremely low
(<5 mmHg) levels. DAI patients appeared to have higher MD-
glutamate levels than patients with a focal injury, but even in
this group a decrease of BtipO2 to <5 mmHg was associated
with significantly higher glutamate levels (Figure 3C), illustrat-
ing the energy dependence of the astrocytic glutamate-glutamine
cycle capacity to clear interstitial glutamate (34). The overall high
MD-glutamate concentration observed in diffuse injury could be
explained by massive neuronal cell damage occurring in DAI and
most likely originating from intracellular stores that leak into the
extra-cellular space as the neuronal membrane loses its structural
integrity (43).

GLYCEROL
Glycerol is one of the end products in cell membrane phospholipid
degradation. It can be used as a marker of phospholipid degrada-
tion in cerebral ischemia (44). Experimental and clinical studies
have shown significant increases of MD-glycerol during cerebral
ischemia (44–46). Normal cerebral MD-glycerol levels have been
reported previously from patients during wakefulness, anesthe-
sia, and neurosurgical procedures (21). Clausen et al. reported
increased glycerol levels when BtipO2 decreased below 10 mmHg
(47). We have recently shown in a pre-clinical study that the inter-
stitial MD-glycerol concentration increases when CPP or BtipO2

decrease (19). In the present study under similar conditions (focal
TBI on the contralateral side), periods with low CPP and BtipO2

significantly correlated with increased MD-glycerol levels. How-
ever, we did not see any correlation of BtipO2 and MD-glycerol
levels in the more injured hemisphere (ipsi) or in DAI patients.
These results are similar to those for L/P ratio in that relatively
un-injured tissue seemed to be more sensitive to decreased BtipO2

than injured tissue. It is unclear which factors are responsible for
the heterogeneity of the MD-glycerol levels between hemispheres
in focal TBI and between focal TBI and DAI patients. Based on
recent validation data implicating MD-glycerol as a biomarker of
oxidative stress we submit that this may be an important additional
factor to consider (48).

CLINICAL ASPECTS
In a clinical situation BtipO2 may be influenced by parameters
such as cerebral metabolism, cerebral blood flow, oxygen diffu-
sion, sedation, hyperventilation, low inspired oxygen, ICP and
CPP changes, age, trauma severity, and other traumatic changes
in the cellular environment. It is obvious that the interpretation
of BtipO2 needs to be carefully considered, preferably together
with other parameters such as MD and cerebral blood flow assess-
ments. The thresholds may vary in different patients. However, in
all three patient groups analyzed very low BtipO2 levels <5 mmHg
were accompanied by increases in either the MD–L/P ratio, MD-
glutamate or MD-glycerol, indicating an increased vulnerability
of the brain at this level of oxygen despite fairly normal levels of
ICP and CPP. Thus, BtipO2 monitoring adds valuable informa-
tion about the brain vulnerability not disclosed by routine ICP
and CPP surveillance. However, very low BtipO2 levels <5 mmHg
were associated with different response patterns for biomarkers
of energy metabolism (MD-glucose, MD–L/P ratio) and cellu-
lar distress (MD-glutamate, MD-glycerol) suggesting that BtipO2

monitoring is a complement to MD monitoring rather than an
alternative.

LIMITATIONS OF THE STUDY AND FUTURE DIRECTION OF RESEARCH
A number of limitations of this study should be recognized. First,
the limited number of patients did not permit multivariate sta-
tistical analysis comparing other factors such as carbon dioxide
partial pressure (pCO2), sedation, and inspired oxygen concen-
tration. Second, we could not address the dependence of oxygen
metabolism, oxygen extraction fraction, and cerebral blood flow
including auto-regulation. Third, brain temperature data were not
analyzed in this paper for technical reasons. Future TBI studies
are needed to explore how episodes of low or high BtipO2 levels
are correlated with hyperventilation, sedation, changes in inspired
oxygen concentration, blood pressure, cerebral auto-regulation,
cerebral blood flow, and oxygen metabolism as well as outcome.
To gather a sufficient number of patients a multi-center study may
be needed.

CONCLUSION
We observed different patterns of changes in BtipO2 and cere-
bral MD biomarker patterns in focal and diffuse TBI patients.
The placement of the probe in focal injury did also influence the
results. However, despite fairly normal levels of ICP and CPP in all
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groups, increased cerebral MD levels of glutamate, glycerol, or the
lactate/pyruvate ratio were observed at BtipO2 <5 mmHg, indi-
cating increased vulnerability of the brain at this critical level of
tissue oxygenation.
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