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Alzheimer’s disease (AD) is a devastating
disease affecting 5.2 million Americans. As
the cause of death between 2000 and 2010,
AD increased by 68% (1). The number of
individuals developing AD in the United
States will rise dramatically in the follow-
ing decades (2). As AD patients are often
resistant to pharmacotherapy, alternative
therapeutic strategies are imperative. Non-
invasive and non-lesional brain stimula-
tion is a promising therapeutic option that
has been attracting increasing attention
over the last few years (3–6). Brain stim-
ulation is useful to accelerate diagnosis
and treatment (6, 7). This article focuses
on advances in cognitive neurorehabilita-
tion via brain stimulation techniques in
AD patients to provide insights into a
promising ray of hope for AD patients.

NON-INVASIVE BRAIN STIMULATION
TRANSCRANIAL MAGNETIC STIMULATION
Transcranial magnetic stimulation (TMS)
modulates cortical activity non-invasively
(4). Repetitive transcranial magnetic stim-
ulation (rTMS) creates magnetic pulses
to the scalp delivered through a coil at
a rhythmic repetition rate. The magnetic
pulse causes cortical neurons to depo-
larize (8). TMS is an important corti-
cal stimulation method for the adjunctive
treatment of neurodegenerative disorders
such as Parkinson’s disease (9). Further-
more, TMS can improve cognitive function
in neuropsychiatric disorders (10). RTMS
studies revealed the pivotal role of the pre-
frontal cortex (PFC) during information
encoding and retrieval (11–15). Further-
more, as neuroimaging studies revealed,
heightened activity in the dorsolateral PFC
(DLPFC) is one of the brain abnormalities

associated with AD (16, 17). These changes
in brain activity in the DLPFC under-
pin the recruitment of compensatory net-
works (18, 19). It would thus make sense
to modulate the PFC’s neural activity to
modify memory function, the most promi-
nent feature of disturbed cognition in
AD. There is solid evidence that high-
frequency rTMS over the DLPFC is supe-
rior to low-frequency rTMS in treating cog-
nitive dysfunction in AD patients as mea-
sured by the mini mental state examina-
tion (MMSE) (20). The first studies using
TMS in AD showed that high-frequency
rTMS of the DLPFC improves naming
accuracy. Demented patients often dis-
play impaired naming ability (21). RTMS
improved both action and object naming in
a group of advanced AD patients (22, 23).
Auditory verbal comprehension of contin-
uous daily DLPFC–rTMS over 4 months
was increased for up to 2 months after stim-
ulation (24). As the inferior PFC plays a
role in controlling memory (25), stimulat-
ing that part of the PFC in AD patients is
a reasonable approach. Indeed, stimulation
of the left inferior PFC resulted in enhanced
episodic memory function (26). Alongside
the PFC, the parietal cortices are impor-
tant for information retrieval (27). RTMS
of the parietal cortex advances the asso-
ciative memory capacity in patients with
mild cognitive impairment (MCI) (15).
The combination of cognitive training with
rTMS seems to benefit cognitive functions
as much as treatment with cholinesterase
inhibitors (28, 29). Moreover, TMS is
useful for identifying early AD patients
with cholinergic degeneration (30), and
for monitoring the drug response (7). The
biomarker of central cholinergic activity

such as short-latency afferent inhibition
(SAI) assessed by TMS is relevant to the
drug response (31). Other TMS measures
such as long-interval intracortical inhi-
bition (LICI) are also worth considering
for measuring drugs. Patients undergo-
ing monotherapy or combination ther-
apy with acetylcholinesterase inhibitors
demonstrated impaired LICI when com-
pared to healthy controls (7). Remarkably,
the LICI values correlated with Alzheimer’s
Disease Assessment Scale–Cognitive Sub-
scale (ADAS–Cog) scores. These findings
indicate that these neurophysiologic TMS
parameters help us measure the response
to anti-dementia drugs (7).

TRANSCRANIAL DIRECT CURRENT
STIMULATION
Transcranial direct current stimulation is
a non-invasive tool to modulate corti-
cal excitability via brain polarization with
weak direct currents (3), and it is attract-
ing greater attention in AD as a rein-
forcer of cognitive function (6). tDCS
showed already promising results for its
beneficial usage in both neurodegener-
ative and neuropsychiatric disorders (9,
10). The direct current affects the rest-
ing membrane potential and thereby the
neuronal firing rate. The current’s polar-
ity determines the excitability of cortical
neurons: anodal tDCS (atDCS) increases
whereas cathodal tDCS (ctDCS) lowers it
(3). AtDCS has usually been shown to
rectify visual and word recognition mem-
ory and working memory in AD patients
when applied over the temporal cortex and
DLPFC (32–34). The effect of temporal
cortex atDCS persisted up to 1 month after
therapy (35). AtDCS of the DLPFC can
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alter connectivity during the resting state
(36). This might have diagnostic value, as
AD patients’ resting-state brain electroen-
cephalographic rhythms differ from those
in control subjects (37). However, despite
the obvious advantages of TMS and tDCS,
both are limited to stimulating large surface
cortical structures, so that the hippocam-
pus and mediotemporal lobe structures are
not accessed directly.

TRANSCUTANEOUS ELECTRICAL NERVE
STIMULATION
On the contrary, transcutaneous electri-
cal nerve stimulation (TENS) is believed
to stimulate the hippocampus relevant to
memory formation and the forebrain sys-
tem degenerated in AD (38). TENS entails
current applied transcutaneously to excite
nerves, enhancing cognition in AD patients
(38, 39). The hippocampus is stimulated by
TENS via spinoseptal and brainstem nuclei
such as the locus coeruleus (LC) and dorsal
raphe nucleus (DRN) (38). The cholinergic
basal forebrain system is reached by the LC
and DRN via noradrenergic and seroton-
ergic projections. TENS can induce nora-
drenergic and serotonergic neuromodula-
tion by this means. There is ongoing debate
as to whether the effect of TENS is more
prominent in mildly or severely affected
AD patients (38, 39). TENS is effective in
improving visual memory, long-term face
recognition memory, and word fluency in
AD patients (40).

VAGUS NERVE STIMULATION
Vagal nerve (VN) afferents reach the
nucleus of the solitary tract (NST), and
the LC is downstream to the NST. The
VN’s influence on LC neurons is demon-
strated by the fact that VN stimulation
(VNS) induces a significant noradrenaline
increase in the rat’s hippocampus (41).
VNS improves cognitive function as mea-
sured by the ADAS–cog and MMSE in
AD patients (42), AD patients demon-
strated improvement or their cognitive
function did not decline even a year after
VNS according to the ADAS–cog and
MMSE (43).

RADIO ELECTRIC ASYMMETRIC AND
CEREBELLAR THETA BURST BRAIN
STIMULATION
Radio electric asymmetric and cere-
bellar theta burst stimulation are two

novel methods. Non-invasive radio elec-
tric asymmetric brain stimulation (REAC)
uses frequency ranges of 2–11 Hz and con-
sists of intermittent radio-frequency bursts
lasting 500 ms (44). REAC enhances cog-
nitive functions in AD patients according
to different scales [MMSE, neuropsychi-
atric inventory (NPI), activities of daily
living (ADL), and instrumental activities
of daily living (IADL)] (44). A recent study
revealed that cerebellar theta burst stimu-
lation can restore cholinergic dysfunction
in AD patients (45). They also showed that
cerebellum stimulation might be a useful
tool to improve cholinergic dysfunction
in AD via the cerebello-thalamo-cortical
pathway (45) so relevant to cognitive con-
trol (46).

INVASIVE BRAIN STIMULATION
DEEP-BRAIN STIMULATION
Deep-brain stimulation (DBS) consists of
administering rectangular current pulses
into target brain structures [for review, see
Ref. (5)]. The stimulation electrodes are
implanted chronically. DBS is an estab-
lished therapeutic option in Parkinson’s
disease, dystonia, and tremor (47, 48). DBS
has evolved to be one of the most effec-
tive treatments in Parkinson disease (49).
Considering the increasing success of this
technology in modulating activity in dys-
functional motor pathways, DBS is also
attracting growing interest for modulating
the activity in dysfunctional neural cir-
cuits in AD (5). An advantage of DBS is
that memory structures can be assessed
directly, unlike non-invasive brain stimu-
lation. Bilateral DBS of the hypothalamus
and fornix has led to improved recollec-
tion in memory functions (50), whereas
high-frequency DBS of the fornix was clin-
ically ineffective despite the observation of
increased metabolic activity in temporal
lobe structures (51). Fornix–DBS stabilized
memory function in AD patients in tests
such as the MMSE, ADAS–Cog, Free and
Cued Selective Reminding Test (52). High
resolution positron emission tomography
studies revealed a persistent fornix–DBS
effect on cerebral metabolism in memory
processing structures 1 year after stimula-
tion that correlated with improved cog-
nitive and memory functions (53). DBS
of the entorhinal cortex can induce phase
resetting of hippocampal theta oscilla-
tions in humans (54). Theta resetting can

enhance the encoding of new information
and enhance memory (55). DBS of the
entorhinal area thus seems to be a promis-
ing target in treating pathological AD to
enhance memory functions. DBS probably
reduces memory dysfunction by promot-
ing the physiological conditions and pat-
terns of extracellular field potentials nec-
essary for long-term memory (56). Fur-
thermore, there is evidence in rodents
that fornix and perforant path stimulation
increases hippocampal neurogenesis and
long-term potentiation to facilitate mem-
ory storage (5, 57, 58). The nucleus basalis
of Meynert (NBM) has several choliner-
gic projections, and it degenerates in AD,
thus the NBM is a budding future target
for DBS in AD (5, 59). Another auspicious,
but not yet investigated target of DBS in
AD patients may be stimulation of the ante-
rior thalamic nucleus, as prior to encoding,
its stimulation improved verbal memory in
epileptic patients (60). Whether bilateral or
unilateral stimulation is more effective to
enhance memory remains unresolved (50,
54). Moreover, the precise timing of DBS
seems to be a key factor, as neurorehabilita-
tion studies (61) have suggested that thera-
peutic intervention is most beneficial when
applied during the learning or recall phase.

CONTRASTING JUXTAPOSITION OF THE
STIMULATION TECHNIQUES
Taken together, TMS is the most fre-
quently investigated and powerful non-
invasive brain stimulation technique in AD
patients on the basis of studies with differ-
ent stimulation sites (Table 1). The DLPFC
is the most evaluated stimulation target in
AD patients for TMS (Table 1). tDCS and
TMS offer the advantage of a non-invasive
treatment and long-lasting effect. tDCS is
less investigated than TMS in AD patients
(Table 1). In my opinion, VNS and TENS
represent also valuable, but less examined
techniques that may be relevant to treating
AD patients when TMS and tDCS are inef-
fective. Novel techniques such as REAC and
cerebellar theta burst stimulation require
more investigation to assess their efficacy in
AD patients. However, these non-invasive
techniques cannot be applied directly to
structures involved in AD pathophysiol-
ogy such as the NBM and hippocampus.
DBS constitutes a valuable method for this
purpose. DBS of the fornix and entorhinal
area enables the modulation of memory
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Table 1 | Brain stimulation in Alzheimer’s disease patients: stimulation sites and clinical effects.

Stimulation site Technique Clinical effect Reference

Cerebellum TBS Cholinergic dysfunction ↓ (45)

DLPFC TMS MMSE ↑ (20)

TMS Naming accuracy ↑ (22, 23)

TMS Auditory verbal comprehension ↑ (24)

tDCS Working memory ↑ (32)

tDCS Declarative memory ↑ (62)

Ear REAC MMSE, NPI, (I)ADL ↑ (44)

Fornix DBS MMSE, ADAS–Cog, FCSR Test ↑ (52)

DBS Increased cerebral glucose

metabolism, memory ↑

(53)

Hypothalamus and fornix DBS Memory recollection ↑ (50)

Inferior PFC TMS Memory ↑ (26)

Parietal cortex TMS Associative memory ↑ (15)

Spine (Th1–Th5) TENS Visual memory ↑ (40)

Face recognition memory ↑

Temporal cortex tDCS Visual recognition memory ↑ (33, 35)

Temporoparietal area tDCS Recognition memory ↑ (34)

Vagus nerve VNS ADAS–cog and MMSE ↑ (43)

ADAS–cog, Alzheimer’s Disease Assessment Scale–cognitive subscale; DBS, deep-brain stimulation;

DLPFC, dorsolateral prefrontal cortex; FCSR, Free and Cued Selective Reminding Test; (I) ADL, instru-

mental activities of daily living; MMSE, Mini Mental State Examination; NPI, neuropsychiatric inventory;

PFC, prefrontal cortex; REAC, radio electric asymmetric brain stimulation;TBS, theta burst stimulation;

tDCS, transcranial direct current stimulation;TENS, transcutaneous nerve stimulation;TMS, transcranial

magnetic stimulation; VNS, vagus nerve stimulation; ↑, beneficial effect; ↓, no beneficial effect.

functions. Due to its invasiveness, DBS may
eventually be the ultima ratio in clinical
settings if non-invasive stimulation such
as TMS has not proven effective. How-
ever, given the therapeutic success of DBS
in Parkinson’s disease, DBS in AD is also
likely to become an upcoming alternative
to pharmacotherapy. In the future, individ-
ual patient characteristics with risks and
potential comorbidity profiles will have
to be analyzed to determine the optimal
stimulation technique for that patient.

CONCLUSION
Having analyzed results from different
techniques and stimulation sites, I believe
that TMS, tDCS, and DBS are the brain
stimulation methods with the bright-
est prospects in AD patients. Increased
neural activity, connectivity, and synaptic

plasticity in memory and cognition-related
brain areas are potential mechanisms of
action. Further intensive investigation is
needed to implement stimulation proto-
cols and targets in AD patients. The opti-
mal stimulation therapy will have to be
considered in accordance with individual
patients’ health predisposition, risks, and
other factors.
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