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Post-anoxic encephalopathy (PAE) has a heterogenous outcome which is difficult to predict.
At present, it is possible to predict poor outcome using somatosensory evoked potentials
in only a minority of the patients at an early stage. In addition, it remains difficult to predict
good outcome at an early stage. Network architecture, as can be quantified with continuous
electroencephalography (cEEG), may serve as a candidate measure for predicting neuro-
logical outcome. Here, we explore whether cEEG monitoring can be used to detect the
integrity of neural network architecture in patients with PAE after cardiac arrest. From 56
patients with PAE treated with mild therapeutic hypothermia, 19-channel cEEG data were
recorded starting as soon as possible after cardiac arrest. Adjacency matrices of shared
frequencies between 1 and 25 Hz of the EEG channels were obtained using Fourier trans-
formations. Number of network nodes and connections, clustering coefficient (C ), average
path length (L), and small-world index (SWI) were derived. Outcome was quantified by
the best cerebral performance category (CPC)-score within 6 months. Compared to non-
survivors, survivors showed significantly more nodes and connections. L was significantly
higher and C and SWI were significantly lower in the survivor group than in the non-survivor
group. The number of nodes, connections, and the L were negatively correlated with the
CPC-score. C and SWI correlated positively with the CPC-score. The combination of num-
ber of nodes, connections, C, and L showed the most significant difference and correlation
between survivors and non-survivors and CPC-score. Our data might implicate that non-
survivors have insufficient distribution and differentiation of neural activity for regaining
normal brain function. These network differences, already present during hypothermia,
might be further developed as early prognostic markers.The predictive values are however
still inferior to current practice parameters.

Keywords: small-world network, continuous EEG, post-anoxic encephalopathy, prognosis, resuscitation

INTRODUCTION
Post -anoxic encephalopathy (PAE) has a heterogenous outcome
which is difficult to predict. Good outcome or outcome with mod-
erate disabilities is present in ~50% of the patients who make it
alive to the hospital after resuscitation (1). At present, prediction
of either good or poor outcome is limited. The main drawback
of parameters for early outcome prediction based on motor score,
brainstem reflexes, and somatosensory evoked potentials (SSEPs)
(2, 3) is their limited sensitivity or specificity. Recently, the value
of these items was re-established in patients treated with mild
therapeutic hypothermia (MTH) (1). Since early predictors of
prognosis can both reduce the costs of intensive care unit (ICU)
stay in case of poor prognosis and give more accurate information
to the relatives of patients, more reliable predictors are of great
material and immaterial value. Given its non-invasive character
in combination with its real time reflection of cerebral state, EEG
features may be a potential additional predictor in PAE.

At present, the role of the EEG in prediction of neurological
outcome in patients with PAE is a subject of active inquiry. In

a recent study, the absence of EEG reactivity had a sensitivity of
75% and a specificity of 100% for poor outcome (4). However,
another recent study on EEG reactivity between 1 and 3 days after
the anoxic event had a specificity of only 94% for predicting poor
outcome (5). Furthermore, in the literature burst suppression on
EEG is reported to have a specificity between 85 and 100% (4, 6,
7) and post-anoxic status epilepticus on EEG had a specificity of
98% for poor outcome (6). In a recent study, low-voltage and iso-
electric EEG patterns were shown to be invariably associated with
poor neurological outcome 24 h after the event in patients treated
with MTH and sedation with a sensitivity of 40% and a specificity
of 100%, while bilaterally absent cortical SSEP had a sensitivity of
only 24% after 24 h in this study (7).

Currently, some drawbacks exist in the use of EEG in PAE
prognostication. In general, its inter-observer agreement is only
moderate (8, 9) and interpretation highly depends on qualified
personnel. For these reasons, additional automatized and quanti-
tative EEG analyses, which give a real time reflection of cerebral
state, are of potential value in prediction of outcome in comatose
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patients with PAE (10). EEG derived neural network properties
might reflect this cerebral state. In the present study, we aimed
to use quantitative EEG network analysis for outcome predic-
tion in patients with PAE and analyze EEG network differences
between PAE survivors and non-survivors. To understand the
relation between neural network properties and current clinical
parameters,we also compared EEG neural network properties with
SSEP data and visually interpreted EEG data.

Graph theory has become a powerful tool to quantify network
properties (11–13). Graphs are representations of a set of objects
where some pairs of these objects are connected by links. Graphs
can be characterized by a clustering coefficient (C), indicating
the degree of local clustering of network elements, and a aver-
age path length (L), defined as the average number of steps along
the shortest paths for all possible pairs of network elements (14).
So-called “small-world” network properties (11), network proper-
ties defined by both a high local clustering between adjacent nodes
(C) and a short average path length (L) between all network nodes,
might reflect optimal (cerebral) processing (15). Recent fMRI and
EEG studies indicate a role for small-world based cerebral pro-
cessing related to optimal cerebral performance (16), for review
see Ref. (17). Next to this, in patients with temporal lobe epilepsy,
small-world properties of cortical thickness based networks were
impaired (18). However, in hippocampal modeling small-world
network properties resulted in seizure vulnerability (19). Using
resting state fMRI, altered small-world network properties were
seen in an outpatient population with hepatic encephalopathy
(20). Given the different applied methods (e.g., EEG or MRI)
and outcome parameters (e.g., anatomical or physiological) it is
difficult to compare the various studies on small-world network
properties and brain function. Since PAE generally results in a
decreased level of consciousness, both due to anoxic damage and
sedation, small-world architecture might be disrupted. For this
reason, our hypothesis was that the average path length would
be higher and the clusterings coefficient would be lower in the
patients with more severe anoxic damage. Given the finding that
large-scale small-world properties of cerebral processing are pre-
served during anesthesia (21, 22), these proposed disruptions of
small-world architecture might be a consequence of the anoxic
damage and not of the anesthesia.

One way of studying small-world properties by using EEG is
by looking at shared frequencies between the different electrodes
presumably reflecting synchronization between groups of neu-
rons (23). Based on the conception that if groups of neurons
synchronize functional interactions are present (24), these shared
frequencies might reflect a neural network from which small-
world characteristics (14) can be derived. These small-world char-
acteristics of PAE patients were analyzed using continuous elec-
troencephalography (cEEG) registration during ICU admission
and were correlated with the best achieved cerebral performance
category (CPC) score within 6 months.

MATERIALS AND METHODS
SUBJECTS
Sixty PAE patients who survived, but remained comatose, after
cardiopulmonary resuscitation and were treated with TH were
included in the study. Outcome prediction based on SSEP and

visual analysis of the EEG data was recently published (7). The
local medical ethics committee waived the need for informed
consent for EEG monitoring during ICU stay. However, for addi-
tional electrophysiological and clinical evaluation after discharge
from the ICU, local institutional review board approval and writ-
ten informed consents were obtained. Exclusion criteria were age
<18 years, other concurrent neurological pathology or a known
history of severe neurological disorders, and brain surgery or
neuro-trauma. MTH of 33°C was induced and maintained for
24 h. Further patient characteristics can be found in Ref. (7).

DATA ACQUISITION
EEG recordings were started as soon as possible after the patients’
arrival on the ICU and continued up to 5 days or until discharge
from the ICU or until patients lived. Twenty-one EEG electrodes
were attached to the skull according to the international 10–20 sys-
tem. Recordings were made using a Neurocenter EEG recording
system (Clinical Science Systems, Voorschoten, The Netherlands)
using a sample frequency of 256 Hz. EEG signals were recorded
using an average reference and band-pass filtered from 1 to 100 Hz.

OUTCOME ASSESSMENT
The primary outcome measure was the best score within 6 months
on the five point CPC-score (25).

DATA ANALYSIS
In the first 24 h after the event, EEG intervals of 5 min (300 s)
were selected for each hour of registration. At 48 h after the event,
intervals were selected every 2 h. Intervals of insufficient record-
ing quality (e.g., due to artifacts) were excluded. All analyses were
performed using Matlab 2011a (The MathWorks 2011).

Dominant frequencies present in the spectrum of the 19 EEG
channels of the EEG intervals were detected by Fast Fourier Trans-
formations (FFT). For all 300 s of the interval, a frequency spec-
trum with a resolution of 0.5 Hz ranging from 1 to 25 Hz was
obtained. A Hann-window of 2 s was used resulting in an over-
lap of 50%. Frequencies were considered significant when (a) the
amplitude of a frequency’s Fourier coefficient was at least 5% of
the maximum of that frequency in the surrounding 4 s, (b) the
value of the Fourier coefficient was at least 50% of the coeffi-
cient with the maximum amplitude within the Hann-window,
and (c) the value was larger than the neighboring four Fourier
coefficients.

For every 300-s, the frequencies present in each channel were
compared with the frequencies present in the other 18 channels. In
case one or more similar frequencies were present in two channels,
the channels were presumed to have a connection. The absence
or presence of all possible connections (19× 19) was put into a
dichotomous (ones and zeros), adjacency matrix for each second.
In case no detectable oscillation between 1 and 25 Hz was present
in the signal of an electrode, the matrix element of the electrode
matching itself was zero. In case one or more oscillations were
detected the matrix element was one. The network characteristics
(see next section) of all seconds of each interval were averaged
resulting in one value per interval of 300 s.

From the adjacency matrices, the network size (number of 19
electrodes present in a network) and the number of connections
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between the 19 electrodes were derived. C and L were derived
from the adjacency matrices using the “brain connectivity tool-
box” (26). C was obtained by inferring whether the connections
of each electrode were also mutually connected. For each electrode,
C was expressed as a fraction of the maximum number of pos-
sible connections between its connections, so-called “neighboring
neighbors.” For example, when an electrode was connected with
three other electrodes, three possible connections between its con-
nections could maximally be present. The values of the individual
electrodes forming the network were subsequently averaged. L was
obtained by calculating the average shortest path length from each
electrode to each other electrode in the network. Given the depen-
dency of C and L on network size and number of connections, C
and L were expressed as a fraction of C and L of random graphs
with a similar network size and number of connections. Next to C
and L, the small-world index (SWI=C/L) was obtained for every
subject for every epoch. The larger the SWI value is, the more
small-world the network is. For further analyses, the values of the
epochs of each hour were averaged over the intervals between 0
and 24, 0 and 48, and 0 and 72 h. In case not every epoch was
available (e.g., when the registration stopped at 40 h), the average
value for the registered epochs was used.

For the episodes between 0 and 24, 0 and 48 and 0 and 72 h,
comparisons of network size, number of connections, C, L, and
SWI between non-survivors (CPC= 5) and survivors (CPC < 5)
were made using a two-sample t -test. Next to this, a combi-
nation of network size, number of connections, C, and L was
analyzed non-parametrically using the Wilcoxon rank sum test
based on the sum ranks of network size, number of connec-
tions, C, and (inverse) L. Furthermore, correlation coefficients
for the aforementioned characteristics and the CPC-scores were
obtained. Receiver operating characteristic (ROC) analyses were
conducted to explore the sensitivity and specificity profile of the
aforementioned network characteristics.

These aforementioned network characteristics were also com-
pared with SSEP and EEG patterns after 24 h [for description of
the data acquisition see Ref. (7)]. The network characteristics were
divided into a group with bilateral absent SSEP or uni- or bilateral
present SSEP. The resulting groups were compared using two-
sample t -tests. The same categories for EEG visual interpretation
as in Ref. (7) were used. In line with the previous publication, the
unfavorable EEG patterns, iso-electric and low-voltage, were com-
bined. Network characteristics of the unfavorable iso-electric and
low-voltage EEGs were compared with the more favorable EEGs
of diffuse slowing using two-sample t -tests.

RESULTS
Data of 56 of the 60 included patients (mean age 68± 12, 38 male)
were used. Four patients were excluded in a later stage, two because
of intracerebral hemorrhage, one because of technical problems
during the EEG registration, and one because of death during the
first hour of registration. None of the remaining 56 patients was
lost during follow-up.

NEUROLOGICAL OUTCOME
Within 6 months, 27 of the 56 eligible subjects died (CPC= 5). The
other 29 had a outcome varying from normal cerebral function

(CPC= 1, n= 19) to mild (CPC= 2, n= 8), modest (CPC= 3,
n= 1),or severe (CPC= 4, n= 1) cerebral dysfunction.

MATRICES OF CHARACTERISTIC EEG PATTERNS
Three characteristic EEG patterns normal, generalized periodic
discharges, and low-voltage were analyzed at the individual level.
The common denominator of the different network characteris-
tics of a normal EEG (i.e., continuous with non-encephalopathic
background rhythm) within a 5-min interval (Figure 1A) was an
involvement of almost all electrodes with many, although fluctu-
ating, connections. Compared with the adjacency matrix of the
normal EEG, the adjacency matrices of the EEG with generalized
periodic discharges showed a pattern with more variation within
a 5-min interval with more pronounced discharges (Figure 1C1)
against a low background (Figure 1C2). The low-voltage EEG
(Figure 1B) showed no network activity and only one individual
oscillation was detected by a single electrode.

NETWORK SIZE
Comparing the network size of the non-survivors with the sur-
vivors revealed a consistent larger network size over the entire
registration period in the survivor group. Comparing the average
network size of the first 24 h between the survivor and non-
survivor group showed a significant larger network in the survivor
group (Table 1; Figure 2A). This difference persisted after 48
(0–48 h) and 72 h (0–72 h) (Table 1; Figure 2A). A significant
correlation was present between the CPC-score and the average
network size of the first 24 h (p= 0.02, ρ=−0.29). For the first
48 h, this correlation also turned out to be more robust (p= 0.005,
ρ=−0.36), and for the first 72 h even more robust (p= 0.003,
ρ=−0.38).

NUMBER OF CONNECTIONS
The number of connections also turned out to be higher in the sur-
vivor group over the entire registration relative to the non-survivor
group. Comparing the average number of connections of the first
24 h between the survivor and non-survivor group showed a sig-
nificant increased number of connections in the survivor group
(Table 1; Figure 2B). This difference persisted after 48 and 72 h
(Table 1; Figure 2B). Average network size of the first 24 h cor-
related significantly with CPC-score (p= 0.006, ρ=−0.35). This
correlation strengthened after 48 (p= 0.001, ρ=−0.41) and 72 h
(p= 0.001, ρ=−0.43).

AVERAGE PATH LENGTH
After correction for network size, the relative average path length
(L) was higher in the survivor compared to the non-survivor group
during the entire registration. In the first 24 h, L was significantly
higher in the survivor group compared to the non-survivor group
(Table 1; Figure 2C). After 48 and 72 h, this difference persisted
(Table 1; Figure 2C). The L also significantly correlated with CPC-
score (p= 0.004, ρ=−0.37 after 24 h; p= 0.001, ρ=−0.41 after
48 h; and p= 0.001, ρ=−0.42 after 72 h).

CLUSTERING COEFFICIENT
The relative clustering coefficient (C) was lower in the survivor
group compared to the non-survivor group during the entire
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FIGURE 1 | Characteristic EEGs and their network configurations.
Horizontal and vertical axes show the different EEG electrodes. Red squares
represent connections, blue squares represent absent connections.
(A) Adjacency matrix of a PAE patient with a good EEG showing involvement
of 160 of the possible 361 (19×19) connections and involvement of 18 of the
19 electrodes in the network (C = 0.81, L=1.77, SWI=0.45). (B) Adjacency

matrix of a PAE patient with a low-voltage EEG pattern (C =0, L=1, SWI=0).
Only one electrode had sufficient power to produce a detectable EEG wave.
No network was present. (C) Adjacency matrices of a PAE patient showing
generalized epileptic discharges with varying network size and number of
connections within a 5-min epoch, (1) C =0.32, L= 1.33, SWI=0.24; (2)
C =0.86, L=1.76, SWI= 0.48.
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Table 1 | Composition of patient population after 24, 48, and 72 h and

their network characteristics including standard deviations and p

values.

Interval (h) Non-survivors Survivors p Value

Number 27 29

Remaining

subjects

24 22 27
48 13 22

72 12 14

Network size 0–24 9.5±2.1 10.9±2.6 0.04

0–48 9.4±1.9 10.9±2.1 0.007

0–72 9.4±1.9 11.0±2.0 0.004

Number of

connections

0–24 54.1±19.3 70.1±25.7 0.02
0–48 52.7±17.4 69.6±22.4 0.003

0–72 52.4±16.9 69.5±21.4 0.002

Average path

length

0–24 1.07±0.11 1.15±0.09 0.005
0–48 1.07±0.1 1.15±0.07 0.002

0–72 1.07±0.11 1.15±0.07 0.0009

Clustering

coefficient

0–24 1.36±0.23 1.22±0.16 0.02
0–48 1.34±0.19 1.19±0.12 0.007

0–72 1.18±0.11 1.33±0.19 0.001

Small-world

index

0–24 1.31±0.4 1.07±0.26 0.02
0–48 1.28±0.22 1.03±0.18 0.002

0–72 1.27±0.33 1.02±0.16 0.009

Sum of ranks 0–24 28.1±49.1 84.2±55.9 0.0003

0–48 26.7±51.5 85.6±52.2 0.00009

0–72 26.3±52.2 85.9±50.7 0.00007

registration. Comparing the relative C of the first 24 h between
the survivor and non-survivor group showed a significant lower
C in the survivor group (Table 1; Figure 2D). After 48 h, this
statistical difference increased and further increased after 72 h
(Table 1; Figure 2D). C correlated significantly with the CPC-
score (p= 0.009, ρ= 0.34 after 24 h; p= 0.001, ρ= 0.42 after 48 h;
and p= 0.0009, ρ= 0.43 after 72 h).

SMALL-WORLD INDEX
The SWI was lower for the survivor group compared to the non-
survivor group during the entire registration. Comparing the SWI
of the first 24 h between the survivor and non-survivor group
showed a significantly lower SWI in the survivor group (Table 1;
Figure 2E). After 48 and 72 h, this difference persisted (Table 1;
Figure 2E). The SWI also correlated significantly with the CPC-
score (p= 0.01, ρ= 0.33 after 24 h; p= 0.001, ρ= 0.40 after 48 h;
and p= 0.001, ρ= 0.41 after 72 h).

SUM OF RANKS
The combination of the ranks of the variables, network size, num-
ber of connections, relative average path length, and relative clus-
tering coefficient showed the biggest statistical difference between
the survivors and non-survivors (Table 1; Figure 2F). After 48 and
72 h, these differences persisted (Table 1; Figure 2F). This combi-
nation showed also a significant correlation with the CPC-score

(p= 0.0001, ρ=−0.49, after 24 h; p= 0.0001, ρ=−0.51, after 48
and 72 h).

ROC ANALYSES
Although significant differences were present for all the network
parameters at the group level, the network parameters lacked suf-
ficient sensitivity to discriminate non-survival from survival at a
specificity level of 100%.

COMPARISON WITH SSEP
From the 56 patients, 7 had a bilateral absent SSEP. All of them
did not survive. After 24 h, all the previously described network
characteristics differed significantly between the 7 patients with
a bilateral absent SSEP and the 49 patients with uni- or bilateral
present SSEP (Table 2A; Figures 2A–F). The direction of the differ-
ences was also similar as in the comparison using the CPC-scores;
patients with bilateral absent SEPP showed smaller networks, less
connections, and more small-world topology relative to patients
with uni- or bilateral present SSEP.

COMPARISON WITH VISUAL EEG INTERPRETATION
After 24 h, 46 of the 56 patients still had continuous EEG registra-
tion. Two had an iso-electric EEG, 6 had a low-voltage EEG, 12 had
an burst suppression EEG, and 26 had an EEG with diffuse slow-
ing [see Ref. (7)]. All network characteristics differed significantly
between the iso-electric and low-voltage group and the diffuse
slowing group (Table 2B; Figures 2A–F). The direction of the
differences was also similar as in the comparison using the CPC-
scores and SSEP; patients with iso-electric of low-voltage EEG
showed smaller networks, less connections, and more small-world
topology relative to patients with diffuse slowing.

DISCUSSION
In this study, we investigated whether cEEG monitoring can be
used for evaluating the integrity of neural network architecture in
PAE patients and differentiate between PAE survivors and non-
survivors. Graph analysis revealed consistent differences between
survivors and non-survivors of PAE already present during the
MTH period. At group level, PAE patients with the best neurolog-
ical outcome had the most widespread and most densely connected
networks. Corrected for network size and number of connections,
the PAE patients with the worst neurological outcome had the
network characteristics most resembling small-world networks.
These differences might indicate that the PAE patients with the
worst neurological outcome lack sufficiently widespread and con-
nected networks and lack sufficiently differentiated connectivity
in the remaining network. However, sensitivity and specificity are
inferior to current prognostic parameters. Further optimization of
the graph analyses in the temporal (real time analyses) and spatial
(multi-channel analyses) domain might develop graph analyses as
a tool for early prognostication in PAE.

NETWORK DISRUPTIONS IN ANOXIC COMA
The decreased network size and the decreased number of connec-
tions in these networks in PAE patients with a poor outcome are
the end result of failing neural communication. The most crucial
aspect of this neural communication is the synaptic transmission.
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FIGURE 2 | (Left) EEG network characteristics of PAE survivors and
non-survivors. Depicted are differences between survivors and
non-survivors (first three bar couples) and their values between 0 and 24 h
(1), 0 and 48 h (2), and 0 and 72 h (3) after the arrest (forth bar couple);
differences between patients with bilateral absent SSEP and uni- or bilateral
present SSEP (fifth bar couple); differences between patients with
iso-electric or low-voltage EEG and diffuse slowing on EEG. Network size
(A) is defined by the number of electrodes present in the networks.
Number of connections in the network is shown in (B). Average path length

(C) and clustering coefficient (D) are expressed as a fraction compared to a
random network with similar size and connections. The small-world index
(E) was obtained by dividing the clustering coefficient with the average path
length. The sum of ranks (F) was obtained by the non-parametrical analysis
of the ranked parameters (A–D). Asterisks indicate the level of significance
and error bars represent standard deviations. *p < 0.05, **p < 0.01,
***p < 0.005, ****p≤0.001. Surv., survivors; Non-Surv., non-survivors;
Pres., uni- or bilateral present SSEP; Abs., absent SSEP; Dif. Slow., EEG
with diffuse slowing; IsoEl/LowV, iso-electric of low-voltage EEG.
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Table 2 | (A) Difference between network characteristics of patients

with bilateral absent SSEP and uni- or bilateral present SSEP

including standard deviations and p values and (B) difference

between network characteristics of patients with iso-electric or

low-voltage EEG including standard deviations and p values.

(A)

Bilateral absent

SSEP

Bi- or unilateral

present SSEP

p Value

Number 7 49

Network size 7.52±2.43 10.57±2.25 0.0017

Number of connections 36.36±15.7 66.17±22.7 0.0015

Average path length 0.94±0.08 1.13±0.09 0.00001

Clusterings coefficient 1.58±0.31 1.25±0.15 0.00004

Small-world index 1.70±0.53 1.12±0.26 0.00001

Sum of ranks −18.28±20.67 68.00±55.19 0.0001

(B)

Iso-electric/

low-voltage

Diffuse

slowing

p Value

Number 8 26

Network size 8.99±2.79 11.15±2.15 0.02

Number of connections 52.46±22.03 72.69±22.93 0.03

Average path length 1.06±0.14 1.15±0.08 0.03

Clusterings coefficient 1.41±0.36 1.20±0.14 0.02

Small-world index 1.39±0.63 1.05±0.22 0.02

Sum of ranks 24.7±47.73 87.3±48.7 0.003

Synaptic transmission is a metabolically demanding process which
is blocked at first in anoxia (27). In anoxia, especially glutamin-
ergic, synaptic failure (28) might lead to functional disconnection
and consequently network failure. However, this synaptic failure
is putatively reversible (28). When anoxia is more severe, not only
functional but also structural changes occur leading to irreversible
transmission failure (29).

In global anoxia, the entire brain is withdrawn from oxygen.
However, local differences in vulnerability to anoxia exist (30).
This is for example the case for the metabolically active hippocam-
pus (30). Whether such higher vulnerability also exists for longer,
metabolically more demanding (31), cortico-cortical connections,
and establishing large neural networks is not known. Hypothet-
ically, since the metabolic cost of spike transmission scales up
linearly with connection length (31), rapid disruption of axon–
glial connections (32) after anoxia might preferentially result in
the breakdown of these connections.

The networks of the PAE patients with a poor outcome and a
more small-world like organization might indicate that the cortical
networks of these patients are both under-dimensioned (smaller)
and lacking complexity (less differentiated). This organization
might reflect a disturbed balance between neuronal integration
and differentiation (33), in which small cortical areas are relatively
hyper-connected.

No studies on small-world characteristics of post-anoxic
patients have been conducted so far. Our finding that differences

in small-world characteristics exist between survivors and non-
survivors and correlate with outcome also supports the func-
tional difference between coma induced by anesthesia (21, 22)
and anoxia. Further analyses in the temporal domain could elu-
cidate possible differences in neural synchronization and de-
synchronization (34, 35) between those patients who regain
consciousness and those who do not.

SEDATION
Differences in sedation levels may have influenced the EEG pat-
terns. However, no significant difference in sedation level between
the group with good neurological outcome and poor neurologi-
cal outcome was found [see Ref. (7)]. Furthermore, it is unlikely
that the most severe EEG patterns (iso-electric and low-voltage)
were caused by the use of propofol, fentanyl, or remifentanil in
the doses used, as the EEG is not suppressed at these doses, and
typically only shows moderate slowing (36).

METHODOLOGY
With our approach, we cannot exclude that a common driver
or volume conduction (37) is responsible for similar frequen-
cies recorded from different electrode positions. Therefore, use
of techniques that remove these potential contributions to spu-
rious synchrony (38) would likely better reflect actual functional
connections (38–40). However, the applied method appears still
a useful metric that significantly differed in these patients. Since
the same method was applied for every subject, independent of
outcome, no systematic bias occurred. Even then, one must be cau-
tious with the physiological interpretation of the various metrics
found, however, which is a general concern in these approaches.
Indeed the relation between functional connectivity and physio-
logical reality is not trivial, in particular when metrics are derived
from scalp EEG recordings (40, 41). However, the applied method
does result in significant differences in the metrics between the
patients studied, with potential pragmatic applicability in a clinical
setting.

Besides this, graph analysis is a uniform way of looking at EEG
patterns without a priori considering conventional aspects like
iso-electric patterns, low-voltage patterns, diffuse slowing, burst
suppression patterns, generalized periodic discharges, or epilep-
tiform discharges (7). In case of an iso-electric EEG, no neural
(network) activity is present, this is also most often the case in
low-voltage EEGs. In one patient with a low-voltage EEG only
one network element was present (Figure 1C). On the contrary,
when EEGs were almost normal the most connections and nodes
were present (Figure 1A). In other patterns, burst suppression
and generalized epileptic discharges (Figures 1C1 and 2), different
network characteristics were present varying from virtually absent
networks to larger more connected networks. This is due to the fact
that these patterns were not continuous and network characteris-
tics varied over time. The critical pattern characteristics averaged
out when conducting our algorithm for episodes of 5 min. Fur-
ther analyses on different time scales with different spectra might
elucidate deviant network characteristics of these typical EEG pat-
terns. However, this is beyond the scope of the current paper. The
additional correlation analyses show that, although CPC-scores
2–4 were relatively underrepresented, the mentioned differences
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are gradual and not dichotomous. This makes it more difficult to
apply dichotomous decision protocols.

The networks characteristics average path length and clustering
coefficient, and consequently the SWI, that were obtained in our
data (independent of outcome) did not show the magnitudes that
are associated with small-worldness (SWI= 2) (14). For this rea-
son one should speak of a tendency toward small-worldness. This
does not mean that there are no significant differences between the
small-world parameters and between the two groups but that the
data more tend toward a more random order or regular order (11).

CONCLUSION
In summary, EEG network analyses revealed significant differ-
ences between PAE survivors and non-survivors. Non-survivors
showed smaller, less connected networks that were configured
more toward small-world architecture. These network characteris-
tics were also correlated with CPC-score and were already present
during hypothermia. Further development of EEG network analy-
ses can result in an instantaneous and easy to use prognostic tool
for PAE patients.
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