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Editedby: Multiple sclerosis (MS) is the most common auto-inflammatory disease of the central
‘éa'/,f;ay"”g' University of Calgary, nervous system, affecting more than 2 million individuals worldwide. It is a genetically

. complex disease, in which a substantial part of a person’s liability to develop MS is caused
Reviewed by:

by a combination of multiple genetic and non-genetic (e.g., environmental) risk factors.
Increasing this complexity, many of the involved risk factors likely interact in an intricate
and hitherto ill-defined fashion. Despite these complexities, and owing greatly to the advent
and application of large-scale genome-wide association studies, our understanding of the
genetic factors underlying MS etiology has begun to gain unprecedented momentum. In
this perspective, | will summarize some recent advances and outline future challenges in
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rare variants, heritability
INTRODUCTION: THE “HERITABLE"” BASIS OF MULTIPLE
SCLEROSIS

It was already recognized decades ago that multiple sclerosis (MS)
aggregates within families — ~20% of all patients of European
descent show a positive family history in comparison to a gen-
eral MS prevalence of 0.5-0.1% (1). Population-based family
studies including the investigation of mono- vs. dizygotic twin
pairs revealed that the observed familial aggregation is likely due
to shared heritable factors, while the influence of shared envi-
ronmental factors on family aggregation is comparatively small.
Rather, environmental factors are believed to act on a non-shared,
population-wide basis (2). Previously reported estimates of her-
itability, i.e., the proportion of phenotypic variance attributable
to heritable factors, range from 25 to 76%. This is consistent with
the estimate of the largest population-based study to date based
on a Swedish dataset published earlier this year (64%, confidence
interval 36-76%) (2). However, in contrast to other neurologic
disorders such as Alzheimer’s (AD) or Parkinson’s disease (PD),
there is little evidence that fully penetrant, causative mutations
in single genes account for the family aggregation observed in
MS. Instead, MS heritability appears to be exclusively governed by
hundreds to thousands of common genetic variants [e.g., single-
nucleotide polymorphisms (SNPs) with minor allele frequencies
(MAF) >0.5%] exerting small to moderate risk effects (3). High-
throughput genotyping studies are the key instruments to identify
such disease-associated “polymorphisms,” e.g., by comparing a
variant’s allele frequency in a group of unrelated MS cases and
controls.

RECENT ADVANCES IN MS GENETICS RESEARCH

The major histocompatibility complex (MHC) region on chro-
mosome 6p21.32 is the first identified MS risk locus from the
candidate-gene era [originally detected over 40 years ago (4, 5)]
that is still valid today. As a matter of fact, with the class II
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HLA-DRB1*1501 allele conferring a ~3-fold risk increase [as
measured by the odds ratio (OR)], the MHC region still repre-
sents the most important MS risk locus by far (6). Following the
discovery of MHC in MS, literally hundreds of candidate-gene
based association studies investigating hundreds of genes were
published with contradictory results. Among these, IL7RA (encod-
ing the interleukin receptor 7A) was initially assessed and reported
as a putative MS risk gene using a candidate-gene approach (7-
9) and still shows convincing evidence for association with MS
today (6, 10). However, it was only since the first applications of
the genome-wide association study (GWAS) approach that the
majority of today’s established genetic association findings were
uncovered: since 2007 several MS GWAS and follow-up studies
have been published each expanding the number of (mostly) gen-
uine risk loci. As in other complex diseases (11), the continuously
increasing size of the study samples along with the application
of stringent p value thresholds (i.e., the genome-wide significant
threshold, see Glossary) was the most important contributor to
the growing number of replicable risk SNPs.

The most recent and largest GWAS (6) to date analyzed 465,434
SNPs across ~9,800 cases and 17,400 controls. The most interest-
ing results were subsequently followed-up in ~11,500 additional
subjects. This seminal study (6) not only confirmed 23 MS risk
loci reported by previous GWAS, but also identified 29 novel
and genome-wide significant signals outside the MHC region. In
addition, several loci showed suggestive (i.e., sub genome-wide)
significant evidence for association with MS, 5 of which were
subsequently confirmed to be genuine MS risk loci after testing
another ~20,000 independent cases and controls (12). Finally,
conditional analyses of variants within the MHC locus revealed
at least three additional susceptibility loci that are associated with
MS risk independent of the HLA-DRB1*1501 allele: while the class
I allele HLA-A*0201 showed additional protective effects, class II
alleles DRB1*0301 (or DQB1*0201, since the signals could not
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be separated) as well as DRB1*1303 conferred further risk effects
(6). Additional large-scale association studies (10, 13) — including
a recent follow-up project in ~14,500 independent MS cases and
24,100 controls using the “ImmunoChip” genotyping array [cus-
tomized for targeting several hundred loci previously implicated
in autoimmune diseases (10)] — substantially extended the list
of genome-wide significant non-MHC MS risk loci to 103. These
non-MHC riskloci established by GWAS and large-scale follow-up
studies show moderate to modest effects with OR of ~1.05 to 1.30.

Gene-ontology analyses based on these established MS risk loci
have confirmed their role in T cell mediated immunity while a
primary neurodegenerative role — a hypothesis discussed not too
long ago — appears to be negligible (6, 10). Along these lines, MS
risk genes substantially overlap with GWAS findings from other
autoimmune diseases (6) but not with those reported for neu-
rodegenerative diseases (14). Interestingly, the list of established
risk loci discovered in autoimmune diseases such as MS, Crohn’s
disease (CD), and type I diabetes (T1D) substantially outnum-
bers those identified in primarily neurodegenerative diseases such
as AD or PD (>50 vs. <20 per disease trait) despite comparable
study designs and sample sizes (11). The reasons for this stark
difference remain unclear at this time.

SEARCHING FOR THE “MISSING HERITABILITY"

Despite the impressive number of common MS risk variants iden-
tified over the years, the proportion of heritability they explain
remains modest owing to their small effect sizes. Similar observa-
tions have been made in many other genetically complex diseases.
Some authors have thus coined the term of “missing heritability”
in complex diseases (15). Recent estimates suggest that the MS
risk loci identified to date explain only about one-quarter (~27%)
of its total heritability most of which is attributable to the MHC
locus (10).

Undoubtedly, the next round of even larger-scale efforts such
as “mega” meta-analyses of all independent GWAS datasets and
follow-up studies will identify additional genome-wide significant
MS risk loci. Unless they were previously “missed” due to tech-
nical reasons (e.g., insufficient capture by GWAS microarrays),
these additional genetic risk loci will either consist of frequent
variants (with MAF > 5%) that exert small to very small effects
(ORs < 1.10), or less frequent variants (MAF <5 and >0.5%)
exerting slightly stronger effects (ORs >1.2 and <2). In either
setting, the identified loci would only moderately improve the pro-
portion of heritability explained. However, a substantial fraction of
heritability may be accounted for by a multitude of genetic variants
that may never surpass the genome-wide significance threshold in
association studies due to very small effect sizes as demonstrated
previously (16).

Another popular hypothesis posits that a sizeable fraction of
the hitherto missing heritability in MS (and other diseases) may
be explained by the presence of rare variants (i.e., those with
a MAF <0.5% in the general population) exerting much larger
effects than common variants (ORs (2). Due to their low frequency
they are often not accurately captured by current GWAS arrays.
However, in disagreement with this “rare variant hypothesis”
a recent proof-of-principle study applying next-generation re-
sequencing of 25 previously reported autoimmune GWAS loci

(including 10 MS loci) found no evidence for the existence of rare
high-risk variants in autoimmune diseases in any of the tested
regions (17). As GWAS loci presumably have a higher probability
of harboring rare, deleterious alleles than the rest of the genome,
the authors concluded that rare variants unlikely account for a sub-
stantial fraction of missing heritability in autoimmune diseases
(17). Along these lines, an initial report (18) of a rare, high-
risk MS variant in the vitamin-D activating gene CYP27B1 was
not confirmed in independent validation studies (19, 20). Future
genome-wide studies need to test massive sample sizes, compa-
rable with those used in recent GWAS, to conclusively assess the
potential role of rare variants in MS. Still, even if a number of gen-
uine rare variants increasing M risk were uncovered, these would
only explain a very small proportion of the missing heritability
unless they should exist in very large numbers, which is unlikely.

An alternative hideout for the missing heritability in MS may
lie behind structural genomic variations, e.g., copy number vari-
ants (CNVs). While these have not been systematically assessed
on a genome-wide level in MS yet, a study led by the Welcome
Trust Case Control Consortium assessed common CNVs across
eight diseases including CD, rheumatoid arthritis (RA), and T1D,
but only three association signals emerged from this analysis (two
for CD and one for T1D), all of which were also tagged by SNPs
(21). In light of these findings, CNVs may not represent com-
pelling candidates to explaining a major proportion of missing
MS heritability.

This leaves heritable epigenetic variations, such as DNA methy-
lation, histone modifications, and inherited expression of non-
coding RNAs to be reasonable culprits in the quest for the missing
heritability in MS. Within recent years, technologies that allow
the assessment of DNA methylation on a genome-wide level have
become affordable for large sample sizes. However, evidence in
favor of transgenerational epigenetic effects in genetically complex
diseases is currently limited to results in animal models and only
very few epidemiological studies (22, 23). In MS, these latter stud-
ies do not show convincing evidence of a parent-of-origin effect,
which could be supportive for the presence of major transgenera-
tional epigenetic risk factors. Specifically, results from earlier stud-
ies suggesting maternal parent-of-origin effects in MS [e.g., Ref.
(24,25)] were not validated by a much larger epidemiological study
(2). As a matter of fact, this latter study indicated modest evidence
for a paternal parent-of-origin effect, which would be compati-
ble with a modest Carter effect (2). Notwithstanding, while the
absence of conclusive evidence for parent-of-origin effects may
exclude major contributions of few epigenetic factors to MS heri-
tability, it does not preclude the action of multiple heritable epige-
netic factors of small effect, which can be effective in germ cells of
both parents. Unfortunately, the experimental exploration of this
hypothesis is difficult, as epigenetic marks often differ in a tissue-
specific manner and may change over time, complicating the
design and interpretation of epigenetic association studies (26).

In addition to the above considerations, there are other aspects
to keep in mind when trying to fill the missing heritability gap. One
is the clinical and paraclinical heterogeneity of MS that may at least
in part reflect differences in its genetic architecture (27). Examples
of such differences have been reported for a number of other genet-
ically complex diseases (27). However, data to support the presence
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of differing genetic risk profiles in MS remain limited: recent stud-
ies have suggested that primary progressive (PP) and bout onset
MS forms do not differ in their spectrum of genetic risk factors
(6, 28); however, these results are based on limited numbers of
patients (owing to the PP prevalence of 10-20% among MS cases)
and may not represent definite answers. Furthermore, previous
genome-wide efforts have reported only sub-genome-wide signif-
icant results for association with MS severity (6,29, 30) or for effect
size differences in HLA-DRB1*1501 carriers and non-carriers.
Analyses of age of onset yielded only one genome-wide significant
association signal, which corresponds to the HLA-DRB1*1501
allele (6). The failure to identify convincing associations in most
subgroup analyses may partly be due to limitations in power in
some studies, potential issues with misclassification with regard to
clinical variables, and, as suggested recently, the use of suboptimal
quantification systems of clinical parameters (31). Thus, genome-
wide risk analyses of more appropriately classified MS subgroups
and/or other clinical and paraclinical variables may shed new light
on potential risk factors for certain MS endophenotypes.

Last but not least, our estimates of the proportion of explained
heritability are based on the combined additive effects of all known
risk loci (weighted by their frequencies) relative to the total heri-
tability estimated in populations (e.g., based on family studies, see
above). However, this population-derived total heritability esti-
mate very likely consists of additive effects of single loci as well
as — quite substantially, as argued by some authors — effects due
to gene—gene (GxG, a.k.a. epistatic) and gene—environment (GxE)
interactions (10, 32). Unfortunately, there is currently no robust
knowledge about GxG and GxE interaction effects in MS (and, as a
matter of fact, for most other diseases). Sufficiently powered GxG
interaction studies on a genome-wide basis require unrealistically
large sample sizes (i.e., >450,000 subjects) (32), making it unlikely
that the near future will yield substantial progress in this field.
Likewise, genome-wide GxE analyses have not been performed
for MS, either. They experience the difficulties of collecting both
large, preferably population-based DNA samples and relevant high
quality environmental data for a disease with comparatively low
prevalence.

UNVEILING THE ETIOLOGY OF MS USING GENETICS

As outlined above, the individual and collective contribution of the
hitherto identified non-MHC genetic risk variants to MS risk is
modest at best, and individual risk prediction is not possible based
on the current knowledge. As a result, one could argue that this
line of research has only negligibly impacted our understanding of
MS pathophysiology and bears little medical relevance. However,
this conclusion would be premature, especially given the short
time frame that the GWAS methodology has been applied to the
field of MS genetics. By design, SNPs assessed in GWAS can be
informative markers tagging chromosomal regions associated with
disease, but often do not represent the actual variants exerting a
direct functional effect, some associated SNPs may even be located
between genes. Thus, the identification of the functional variants
and the elucidation of underlying pathomechanisms will pose a
major challenge in MS genetics research in the coming years. One
recent example providing novel and intriguing insights into MS
pathophysiology is the successful functional characterization of

the MS risk variant underlying the association signal (6) on chro-
mosome 12p13.31 (33). This region contains the gene TNFRSFIA,
which encodes the tumor necrosis factor (TNF) receptor super-
family member 1A. Binding of TNF to the extracellular domain
of the membrane-bound TNF receptor 1A initiates activation of
the NF-kB pathway and apoptosis of immune cells. Genetic re-
analysis (“fine-mapping”) of the MS GWAS data revealed that the
originally identified MS-associated intronic SNP (6), rs1800693,
is also likely to be the functional SNP (33). Subsequent func-
tional experiments showed that this variant leads to alternative
splicing, resulting in a shortened soluble TNFRSF1A isoform that
lacks apoptotic activity but binds and thus neutralizes TNF (33).
Intriguingly, anti-TNFa therapy induces onset and exacerbation
of MS, thus mimicking the effect of the MS risk variant (33). Fur-
thermore, this anti-TNFa therapy is successful in treating other
autoimmune diseases such as RA and CD, and in these diseases,
rs1800693 or other polymorphisms in TNFRSF1A do not show
evidence for genetic association (11, 33).

CONCLUSION

The TNFRSF1A example clearly demonstrates that systematic
follow-up of specific variants showing convincing association with
MS risk, regardless of the underlying effect size, can reveal valuable
insights into the disease’s etiology and even pinpoint novel ther-
apeutic strategies. Thus, while we may never be able to entirely
explain MS heritability by means of genetic association analyses,
progress in this field of research can be expected to dramatically
increase our understanding of the underlying pathophysiology
and to inform the development of novel biomarkers and improved
treatment strategies.

GLOSSARY

Candidate-gene study: a study that assesses the association between
a limited number of genetic variants in genes with a plausible
role in disease pathophysiology and a phenotype of interest, e.g.,
disease status.

Copy number variant: structural variation in the genome with an
abnormal number of DNA sequence stretches (spanning several
hundreds to a few million bases of DNA), resulting in deletions or
multiplications (e.g., duplications).

Epigenetics: the study of mechanisms that lead to alterations
of gene expression that are not due to changes of the pri-
mary DNA sequence; examples include DNA methylation, histone
modification, and the involvement of non-coding RNAs.
Genome-wide association study (GWAS): a study that assesses the
association between several hundred thousands to millions of
polymorphisms across the entire genome and a phenotype of
interest based on data from one single experiment using specific
GWAS microarrays.

Genome-wide significance: the significance threshold (most com-
monly used: p=5 x 1078) that is required to declare the presence
of genetic association in the context of genome-wide analyses as
well as in targeted genetic association studies.

Heritability: the proportion of phenotypic variation, e.g.,
case/control status that is due to heritable factors. Heritability is
usually estimated in population-based family studies, e.g., twin
studies.
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Next-generation sequencing: ultra high-throughput sequencing
technology that can generate millions of DNA sequence reads
in one experiment; the very high efficiency of this technology is
achieved by massive parallelization of sequencing reactions.
Single-nucleotide polymorphism (SNP): a single base pair variant
in the genome that is relatively common in the general population
based on arbitrary frequency cut-offs for the minor allele (e.g.,
0.5%).
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