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The management of ischemic stroke is at a
critical juncture. Administration of intra-
venous tPA is currently restricted to within
4.5h from stroke onset with several tri-
als in longer time windows proving neu-
tral (1, 2). Revascularization success with
tPA in major vessel occlusion is widely
recognized as suboptimal (3). Alternative
thrombolytic agents with theoretical effi-
cacy advantages such as tenecteplase and
desmoteplase are yet to show benefit in
phase 3 trials. The promise of endovascu-
lar therapy has also yet to translate into
positive randomized trials (4-6), although
a new generation of devices is currently
being studied. While it is possible that these
therapeutic approaches are simply ineffec-
tive, the heterogeneity of stroke pathophys-
iology is likely to be contributing to the
neutral results we often observe.

Imaging selection has been proposed
as a means of reducing heterogeneity by
identifying patients with the potential to
benefit from revascularization and there-
fore enhancing the probability of success in
trials of new therapies. However, whether
it is sufficient to demonstrate an occluded
artery as the target or to also require evi-
dence of salvageable downstream tissue
has been debated. The recent announce-
ment of neutral results in DIAS 3 (7), a
trial that compared desmoteplase versus
placebo 3-9 h after stroke onset in patients
with vessel occlusion, without reference to
downstream tissue status other than what
was visible on non-contrast CT, will no
doubt further stimulate this discussion. It
is, therefore, salient to consider the current
methods to identify salvageable ischemic

penumbra and the potential value of com-
monly used surrogates for clinical out-
come, chiefly reperfusion, recanalization,
and infarct growth.

IDENTIFYING SALVAGEABLE TISSUE
There are some stroke patients who do
not have an identifiable vessel occlusion.
It is well recognized that such patients
generally have an excellent natural history
and will not benefit from revasculariza-
tion therapy. This has led to one body
of opinion that identifying vessel occlu-
sion is the key criterion for treatment
selection (8). It is true that the majority
of patients with a vessel occlusion have
some non-functioning but potentially sal-
vageable ischemic penumbra downstream,
at least early after stroke onset. How-
ever, patients with a large ischemic core at
admission imaging not only have very little
chance of benefit from treatment, they may
well have worse outcome after “successful”
revascularization due to hemorrhage and
malignant edema and so actively detract
from any positive treatment effect (9, 10).
Unfortunately, in trials, there is also a risk
of such patients being over-represented due
to perceived lack of equipoise in those
with more favorable imaging profiles or
financial incentives to recruit.

There are several potential methods to
rapidly identify salvageable tissue in clin-
ical practice. In the absence of recanal-
ization, collateral blood flow is the deter-
minant of penumbral survival. Collat-
erals can be imaged using non-invasive
CT or MR angiography (11, 12). Tradi-
tional static CT or MR angiography is

limited in its ability to assess collateral flow
as it is delayed (whereas CTA is timed
to normal peak arterial flow) and rela-
tively low flow (which reduces detection
by time of flight MRA) leading to poten-
tial underestimation of collateral quality.
However, dynamic acquisitions are now
available for both CT and MR, includ-
ing reformatted perfusion imaging proto-
cols, and can fully characterize collateral
flow (11, 13). These angiographic meth-
ods are typically scored using simple visual
scales.

Perfusion imaging with CT or MR also
provides a dynamic assessment of collat-
eral flow with high temporal resolution and
post-processing to represent delay and flow
in a more quantitative manner. The per-
fusion maps require thresholding in order
to separate potentially at risk “penumbra”
from non-threatened “benign oligemia” as
the visual extent of the abnormality over-
estimates tissue at risk (14, 15). For MR
and CT, Tax (time to maximum) >6s
has been supported by several studies (16—
19). When CT perfusion is used, a sep-
arate threshold to distinguish irreversibly
injured “ischemic core” versus penumbra
is required with cerebral blood flow being
more accurate than cerebral blood volume
for this purpose (20-22). The larger the
“mismatch” between small core and large
penumbra, the more likely it is that the
patient will respond favorably to revas-
cularization. Whichever method is cho-
sen, better collateral flow scores and mis-
match volumes are strongly and consis-
tently associated with improved outcome
after reperfusion. With the advent of fully
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automated perfusion processing software
(23,24), the argument that perfusion imag-
ing is too complex, time consuming, or
challenging to implement and standardize
across multiple centers has become obso-
lete. Indeed, the objective reproducibility
of “mismatch,” in contrast to visual scor-
ing of collaterals, is a major advantage. The
neutral DIAS 3 results with suggestion of
benefit in the “per protocol” population (7)
indicate that even accurately determining if
there is a vessel occlusion poses challenges
in a multicenter trial. Presumably, attempts
to score collaterals, a much more subjective
process, will require significant site educa-
tion and training if such approaches are to
be successful.

The alternative to directly visualizing
collateral flow is to identify patients with
large ischemic core, which is a direct result
of poor collateral flow. Large ischemic core
at admission imaging is a reliable indica-
tor of poor outcome (25), although the
location of the core also requires consider-
ation. Diffusion MRI is the most accurate
method of assessing core in current clinical
practice (26). Major reversibility of diffu-
sion lesions with currently available treat-
ments appears uncommon, even in early
time windows (27, 28). Thresholded cere-
bral blood flow or cerebral blood volume
can generally provide similar information
using CT perfusion imaging (20,21,29,30).

It is important to remember that collat-
eral flow in ischemic stroke is a dynamic
process. The fluctuations in clinical sever-
ity that clinicians observe may result from
fluctuation in collateral flow and, therefore,
the snapshot provided by imaging may not
reflect the collateral status that has been
present over the entire period since stroke
onset. This can lead to classification errors
in both directions. An improvement in col-
lateral flow can elevate CBF and CBV above
the threshold for “core” and may cause
temporary post-reperfusion reversal of the
diffusion lesion leading to underestima-
tion of core volume (27). A patient imaged
just after a deterioration in collateral flow
may appear to have a large core based on
CBV or CBF and may even have a diffu-
sion lesion but rapid recovery in collaterals
could reverse this situation. However, it is
important to realize that such cases are
exceptions rather than the norm and do
not negate the value of advanced imaging.

Correlation with the clinical features can
prevent misinterpretation in some cases.

REPERFUSION VERSUS
RECANALIZATION

The question of the most appropriate
revascularization endpoint has been often
debated (31). Early endovascular trials
were criticized for assessing recanalization
of the target vessel without consideration
of downstream reperfusion. Clearly, open-
ing the M1 segment of the middle cere-
bral artery without also establishing flow
in M2 vessels is of little clinical value.
This, however, reflects a flaw in the mea-
surement scales rather than the concept of
recanalization.

A significant advance has been the
development of consensus around assess-
ment of angiographic reperfusion that
focuses on re-establishment of down-
stream perfusion with the “modified Treat-
ment In Cerebral Ischemia” (mTICI) (32)
score. There has been increasing recog-
nition that a score of 2a (<50% reper-
fusion of the affected territory), which
was included as a “successful” endovas-
cular outcome in earlier studies does not
lead to acceptable rates of good outcome.
Even mTICI 2b (>50% reperfusion of
affected territory) has significantly worse
outcomes than mTICI 3 (complete reper-
fusion), emphasizing the importance of
obtaining as close to full reperfusion as
possible (4, 17).

In general, recanalization of the major
vessels does translate to tissue reperfu-
sion. There are, however, scenarios where
recanalization and reperfusion are incon-
gruent, which are worthy of consideration.
Recanalization can occur without reperfu-
sion. As mentioned above, many descrip-
tions of this in the literature relate to overly
simplistic recanalization scales that focus
too narrowly on one segment of the vascu-
lar tree without regard for the adjacent seg-
ments. However, in animal models, reper-
fusion at a capillary level often fails despite
macrovascular recanalization — termed the
“no-reflow” phenomenon. This does not
reconcile particularly well with clinical
experience where complete removal of
thrombus generally leads to normalization
of the perfusion imaging appearance (or
in some cases hyperperfusion, Figure 1B),
even in regions that have been irreversibly

injured (“non-nutritional reperfusion”). It
is possible that clinical perfusion imag-
ing is reflecting flow in larger vessels and
showing arteriolar shunting, and is too
insensitive to demonstrate occlusion at the
capillary level. At any rate, this phenome-
non would be restricted to areas we cur-
rently regard as irreversibly injured core.
To our knowledge, there has not been a
description of “no-reflow” in areas thought
to be penumbral prior to revasculariza-
tion. Whether therapeutic strategies to pre-
vent capillary sludging and no-reflow could
transform the prognosis for regions we cur-
rently regard unsalvageable is an interest-
ing speculation, but seems a rather distant
possibility.

Tissue perfusion can also improve with-
out recanalization due to recruitment of
collateral blood flow, which can occur in
some patients over time. It is visualized as a
reduction in perfusion delay and improved
blood flow (Figure 1A). This form of
improved perfusion may be associated with
clinical improvement. However, as long as
the vascular occlusion remains, the patient
has an ongoing risk of collateral “fail-
ure” and clinical deterioration. The mecha-
nisms of deterioration in collateral flow are
not well understood but presumably clot
migration and hemodynamic fluctuations
may contribute. Indeed, the observed asso-
ciation of general anesthesia with worse
outcome after endovascular therapy (33)
may relate to periprocedural hypotension
impairing collateral flow. Clearly enhanc-
ing or stabilizing this retrograde collat-
eral perfusion is a potential therapeutic
strategy and has formed the basis of sev-
eral attempts to improve collateral flow,
although none have translated to clinical
practice at this stage. Given the ongoing
risk of deterioration in collateral flow, con-
ventional anterograde reperfusion should
remain the primary treatment strategy for
most patients.

INFARCT GROWTH

The original definition of ischemic penum-
bra was of hypoperfused and electrically
non-functional tissue that could regain
function with rapid reperfusion (34, 35).
This was subsequently operationalized as
a tissue that was at risk of infarction
in the absence of reperfusion — a some-
what different construct. Infarct growth
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FIGURE 1 | (A) MRA and T, in a patient with left MCA occlusion at 5 and 24 h. Despite persistent
occlusion, the volume of T,.., > 6's has reduced from 56 to 0 mL due to improved collateral supply.

(B) Post-reperfusion hyperperfusion indicated by increased CBV (left), CBF (middle), and reduced T .,
(right) in a patient with recent reperfusion of left MCA occlusion. (C) MRI diffusion (pink) and perfusion
(T mex > 6's, green) imaging 24 h post-stroke onset showing persistent hypoperfused tissue, which was
contributing to the patient’s clinical deficit but had not developed diffusion restriction.

in the absence of reperfusion is associated
with worse clinical outcome and infarct
growth has, therefore, been used as a sur-
rogate outcome in trials. There are impor-
tant practical considerations in the mea-
surement of infarct growth. The aim is to
measure true territorial expansion in the
infarct. However, initial edema and sub-
sequent atrophy confound this and mean
that there is no perfect time to assess
“growth.” In addition, progressive loss to
follow-up at later time points can intro-
duce bias as those who die and are, there-
fore, unevaluable are more likely to have
had infarct growth. There is also uncer-
tainty about the duration of true infarct
growth, although data suggest that this is
generally complete within 24 h after stroke
onset (36). Assessment at 24 h is, therefore,
attractive as it minimizes loss to follow-up,
precedes much of the edema that peaks at
3-5 days, and can be used to assess reper-
fusion, recanalization, and hemorrhagic
transformation.

It is important to recognize that infarct
growth is not universal in the absence of
reperfusion. Early follow-up imaging fre-
quently shows regions of persistent hypop-
erfusion that have not developed diffu-
sion restriction but appear to still be con-
tributing to the observed clinical deficit
(Figure 1C). The clinical significance and
prognosis of persistent hypoperfusion is
not well understood but it raises the
possibility that infarct growth may not
fully encapsulate the clinical impact of
reperfusion.

FUTURE DIRECTIONS AND ONGOING
TRIALS

There are a number of key lessons from
recent trials. It seems clear that the use
of non-contrast CT and clinical selection
criteria will not deliver progress in extend-
ing the therapeutic time window or pro-
viding an evidence base for endovascular
therapy. There are good theoretical rea-
sons and suggestive evidence from existing
neutral trials that assessing collaterals or
core in addition to vessel occlusion may
be beneficial and the technical require-
ments to achieve this are no longer an
inconvenience.

Imaging selection has been hampered
by a proliferation of approaches with lim-
ited standardization. The principles of
identifying a target vessel occlusion and
good collateral flow are well established.
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However, the optimal practical implemen-
tation of these concepts remains uncertain,
and clinical practice will no doubt grav-
itate to the approaches that lead to suc-
cess in clinical trials. Undoubtedly, the field
of acute stroke therapy faces challenges
but there is tremendous potential to trans-
form clinical outcomes with new therapies,
guided by imaging. It is an exciting time to
be practicing stroke medicine.
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