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Major advances in neonatal care have led to significant improvements in survival rates
for preterm infants, but this occurs at a cost, with a strong causal link between preterm
birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income coun-
tries, up to 50% of children with CP were born preterm. The pathways that link preterm
birth and brain injury are complex and multifactorial, but it is clear that preterm birth is
strongly associated with damage to the white matter of the developing brain. Nearly 90%
of preterm infants who later develop spastic CP have evidence of periventricular white mat-
ter injury. There are currently no treatments targeted at protecting the immature preterm
brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and
is a particularly promising source of cells for clinical applications, due to ethical and practical
advantages over other potential therapeutic cell types. Recent studies have documented
the potential benefits of UCB cells in reducing brain injury, particularly in rodent models
of term neonatal hypoxia–ischemia. These studies indicate that UCB cells act via anti-
inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to
support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-
born infants is less well understood than in term infants, but likely results from episodes
of hypoperfusion, hypoxia–ischemia, and/or inflammation over a developmental period of
white matter vulnerability. This review will explore current knowledge about the neuropro-
tective actions of UCB cells and their potential to ameliorate preterm brain injury through
neonatal cell administration. We will also discuss the characteristics of UCB-derived from
preterm and term infants for use in clinical applications.

Keywords: preterm birth, low birth weight, brain damage, white matter injury, oligodendrocytes, cerebral palsy,
umbilical cord blood, stem cells, hypoxia–ischemia, inflammation, periventricular leukomalacia

BACKGROUND
Impressive advances in perinatal and neonatal care have led to sub-
stantial improvements in survival rates for preterm infants born
at <37 weeks gestation. However, survival of preterm infants may
occur at a cost, with a strong causal link between preterm birth and
subsequent neurological motor and cognitive deficits, including
cerebral palsy (CP). In particular, more extremely preterm babies
now survive than ever before with these infants at the greatest risks
of short and long-term neurodevelopmental deficits (1). Despite
the known etiological link between preterm birth and neuro-
motor and neuro-cognitive dysfunctions, there are currently no
specific neuroprotective treatments available for preterm infants.

Stem, or stem-like cells, have drawn attention from scientists
and the general public due to their potential to induce tissue repair
and/or regeneration. Umbilical cord blood (UCB)-derived cells
offer ethical and practical advantages over other stem-like cells
given that collection can be obtained from the discarded pla-
centa at birth. Such cells possess multiple proven [as per cord
blood hematopoietic stem cells (HSCs)] and potential therapeu-
tic uses, including recent evidence that UCB cells may mitigate
newborn brain damage arising from term neonatal hypoxic-
ischemic encephalopathy (HIE). However, despite the heightened
neurological risks associated with preterm births, the potential use

of UCB cells in preterm neonates has not yet been actively inves-
tigated. This article briefly describes the background, etiology,
and pathophysiological mechanisms of brain injury in preterm
infants, and summarizes current research on the use of UCB cells
for therapeutic use in term and preterm perinatal brain injury.
Potential implications for future clinical trials of UCB cell therapy
in preterm infants are discussed.

PRETERM BIRTH AND CHILDHOOD NEUROLOGICAL DEFICITS
In 2010, 14.9 million babies worldwide were born preterm,
accounting for approximately 11% of all births, with the rates
and burden of preterm birth significantly increased in both low
and high-income birth settings compared to the previous decade
(2). Of all preterm births in the developed world, 16% are born
before 32 weeks of gestation or weigh <1500 g (2), with this popu-
lation of very preterm infants (born 28 to <32 weeks) or extremely
preterm infants (<28 weeks) at the greatest risks for long-term
physical and neurological morbidities. Indeed, in developed coun-
tries, preterm births account for 70% of neonatal deaths and up to
75% of neonatal morbidity (3), with the risks of death or disabil-
ity profoundly increased in middle- or low-income birth settings,
reflecting decreased resources for neonatal intensive care (4). In
addition, in developed countries most preterm babies now survive
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as a result of advances in neonatal intensive care such that the
survival rate for extremely preterm infants is 90% (2).

Cerebral palsy is the most common physical disability of child-
hood, occurring in 2–2.5/1000 live births in developed countries.
This rate is increased to approximately 90–100/1000 babies that
were born at <32 weeks gestation (5, 6). Indeed, 35–50% of chil-
dren with established CP were born preterm (7, 8). The major
overt neurological manifestations of brain injury observed in chil-
dren that were born preterm are spastic motor deficits, commonly
accompanied by intellectual deficits. Less severe disturbances of
motility, cognition, and behavior occur in 25–50% of survivors (9).

The economic cost of preterm birth and CP are high due to the
need for neonatal intensive care and ongoing long-term complex
health care. The National Institute of Medicine estimated that the
lifetime cost of all preterm births is $26.2 billion USD per year in
the USA (10). The financial burden of CP in the USA has been
separately costed and estimated at $11.5 billion USD (11) and is
indicative of the large financial burden association with preterm
birth and CP. This is in addition to the significant burden placed
on families and society who care for children and adults with
CP. There is therefore an enormous demand to prevent or reduce
brain injury in preterm infants, to reduce the subsequent neu-
rodevelopmental sequelae, and consequently decreasing the large
socio-economical burden.

The complications associated with preterm birth and brain
injury are complex and involve multiple overlapping adverse path-
ways, but it is clear that preterm birth is strongly associated
with damage to the white matter of the immature brain. There-
fore, an understanding of white matter injury (WMI) is a critical
component required for the treatment of preterm brain injury.

WHITE MATTER INJURY
Fetal brain maturation and functional development involves a
series of organizational processes including neurogenesis, cell
migration, cell differentiation, synaptogenesis, and axonal myeli-
nation. The development of white matter requires mature oligo-
dendrocyte glial cells to produce myelin and ensheath the axons
of neurons, and thus oligodendrocytes play a crucial role in fast
signal transmission along neurons and throughout the brain.
Injury to these cells impairs, usually irreversibly, myelination.
Oligodendrocytes develop according to a well-defined lineage. Pre-
oligodendrocytes are the predominating oligodendroglial cell at
gestational age 24–32 weeks in humans. They are exquisitely vul-
nerable to pro-inflammatory cytokines, excitotoxicity, oxygen free
radical attack, and hypoxic stress, and rapidly undergo apoptosis
under adverse conditions (12–15). It is believed that this selec-
tive vulnerability of the pre-oligodendrocytes in preterm infants
restricts the number and functional ability of mature oligoden-
drocytes to undergo the process of laying down of white matter
and formation of myelin fibers, thus causing very preterm and
extremely preterm infants to be most susceptible to WMI (9, 16,
17). Thus, preserving oligodendrocytes and their precursor cells
is fundamental to reducing injury to the developing white matter
of the brain. Most commonly, preterm brain injury is evident in
the periventricular white matter adjacent to the lateral ventricles,
so-called periventricular leukomalacia (PVL). WMI is detectable
in at least 50% of infants born very preterm or extremely preterm,

and is a strong indicator of long-term neurological adverse out-
come. Nearly 90% of preterm infants who later develop spastic CP
have evidence of WMI (9). Half of the children identified as hav-
ing WMI will have cognitive and/or behavioral and/or attention
deficits (18–20). Clinical imaging studies demonstrate that myelin
loss (hypomyelination) and disorganization of major white matter
fiber tracts correlate with functional impairments in children with
CP and PVL (21, 22).

Pathologically, WMI is a condition demonstrated by coagu-
lation and necrosis of white matter near the lateral ventricles,
accompanied by gliosis (23). The periventricular area is vulnerable
to ischemia in the preterm brain, which, in part, is anatomi-
cally due to poor vascularization and immature cerebrovascular
autoregulation (24, 25). This may result in focal PVL. But, in many
cases, WMI is widespread and incorporates periventricular, sub-
cortical, and callosal white matter, as well as the internal capsule.
WMI, and in particular PVL, has two distinct histopathologi-
cal appearances, described as either cystic or non-cystic (diffuse)
WMI. Cystic WMI typically affects all types of cells and is there-
fore considered the more severe type and is closely linked with CP,
whereas diffuse PVL mainly targets pre-oligodendrocytes and is
considered less severe but nonetheless is linked to cognitive and
behavioral impairments, and CP (9). It is generally considered that
the gray matter is not as susceptible to preterm insults as is white
matter, but the pre-oligodendrocytes also present in gray matter
are not spared, leading to damage involving the cerebral cortex,
thalamus, and basal ganglia (26, 27).

There is a growing understanding of the etiology of preterm
brain injury, likely involving one or more interactions between
fundamental immaturity of the brain, vulnerability of white
matter developmental processes, and the adverse effects of two
principal upstream insults: hypoxia–ischemia and infection/
inflammation. Hypoxia–ischemia and infection/inflammation are
relatively common in the preterm period, and have profound
adverse effects on white matter development (28–30).

HYPOXIA–ISCHEMIA AND WHITE MATTER INJURY
After an hypoxic-ischemic insult, microglia and macrophages
within the brain’s white matter exhibit immunoreactivity for
interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and
infiltrate to lesion sites. Astrocytes become hypertrophied and dif-
fuse gliosis is evident within 24 h. Loss of oligodendroglial lineage
cells and impairment of myelinogenesis is evident within 10 days
following hypoxia–ischemia (9, 31–35). When the insult has been
prolonged or severe, brain injury is exacerbated through influx of
cytokines and chemokines via the damaged blood–brain-barrier
(BBB), thereby further increasing inflammatory mediators within
the brain (36).

In response to a significant hypoxic-ischemic insult, secondary
pathways of injury are also initiated and evolve over days. These
adverse pathways include mitochondrial dysfunction, excitotox-
icity, apoptosis, oxidative stress, and initiation of additional
inflammatory processes (37). A further adverse effect of hypoxia–
ischemia is the disruption of normal growth and differentiation
factors driving brain development, decreasing concentrations of
signaling proteins and nutrients that include neurotrophic factors
vital for inhibition of programed cell death (38, 39). For example,
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brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-
3),and NT-4/5 play important roles in promoting neuronal growth
and differentiation, connective plasticity, and neuronal survival
through their interaction with tyrosine kinase β-receptors, but
these are each affected in the preterm brain in response to hypoxia–
ischemia (40). Additional neuron and glial cell loss occurs over
days and weeks after a sentinel insult, resulting from chronic
deprivation of neurotrophic factors, decreased synaptic input from
neighboring cells, and loss or recruitment failure of local neural
and glial stem and progenitor cells (41, 42). The severity and
duration of neurotrophic factor deprivation directly correlates to
long-term neurological outcome (38, 42).

In addition, activated astrocytes and microglia mediate the
release of reactive oxygen species (ROS) and reactive nitrogen
species (RNS), leading to increased protein nitration and oxida-
tive stress in response to hypoxia–ischemia and brain inflam-
mation (43). In the context of preterm birth, a compromised
intrauterine environment may induce excess release of free rad-
icals and, combined with the transition to an extra-uterine high
oxygen environment, may overwhelm endogenous antioxidant
enzymes, resulting in preferential death of pre-oligodendrocytes
and contributing to the development of WMI within the preterm
brain (43–46).

INFECTION/INFLAMMATION AND WHITE MATTER INJURY
Fetal and neonatal exposure to infection and/or inflammation
is recognized as a principal contributor to preterm birth and
WMI. Maternal intrauterine infection including chorioamnionitis
is associated with increased levels of pro-inflammatory cytokines
(IL-6, IL-8, TNF-α, and IL-1b) in the amniotic fluid and cord
blood (47–49) and is one of the most important causes of preterm
birth <30 weeks of gestation (50). Maternal intrauterine infection
presents a significant risk for WMI and CP (51, 52). Neonatal sep-
sis is also a risk factor for WMI in infants that were born preterm
(53, 54).

Adverse inflammatory stimuli during fetal or neonatal life
induce a systemic and central nervous system (CNS) response
via activation of innate and adaptive immune systems. Microglia
are the primary mediators of the brain’s immune response,
mediating the pro- and anti-inflammatory response to remove
pathogens, via binding of toll-like receptors (TLRs) with lig-
ands, pathogen-associated molecular patterns (PAMPs), and/or
danger-associated molecular patterns (DAMPs) (55, 56). How-
ever, prolonged microglial activation can cause brain injury (55).
Microglia are at their peak density in white matter during the
WMI-vulnerable period (57), making them fundamental in pro-
ducing WMI (44). Lipopolysaccharide (LPS), an endotoxin of
gram-negative bacteria and a form of PAMP, and binds recep-
tors including TLR-4 and CD14 on microglia, initiating a signal
transduction cascade that ultimately activates transcription fac-
tors such as nuclear factor-kappaB (NF-κB). In turn, this leads
to up-regulation of cytokines, chemokines, and complement pro-
teins, and over time this response can sensitize the developing
brain to secondary insults thereby contributing to sustained CNS
inflammation. Cytokines may directly act upon oligodendrocytes
to induce cell death, as evidenced by in vitro studies on human
oligodendrocytes where TNF-α and interferon-γ (IFN-γ) induced

dose-dependent cell necrosis (58). In vivo administration of high-
dose LPS to preterm fetal sheep results in significant cerebral
hemodynamic changes that cause cerebral ischemia and PVL-like
fetal brain injury (59), while low-dose LPS, insufficient to cause
fetal hypoxia, induces diffuse WMI and microglial invasion, where
the degree of microglial activation is correlated to the presence of
WMI (60).

The downstream pathways that result from hypoxia–ischemia,
or inflammatory stimuli, are complex and are not mutually exclu-
sive. Hypoxia–ischemia and increased ROS are known to induce an
inflammatory reaction and, conversely, pro-inflammatory medi-
ators lead to the generation of free radicals and oxidative stress.
This interaction is driven by NF-κB. In normal-state resting cells,
the NF-κB protein complex remains within the cytoplasm, bound
to inhibitory IκB protein. Pro-inflammatory cytokines, LPS and
viruses cause proteolysis of IκB, allowing dissociation from NF-
κB, and the nuclear translocation of NF-κB where it activates
gene transcription (61). Additionally, tissue hypoxia and oxidative
stress can modulate NF-κB release (61). Thus, hypoxia–ischemia
can induce inflammation via microglial activation, and conversely
infection/inflammation can induce hypoxia–ischemia through
hypotension (62). Indeed, preterm infants have been shown to
have higher risk of WMI when chorioamnionitis and placental
perfusion deficits are present together (63).

LIMITATIONS OF CURRENT TREATMENTS OF WHITE MATTER
INJURY
Although there have been major clinical and scientific advances
in neonatal care over the last decade, currently only antenatal
corticosteroid are proven to reduce the risk of intraventricu-
lar hemorrhage (IVH) (64). Other strategies in preterm infants,
such as use of erythropoietin, melatonin, indomethacin, antena-
tal magnesium sulfate, therapeutic hypothermia, or delayed cord
clamping remain at the experimental investigation stage and are
not of proven benefit (65, 66). Thus, current management for
preterm brain injury has, until now, been restricted to supportive
strategies.

One of the biggest hurdles for identifying neuroprotective
strategies for preterm infants is the multi-faceted etiology of the
brain damage. As described in the section above, the primary
antenatal causal factors that may induce brain injury include
maternal/fetal infection and/or chronic placental perfusion insuf-
ficiency (67, 68). Postnatal factors may exacerbate or cause brain
injury, including repetitive subacute/chronic hypoxia–ischemia
due to poor lung function and ventilation, and free radical imbal-
ance following oxygen reperfusion in response to a high oxygen
extra-uterine environment or oxygen administration (44, 46, 69).
Neonatal chronic cerebral hypoperfusion, hypotension, hypocar-
bia, or symptomatic persistent ductus arteriosus (70, 71), IVH
with or without post-hemorrhagic ischemia or hydrocephalus
(72), infection (53, 54), hypoglycemia, and glucocorticoid admin-
istration are also involved in the progression of brain injury (68,
73). Moreover, even preterm birth without exacerbating factors
can result in subtle white matter pathology (69). Thus, it can be
appreciated that unlike term neonatal HIE, these insults do not
necessarily occur around the time of delivery, and it may therefore
be difficult to recognize the timing of the onset of a sentinel (or
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exacerbating) insult. It would therefore be likely that preterm brain
injury would be best treated with a therapy, or therapies, with
multiple neuroprotective mechanisms and with a long therapeutic
window. Any therapy should be targeted at WMI as the predom-
inant neuropathology. Additionally, such a treatment would be
aimed at one or more of the following – reducing inflammation
and free radical attack, halting the progression of cell death pro-
graming, and/or replacing damaged oligodendrocytes in order to
remodel areas of WMI and normalize myelination. We will present
data to support the therapeutic potential of neonatally adminis-
tered UCB-derived cells, for protection and repair of the preterm
brain.

STEM CELLS
Stem cells are characterized by their ability to undergo self-renewal
and to differentiate into multiple cell types. In general, stem cells
can be classified into three major categories on the basis of their
source, namely embryonic stem cells (ESCs), fetal-derived stem
cells, and adult stem cells. ESCs are pluripotent, are able to gen-
erate cells from all three germ layers and can be maintained in
culture indefinitely (74), providing a limitless source of precur-
sor cells for the regeneration of damaged tissue. However, due
to the pluripotent nature of ESCs they are also tumorigenic and
transplantation of these cells currently presents significant safety
concerns (75), and has cautioned their use in clinical trials. ESCs
are also obtained from embyros, presenting ethical issues. With
recent advances, it has become possible to reprogram somatic cells
and generate induced pluripotent stem (iPS) cells (76). These cells
may be able to overcome some of the limitations of ESCs, i.e.,
ethical issues, and enable the generation of patient-specific iPS
cell lines. However, they are also tumorigenic (77), and this issue
remains unresolved. Adult stem cells, or stem-like cells, include
mesenchymal stromal cells (MSCs), that can be obtained from a
number of sources including bone marrow, adipose tissue, and
dental pulp, and neural progenitor cells (NPCs) that are found
in the subventricular zone of the brain and comprise multipo-
tent stem/progenitor cells that can differentiate down the neural
lineage, including to neurons and glial cells (78). NPCs can be
isolated from the adult brain and expanded for several passages
whilst retaining their undifferentiated state. Lastly, fetal-derived
stem-like cells can be obtained from placental tissue (79) and UCB
(80) and include placental and umbilical cord MSCs (UC-MSCs),
amnion epithelial cells (AECs), HSCs, and endothelial progenitor
cells (EPCs) (81). Given these cells are isolated from fetal tissue,
they tend toward greater differentiation and expansion potential
than adult stem cells. Fetal-derived stem cells can be easily isolated
from tissue that is routinely discarded at birth, they are abundant
due to the large number of births each year, and their collection
raises no ethical concerns.

Stem-like cells sourced from placenta and umbilical cord (UC)
have been studied pre-clinically for treatment of a variety of
diseases including multiple sclerosis (82, 83), stroke (84, 85), bron-
chopulmonary dysplasia (86, 87), and CP (88, 89) and may be
beneficial for reducing disease burden in these conditions. For
MSCs alone, there are currently >400 clinical trials listed on clin-
ical trials.gov (search: “mesenchymal stem cell”). However, there
are numerous clinics around the world that are already capitalizing

on the promise of stem cell treatment and are offering stem cell
therapies for financial gain to families of those with conditions
including CP. This has been coined stem cell tourism (90). It is
therefore imperative that well-planned and controlled pre-clinical
and clinical trials are conducted to establish the safety, short-, and
long-term efficacy, and mechanisms by which stem cell therapies
may provide benefit, which in turn will enable treating clinicians
and patients to make informed decisions regarding the use of stem
cell treatments.

UMBILICAL CORD BLOOD
Umbilical cord blood is a rich source of HSCs, accounting for
0.5–1.0% of mononuclear cells (MNCs) in term UCB (91), used
to treat patients with abnormal hematopoietic conditions, child-
hood leukemia, or metabolic diseases (92). HSCs are positive for
CD34 and CD45, and defined by their capacity to self-renew and
give rise to multiple blood lineages. Traditionally, bone marrow-
derived HSCs were used to treat these conditions, however, UCB
is easier to obtain, less expensive and less likely to trigger a
deleterious immune response or rejection in the recipient (93).
HSCs from human UCB (hUCB) are also more primitive than
bone marrow-derived HSCs, have longer telomeres, have a higher
colony-forming capacity and can repopulate blood lineages over
a long period of time (94, 95). Given these advantages, more than
3000 hUCB transplants are now performed each year for blood and
other disorders (96). Other strong advantages for the use of UCB
for transplants include that it can be tissue typed, screened for viral
biomarkers, processed and banked, allowing the supply for both
urgent and directed transplants (97) and the volume and number
of cells that can be attained is generally very good. In term births, a
large volume of UCB can be collected [38–42 weeks: 102± 30 ml,
containing 11.3± 6.2× 108 total nucleated cell (TNC)] (91).
However, in preterm birth, or in pregnancy complications [such as
intrauterine growth restriction (IUGR)], there is reduced UCB vol-
ume for collection [34–37 weeks: 90± 32 ml, 7.7± 4.8× 108 TNC;
25–33 weeks: 62± 31 ml, 3.3± 3.5 TNC] (91), which is problem-
atic if UCB collection is required or requested. Furthermore, it
is not known how antenatal complications, such as IUGR or
chorioamnionitis, may change the composition of the stem and
stem-like cells present in the UCB, and whether differences in cell
composition may impact its therapeutic utility.

Umbilical cord blood is not only a useful source of HSCs,
but also contains a number of other stem/progenitor cell types
including MSCs and EPCs (80). Moreover, UCB is a rich source
of immunosupressive cells, such as regulatory T cells (Tregs) (98).
MSCs are multipotent adult progenitor cells that have a broad
potential for repair of injured tissue. MSCs are characterized
by their morphology, phenotype, and differentiation potential to
form osteoblasts, chondrocytes, and adipocytes (82). MSCs are a
plastic adherent cell population with the absence of CD34, CD45,
and CD133, and are positive for CD13, CD29, CD44, CD73, and
CD90 (80, 99). MSCs can indeed be isolated from UCB, but at
a very low frequency and cellular fraction, with success rates for
isolation ranging from 40 to 60% (99, 100) and, in one study,
only 8% of UCB units could be effectively expanded into MSC-
like colonies (100). While the frequency of MSCs is low in UCB
(0.002% of MNCs in term UCB) (101), UCB–MSCs show a strong
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proliferation capacity and can be maintained longer in culture than
MSCs derived from other sources (99). Furthermore, following
exposure to neural differentiation factors, hUCB–MSCs express
a number of neural cell antigens, including glial fibrillary acidic
protein (found in astrocytes), TuJ-1 (neural progenitor), vimentin,
and nestin (102).

Endothelial progenitor cells, isolated from bone marrow,
peripheral blood, and UCB can be differentiated into mature
endothelial cells in vitro and, in animal models of ischemia,
can incorporate into sites of active angiogenesis to stabilize and
promote the growth of new blood vessels (103). While EPC clas-
sification remains contentious, they are generally characterized by
the expression of CD133, CD34, and vascular endothelial growth
factor (VEGF) receptor-2 (104). EPCs are estimated to make up
1–2% of HSC-containing CD34+ cell fraction in term UCB, rep-
resenting 1 in 107 MNCs (105). Despite the low number, EPCs
isolated from hUCB have been shown to have a stable endothelial
phenotype and a higher proliferative capacity compared to those
isolated from peripheral blood, making UCB a superior source for
the isolation of EPCs. Studies are now being conducted to opti-
mize the isolation of the three major cell types (EPCs, HSCs, and
MSCs) from single UCB units (80).

Regulatory T cells should also be considered as potential use-
ful cells to be isolated from UCB. Tregs are immunosupressive
T cells that can maintain self-tolerance, prevent autoimmunity,
inhibit rejection of transplants, and regulate the immune response
to infectious disease (106). Tregs isolated from UCB exhibit a
predominantly naïve phenotype, which is associated with a signif-
icantly enhanced proliferative potential compared to adult Tregs
(107). It has been suggested that the low incidence of graft-
versus-host-disease (GVHD) associated with UCB transplants is
due to the presence of Tregs (108), adding to their importance
for UCB transplants and their potential utility for treatment of
inflammatory conditions.

Optimal selection of UCB units for HSC transplants includes
determination of TNC content, CD34+ cell count, and HLA and
blood group matching of the recipient and donor (97). However,
there is sparse information related to other cells of interest within
UCB. Given the increasing likelihood that children born preterm
may request autologous UCB cell collection and treatment for
brain injury (see below), it is imperative that we investigate the
similarities and differences between term and preterm UCB. This
knowledge will inform the design of clinical trials that will decide
whether autologous or allogeneic UCB transplants will be best
placed to treat neurological impairments in preterm-born infants.
To date, it has been shown that the frequency of CD34+ cells in
preterm neonates was twofold increased compared to those in term
neonates (109) and, for a given gestational age, each 500 g increase
in birth weight contributed to a 28% increase in CD34+ cell counts
(110). In preterm infants, the immunophenotypic profile of UCB–
CD34+ cells shows a significantly higher expression of CD33,
and a lower expression of CD38, CD117, and HLA-DR, indicating
preterm UCB has a higher percentage of primitive CD34+ subsets,
while term UCB has a higher percentage of committed cells (111,
112). With specific regard to EPCs, preterm (28–34 weeks) UCB
units have a fourfold increase in endothelial colony-forming cells
compared to term UCB (113). However in compromised placental

conditions such as preeclampsia, EPCs are decreased in term UCB,
and not different to those in preterm UCB (114). Similar to other
cell types, MSC population is also richer in preterm UCB com-
pared with term, with a significant inverse correlation between
the gestational age and presence of MSCs (101, 115). Further-
more, studies to date have predominantly assessed cell number
and not cell function over gestation, where functionality may be
a more important marker of efficacy than absolute cell number.
As has been shown with hAECs, while preterm cells have a high
proliferative capacity, they are functionally immature and cannot
differentiate into other cell types (116). The presence of Tregs
has also been assessed over gestation, and is reportedly increased
in preterm UCB compared to term UCB (107), but Tregs from
preterm UCB secrete significantly less IFN-γ (117). Furthermore,
Tregs in UCB from IUGR infants at term were decreased compared
to those in UCB units from appropriately grown babies (118).

Most studies to date examining perinatal brain injury have
utilized UCB–MNCs (Table 1), but UCB–MNCs is composed
of a variety of cells of interest including immature T cells, B-
cells, monocytes, and stem-like cells including HSCs, EPCs, and
MSCs. The fraction or combination of UCB cells responsible for
neural repair remains to be established. UCB–MSCs have attracted
interest for some time because of their multilineage differentia-
tion potential, strong capacity for immune modulation, and low
immunogenicity. Indeed, expanded hUCB–MSC transplantation
has shown promise in protecting against perinatal brain injury
in pre-clinical animal studies (119–121). Despite this, the clinical
application of purified UCB–MSCs is currently limited by their
low numbers and low success rate for isolation. On the other hand,
CD34+ cells have been shown to reduce brain injury in neonatal
hypoxic-ischemic mice, with a transient augmentation of cerebral
blood flow in the peri-infarct area (122). UCB–CD133+ cells, the
fraction enriched for EPCs and HSCs, also reduces infarct volume
in a rat model of stroke (123).

In addition to stem-like cells, other cellular fractions in UCB
have also been shown to have potentially important neuroprotec-
tive roles. When hUCB–MNCs was depleted for CD14+ mono-
cytes, there was no decrease observed in microglial activation or
functional recovery following administration (124), suggesting
that monocytes are essential for mediating the neuroprotective
benefits of hUCB cells in hypoxic-ischemic rats. In addition, a
further study showed that a single injection of hUCB-derived T
cells (CD4+) induced endogenous NPC proliferation for 2 weeks
and promoted increased neuronal cell survival in rats (125). The
therapeutic effects of stem cells are now thought to be indepen-
dent of tissue engraftment (89, 126–129), although many studies
have shown that transplanted UCB cells can migrate selectively
toward ischemic areas of damaged brain (127, 130). It is widely
considered that regenerative effects of stem cells are principally
derived from indirect paracrine and trophic effects, and increas-
ing the regenerative capacity of the brain, rather than via direct
cell replacement (38, 128, 129, 131, 132). However, it is important
to note that the studies referred to above have utilized hUCB in
a xenogeneic setting. As such, the ability of the transplanted cells
to survive and differentiate may be compromised (133). To our
knowledge, the ability of autologous UCB cells to home to the site
of injury and differentiate into neurons or neuroglial cells has not
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Table 1 | Outcome of umbilical cord blood interventions in neonatal hypoxia–ischemia.

Cell type Animal model Administration Engraftment Histology assessments Functional assessments Other Reference

Injury type Timing Dose Route Days Results Days Outcomes Days Outcomes

hUCB–
MNCs

P7 rats, HI
80 min

24 h
after HI

1×107

cells
IP 21 days Many cells in ischemic

hemisphere. No sign of
transdifferentiation

NA NA 21 days Alleviation of spastic
paresis

Meier 2006
(127)

P7 rats, HI
120 min

24 h
after HI

1×107

cells
IV jugular 21 days Few cells in brain tissue 21 days No change in volume of

injured hemisphere
21 days No change on spatial

memory deficit
de Paula
2009 (192)

P7 rats, HI
90 min

3 h after
HI

2×106

cells
IP 2 days Few cells in ischemic

cortex and striatum
2 days Decreased neuronal

death in striatum, and
microglial activation in
cortex

4, 7 days Improved developmental
sensorimotor reflexes
only at 4 days

Pimentel-
Coelho
2010 (134)

P7 rats, HI
150min

2–3 h
after HI

1.5×104

cells (±
mannitol)

IV jugular 14 days Few cells in ischemic
hippocampus

NA NA 7, 14 days 20–25% improvement in
rotarod and elevated body
swing tests

Increased growth
factors in brain, CA1
dendrites

Yasuhara
2010 (138)

P7 rats, HI
80 min

24 h
after HI

1×107

cells
IP 42 days Many cells in peri-infarct

area
42 days No change in size of

hemispheric lesion
42 days Improved sensorimotor

function, cortical maps,
and receptive fields, and
reduced hyperexcitability

Geissler
2011 (135)

P7 rats, HI
80 min

24 h
after HI

1×107

cells
IT 14 days hUCB cells were localized

in astrocyte-rich zone
2, 14,
and
44 days

Decreased activation of
microglia/macrophages
and reactive
astrogliosis, and
reduced peri-lesional
astrocytic wall

14, 44
days

Improved motor function
(forelimb use bias,
muscle strength and
distal spasticity) both
short- and long-term

Downregulation of
Connexin 43

Wasielewski
2012 (136)

P7 rats, HI
80 min

24 h
after HI

1×107

cells
IP NA NA 2,

14 days
Decreased
lesion-induced
apoptosis, increased
neurons

NA NA Increased the
expression of
proteins Tie-2,
occludin, BDNF and
VEGF in the lesioned
brain

Rosenkranz
2012 (141)

P7 rats, HI
120 min

2 h after
HI

1×106,
1×107,
1×108

cells

IV jugular 7 days Cells in the cortex and the
hippocampus

8 weeks No change in low-dose
group. Decreased brain
atrophy in medium- and
high-dose groups

8 weeks Cognitive improvement at
the highest dose only

de Paula
2012 (133)

P7 rats, HI
90 min

24 h
after HI

1×107

cells
IV jugular 1, 3, and

10 weeks
Many cells were in
ischemic periventricular
region at 1 week, but very
few at 3 and 10 weeks

10 weeks No decrease in tissue
loss volume, decreased
neuronal loss in
neocortex

10 weeks Improved performance in
a battery of behavioral
tests

Bae 2012
(139)

P7 rats, HI
120 min
(+cyclosporin A)

24 h
after HI

3×106

cells
IVen NA NA 24, 72 h,

7,
14 days

Decreased neuronal
loss in cortex and CA1
of the hippocampus

NA NA Increased Shh and
Gli1 protein levels

Wang 2014
(137)

hUCB–
CD34+

P12 SCID mice,
MCAO

48 h
after HI

1×105

cells
IV femoral 24 h,

10 days
Few cells at 24 h, very
few at 10 days

7 weeks Decreased brain atrophy 9 days,
7 weeks

No effect on rotarod or
open-field tests

Transient
augmentation of
CBF in peri-infarct
area

Tsuji 2014
(122)

(Continued)
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been investigated. Thus, the engraftment potential of UCB cells
remains poorly characterized, and requires further investigation
in studies using autologous transplantation.

NEUROPROTECTIVE PROPERTIES OF UMBILICAL CORD
BLOOD
A number of studies have demonstrated significant and repro-
ducible neuroprotective effects in rodent models of term neonatal
hypoxia–ischemia using UCB–MNCs (127, 133–139), UCB–MSCs
(119, 120), or UCB–CD34+ cells (122). Meier and colleagues
first showed that intra-peritoneal administration of hUCB–MNCs
alleviated spastic paresis in the Rice–Vannucci model of neona-
tal hypoxic-ischemic rats (127, 140). Following this, other rodent
studies have shown that hUCB–MNCs induce significant improve-
ments in sensorimotor performance (134–136, 138) and reduction
in neuronal loss (133, 134, 137–139, 141). Recent studies also
showed long-lasting neuroprotective effects of hUCB–MNCs in
behavioral and cognitive outcomes at 8 and 10 weeks after ischemic
insult (133, 139), with decreased brain atrophy (133). Ani-
mals treated with intra-cerebral hUCB–MSCs also demonstrated
improved neurological function and tissue repair (119, 120).

From pre-clinical results obtained to date, we hypothesize that
UCB cells may act in a neuroprotective manner via diverse actions,
including anti-inflammatory effects, immunomodulation, and
neurotrophic growth factor release to promote endogenous neu-
rogenesis.

ANTI-INFLAMMATORY AND IMMUNO-MODULATORY
ACTIONS OF UMBILICAL CORD BLOOD
A principal mechanism whereby UCB cells regulate neurologi-
cal repair is via anti-inflammatory actions. UCB administration
can dampen the expression of pro-inflammatory cytokines (IL-
1α, IL-6, IL-1β, and TNF-α), enhance anti-inflammatory cytokines
(IL-10), secrete chemotactic proteins (monocyte chemotactic pro-
tein 1), and modulate immune macrophage and T cell function
(142, 143). As described above, hypoxia–ischemia induces an acute
brain inflammatory response with activation of microglia and
macrophages and reactive astrogliosis associated with peri-lesional
up-regulation of connexin 43, the major astrocytic gap junc-
tion protein (144). Administration of hUCB–MNCs normalizes
inflammatory balance, reduces microgliosis and astrogliosis (134,
136), and down-regulates connexin 43, which in turn restores BBB
function to moderate inflammatory cell influx into the brain (136).

NEUROTROPHIC FACTOR ACTIONS OF UMBILICAL CORD
BLOOD
Transplanted UCB–MNCs or MSCs reportedly enhance neuro-
logical recovery via secretion of a wide variety of trophic fac-
tors including BDNF, glial cell line-derived neurotrophic fac-
tor (GDNF), nerve growth factors NT-3 and NT-5, angiogenin,
VEGF, fibroblast growth factor-2, and epidermal growth factor.
Together, these act to promote endogenous neuronal growth
and neurogenesis, angiogenesis, encourage remyelination, and
synaptic connections, and decrease cellular apoptosis (141, 145–
147). Transplantation of hUCB is associated with reduced levels
of cleaved-caspase-3 protein in hypoxic-ischemic newborn rats,
indicative of reduced apoptosis, with BDNF identified as playing
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a role in inhibition of apoptosis and inflammation (141). Fur-
ther, hUCB cell administration after hypoxia–ischemia increases
expression of Tie-2 and occludin proteins, and increases expres-
sion of VEGF, indicating that UCB transplantation may increase
endogenous angiogenesis and improved BBB integrity within the
damaged brain. In vivo, MSCs provide trophic neuroprotection
following injury by secreting physical tissue scaffold to surround-
ing tissues, while UCB–CD34+ cell transplantation enhances
functional recovery and reduces both infarction and apoptosis in a
rat model of spinal cord injury,mediated by the production of both
VEGF and GDNF (148). UCB-derived CD133+ cells promote a
threefold improvement in axonal regrowth, a 35% reduction in
apoptosis and vascular and neuronal protection following hypoxia
on organ co-culture of brain motor cortex cells and spinal cord
from postnatal day 3 rats, suggesting that the trophic effects from
CD133+ cells contributes to neuroprotection (149).

Hypoxia–ischemia stimulates endogenous proliferation of
NPCs (150). However, if an insult is severe, brain damage still
occurs, and the restorative proliferation of NPCs may be amelio-
rated, with activated NPCs failing to survive to mature neurons
(150, 151) or differentiating into astrocytes (152). Recently UCB–
MNC transplantation has been shown to promote the proliferation
of endogenous NPCs, and reduce glial differentiation, an action
mediated via the Sonic Hedgehog signaling pathway, resulting in
the alleviation of brain injury in hypoxic-ischemic neonatal rats
(137). These results support the ability of UCB cells to respond
to insult with paracrine and trophic actions, initiating a regenera-
tive environment mediated by resident cell populations within the
brain.

PRETERM BRAIN INJURY ANIMAL MODELS AND CELL
THERAPY
The majority of experimental studies described above that have
investigated the neuroprotective actions of hUCB have been
undertaken in rodent models of neonatal (term) hypoxic-ischemic
brain injury (119, 120, 122, 127, 133–139). Injury to the human
brain at the time of term birth induced by hypoxia–ischemia pre-
dominantly causes deep gray matter neuronal injury within the
basal ganglia and hippocampus, together with injury to neighbor-
ing white matter – this is appropriately reflected in rodent and large
animal studies of term hypoxia–ischemia. However, this distrib-
ution of injury is quite different in preterm WMI, reflecting sus-
ceptibility and region-specific effects following hypoxia–ischemia
and other insults as brain maturation progresses.

Animal models exploring the injury profile and mechanisms
of preterm pre-oligodendrocyte and WMI, have utilized either
an hypoxic-ischemic insult, or exposure to LPS-induced inflam-
mation. Excitotoxicity models such as administration of exci-
tatory amino acid agonists quinolinic acid and ibotenate have
also been used (26, 153). It is important to note that preterm
infants mostly suffer hypoxic-ischemic insults that are subacute
or chronic, in contrast to term infants where HIE is principally
due to an acute severe insult (154). Irrespective of which exper-
imental insult is utilized, the maturational age of the CNS is
critical (26). In addition, the choice of species is important. It
is well described that induction of predominant WMI is prob-
lematic in rats and mice due to the different CNS anatomy of

rodents that, besides being non-gyrencephalic and having a dif-
ferent vascular anatomy, demonstrates a much lower white/gray
matter ratio than in humans. In contrast, the pattern of WMI
in rabbits, cats, dogs, and sheep has a distribution and mor-
phological appearance closer to that of human preterm brain
injury induced by either hypoxia–ischemia or LPS administra-
tion (26, 59). The fetal rabbit brain myelinates with a similar
perinatal time course to the human, and maturation of oligoden-
drocytes begins antenatally (155). In utero, hypoxia–ischemia to
the preterm rabbit fetus causes postnatal hypertonic motor deficits
that resembles CP, making rabbits a very good model for postnatal
behavioral studies (156). Many further studies have been under-
taken utilizing fetal sheep models of preterm WMI because of
their abundance of cerebral white matter, their anatomic similar-
ities to the preterm infant, and an ability to monitor the systemic
and brain response to insult (37, 59, 157). However, because
of cost, availability of antibodies/sequence data and genetically
modified animals, rodent WMI studies are valued as comple-
mentary models (26). To date, only hAECs have been examined
in a non-rodent (fetal sheep) model of preterm WMI. Yawno
and colleagues demonstrated that administration of hAECs sup-
pressed the up-regulation of activated microglia, and reduced
gray and WMI in response to LPS in preterm fetal sheep (88)
(Table 2).

PRETERM BRAIN INJURY AND UMBILICAL CORD BLOOD
Hall and colleagues demonstrated that in postnatal day 2 rats,
intravenous hUCB–MNC administration preserves white matter
structures following an hypoxic-ischemic insult. This timeframe
corresponds to the period of white matter vulnerability in human
preterm infants between 24 and 30 weeks of gestational age (158).
Specifically, IV infusion of hUCB–MNCs at 48 h post-ischemia
reduced WMI based on quantification of myelin basic protein. A
direct protective effect of UCB–MNCs on oligodendrocyte injury
induced by oxygen/glucose deprivation (OGD), which produces
hypoxic-ischemic-like injury in vitro, was also identified (158).
Although the data are limited, it appears that hUCB–MNCs have
therapeutic potential for the protection of oligodendrocytes and
thereby prevention of WMI in a premature rat model of ischemia.

ANTIEPILEPTIC EFFECTS OF UMBILICAL CORD BLOOD
The incidence of seizures in very low birth weight infants is
5.6%, while the occurrence in those infants identified as hav-
ing PVL is 18.7% (159, 160). Seizures are typically observed in
more severe cases of PVL and those born at lower gestational
ages and birth weights (159, 160). Recent studies demonstrate the
antiepileptic actions of hUCB–MNCs. Transplantation of hUCB–
MNCs 90 min after the onset of status epilepticus in rats, induced
by lithium and pilocarpine chloride, protected against neuronal
loss in the hippocampus for up to 300 days. Additionally, MNC-
transplanted rats had reduced frequency and duration of recurrent
seizures, suggesting early administration could protect against
the establishment of epilepsy (161). Furthermore in a single
case of an infant with infantile spasms (West syndrome) and X-
linked T/B+NK-severe combined immunodeficiency, allogeneic
UCB transplantation together with topiramate and immune-
modulating agents (corticosteroids, intravenous immunoglobulin,

Frontiers in Neurology | Neuropediatrics October 2014 | Volume 5 | Article 200 | 8

http://www.frontiersin.org/Neuropediatrics
http://www.frontiersin.org/Neuropediatrics/archive


                                                         

Liet
al.

C
ord

blood
cells

for
preterm

brain
injury

Table 2 | Outcome of cell-based interventions in preterm brain injury.

Cell type Animal model Administration Engraftment Histology assessments Functional assessments Others Reference

Injury type Timing Dose Route Days Results Days Outcomes Days Outcomes

hUCB–MNCs P2 rats,
MCAO

48 h after
stroke

1×106 cells IV NA NA 4 days Reduced white matter
damage

NA NA UCB–MNCs directly
reduced apoptosis of
oligodendrocytes
cultured under oxygen
glucose deprivation
in vitro

Hall 2008
(158)

hUCB–MNCs P5 rats,
excitotoxicity
(ibotenate)

within 6 h or
24 h after
injection

1×106 or 107

cells
IP or IV 5 days No cells

detected
5 days No changes in lesion

size, microglial
activation, astrogliosis,
or cell proliferation.
Increased white matter
damage with increased
microglial activation by
ip administration

NA NA Dalous
2013 (89)

hUC-MSCs
(Passage 3)

P3 rats, HI
240 min

0, 1, 2 days
after HI, once
a day

1×106 cells,
3 times

IP 24 h Cells migrated
mainly toward
the injured
hemisphere

7, 18 days Increased mature
oligodendrocytes
counts. Decreased
astrocytosis and
microglial activation

27 days Improved
exploratory
behavior, mental
stress and motor
function

Zhu 2014
(174)

hUCB–MSCs P4 rats, blood
injection into
lateral
ventricle

P6 1×105 cells IVen NA NA 28 days Improvements of
corpus callosal
thickness and myelin
basic protein expression
reduction. Attenuation
of astrogliosis and cell
death

28 days Improved
behavioral tests
(negative, geotaxis
test and rotarod
test)

Attenuation of
post-hemorrhagic
hydrocephalus
development by MRI.
Decreased
inflammatory cytokines
expression in CSF
(IL-1α, IL-1β, IL-6, and
TNF-α)

Ahn 2013
(121)

hAECs 117 days GA
fetal sheep,
LPS

0, 6 and 12 h
after LPS

IT 1.8×108

cells, or IV
9×107 cells,
or IT
9×107

+ IV
9×107 cells

7d Cells were
detected in 2
of 14 fetal
brains

7 days Decreased activated
microglia in the
cortex, subcortical
and periventricular
white matter.
Decreased
apoptosis in the
cortex and
periventricular white
matter

NA Yawno
2013 (88)

CSF, cerebral spinal fluid; GA, gestational age; HI, hypoxic–ischemia (unilateral ligatiion of the carotid artery followed by 6% oxygen systemic hypoxia); hAECs, human amnion epithelial cells; hUCB–MNCs, human

umbilical cord-mononuclear cells; IP, intraperitoneal; IT, intrathecal; IV, intravenous; IVen, intraventricular; MCAO, middle cerebral artery occlusion; MSCs, mesenchymal cells; MRI, magnetic resonance imaging; NA,

not applicable; P, postnatal day; UC, umbilical cord; IL, interleukin; LPS, lipopolysaccharide; TNF-α, tumor necrosis factor-α.
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and tacrolimus) improved seizures, possibly contributed by an
immuno-modulatory effect of UCB–MNCs (162).

SUPPRESSION OF EXCITOTOXICITY BY UMBILICAL CORD
BLOOD
Suppression of excitotoxicity is a further important subject of
investigation for protecting the developing brain. The potential
therapeutic effects of stem cells in animal models of excitotoxic
brain injury have been examined using the N -methyl-d-aspartate
receptor agonist, quinolinic acid, to induce apoptosis and cleaved
caspase-3 and excitotoxic damage in the neocortex, hippocampus,
striatum, white matter, and subventricular zone, in the newborn
mouse brain. Injection of human embryonic germ cell-derived
NPCs partially restores the complement of striatal neurons, with
engraftment of the transplanted cells in injured sites and their
differentiation into neuronal and glial cells (163). In contrast,
intra-peritoneal and intravenous hUCB–MNCs administration
could not promote brain repair in ibotenate-induced excitotoxic
brain lesions in neonatal rats. The authors of this recent study
did, however, suggest that the intra-peritoneal injection of high
amounts of hUCB–MNCs may have aggravated WMI, possibly
due to systemic inflammation (89).

ANTIOXIDANT EFFECTS OF UMBILICAL CORD BLOOD
There is increasing evidence that stem cells, especially young
cells, possess antioxidant potential, which may then contribute
to anti-apoptotic effects (164–166). A recent paper showed that
hUCB–NPCs, a neuronal phenotype differentiated from collagen-
adherent hUCB–MNCs, induced neuroprotection via an antiox-
idant effect, decreasing free radical levels by 95% (167). Human
MSCs in vitro also scavenge oxygen and nitrogen free radicals, con-
stitutively express antioxidant enzymes, and themselves are highly
resistant to oxidative stress-induced death (166). It is still unclear
whether cells derived from UCB can mediate tissue oxidative stress
in vivo. Since oxidative stress is known to play an important role
in the progression of brain injury in preterm infants, this is a cru-
cial consideration for the ability of UCB–MNCs to mediate the
progression of preterm brain injury.

VASCULAR DEVELOPMENT, INTRAVENTRICULAR
HEMORRHAGE, AND UMBILICAL CORD BLOOD
Preterm infants are highly vulnerable to IVH due to their
maturation-dependent vascular vulnerability, localized to the area
of the periventricular germinal matrix and possibly in part due
to a coagulation system deficit of prematurity (9, 168). Preterm
infants predominantly develop IVH in the first week after birth
(169). While grades 1 and 2 IVH cause little neurological harm,
>50% of infants with severe IVH (grades 3 and 4) die or develop
post-hemorrhagic hydrocephalus (PHH). The incidence of severe
IVH in very preterm infants ranges from <5 to 20% (170). IVH is
observed in 25% of infants with PVL and worsens WMI by increas-
ing the amount of iron that combines with harmful free radicals
and inflammatory cytokines to exacerbate injury (171, 172). The
incidence of IVH has declined with current neonatal intensive care
practices, but it remains an important problem, for which there
is no targeted treatment (170). A recent paper demonstrated that
intraventricular administration of hUCB–MSCs attenuates brain

damage after severe IVH in newborn rats. The anti-inflammatory
effects of MSCs (i.e., reducing the expression of inflammatory
cytokines, such as IL-1α, IL-1β, IL-6, and TNF-α) were hypothe-
sized to contribute to the prevention of ventricular dilation and
neuroprotection (121). In adult rats, IV administration of hUCB–
MNCs also showed amelioration of neurologic deficits associated
with intra-cerebral hemorrhage (173).

OLIGODENDROCYTES, MYELIN DEFICITS, AND UMBILICAL
CORD BLOOD
Loss of pre-oligodendrocytes and hypomyelination are the prin-
cipal characteristics of preterm WMI and therefore protection
of oligodendrocyte lineage cells must be central to the devel-
opment of any neuroprotective strategies for the preterm brain.
Recently, Zhu and colleagues have shown that hUC–MSCs increase
mature oligodendrocyte number and improve long-term func-
tional outcomes following hypoxia–ischemia in postnatal day 3
rats, with engraftment of cells at lesion sites (174). It will, how-
ever be important to further elucidate whether UCB stem cells can
reduce pre-oligodendrocyte injury and thereby restore myelina-
tion in fetal or neonatal animal models of WMI. There is some
indirect evidence that UCB cell populations may infer benefit to
oligodendrocytes and myelination. The rare but serious genetic
disorders termed leukodystrophies cause degeneration of myelin
and progressive neurological deterioration and, to date, the only
known treatment option for leukodystrophies is early transplanta-
tion of HSCs (175). Experimentally, spontaneous myelin mutants
have been used to study potential therapies. The most commonly
used myelin mutant in transplant experiments is the shiverer
mouse, which has a mutation in the myelin basic protein gene,
and has been extensively used to study myelination by exogenous
cell transplantation, including HSCs, MSCs, and oligodendrocytes
progenitor cells (OPCs). OPCs can be isolated, differentiated, and
expanded from both fresh and cryopreserved UCB (176, 177)
offering a potential treatment option, and lay the foundations for
future studies in this research field.

CLINICAL TRIALS FOR CEREBRAL PALSY
There are currently a number of clinical trials listed, or recently
completed, for treatment of children with established CP. A
pilot study from Hanyang University Medical Center, Republic
of Korea examined 20 children aged 2–10 years with clinical CP,
who were born either preterm or term, and administered periph-
eral autologous UCB–MNCs. Neurodevelopmental outcomes and
neuroimaging studies were conducted up to 24 weeks after UCB
administration, and compared with a pre-infusion baseline. Func-
tional improvements were demonstrated in 25% of patients, and
improvements in brain imaging outcomes were also noted in chil-
dren with neurodevelopmental recovery. Side effects were identi-
fied in 25% of participants during infusion, treated successfully
with antihistamines and hydration. Although not powered to
demonstrate statistical benefit, the study showed the potential
and safety of autologous UCB–MNC treatment in children (178).
Between 2009 and 2012, Duke University in the USA treated 23
term newborns identified with HIE soon after birth with autol-
ogous UCB administration. The study was able to demonstrate
feasibility and safety of autologous UCB re-administration in
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combination with hypothermia, targeting UCB administration
at 6 h. Neurodevelopmental outcomes were recorded at 1 year
of age, however, a greater number of babies will be required to
appropriately assess functional outcomes (179). Duke University
is continuing to recruit for a larger study of autologous UCB
administration for children with established spastic CP.

USE AND EFFICACY OF COMBINATION THERAPIES
A recent clinical study has assessed allogeneic UCB administered in
combination with erythropoietin (EPO – itself the subject of neu-
roprotective trials), cyclosporine (an immunosuppressant), and
rehabilitation therapy at Bundang CHA Hospital, Republic of
Korea. Ninety-six children with CP aged 10 months to 10 years
were treated with UCB cells, and improved cognitive and motor
function were observed in all groups, including placebo, but with
greater improvements in UCB+ EPO children (180). Due to its
design, this study does not separate the neuroprotective effects
of EPO from UCB. However, combination therapy, which targets
different mechanisms and therapeutic windows, may be a useful
approach to treat preterm infants because of their multifactor-
ial causes of injury and the inherent difficulties with identifying
a therapeutic time frame in these infants. Indeed, ganglioside
and mannitol have been shown to enhance the neuroprotective
benefits of hUCB–MNCs and hUC–MSCs treatments following
neonatal asphyxia in pre-clinical studies (130, 138). In contrast,
despite recent promising neuroprotective outcomes of EPO in
preterm cohort (181), routine clinical use of EPO, especially by
high-dose, has always been hampered by its risk for retinopathy
of prematurity (182). Melatonin, a powerful antioxidant shown to
protect the developing brain by reducing oxidative stress follow-
ing hypoxia–ischemia, with an absence of side effects, may be a
candidate for co-administration with UCB (183). In term infants
with HIE, hypothermia has been standard neuroprotective ther-
apy for a number of years (184), and combination treatment of
moderate hypothermia with MSCs significantly improves neu-
ronal survival and mitochondrial activity after OGD exposure
in vitro (185). Clinically, Cotten and colleagues recently showed
that hypothermia and autologous UCB combination treatment is
feasible and safe in term infants with HIE (179), and reflects that
any treatment for term HIE must be considered in the context of
therapeutic hypothermia. However, in very preterm and extremely
preterm infants hypothermia is not currently recommended and
may increase the risk of complications or death (186). A phase 1
clinical study of selected head cooling for preterm infants,born 32–
35 weeks gestation, with neonatal HIE has recently been completed
[NCT00620711], and the results are awaited with interest.

Other types of stem and stem-like cells may also be used for
the combination therapy with UCB. UC, in addition to UCB, pro-
vides an abundant and non-invasive source of MSCs. These cells
are neuroprotective in hypoxic-ischemic brain injury, and share
similar in vitro immunosuppressive properties with bone marrow-
and UCB-derived MSCs as well as mediating monocyte function to
suppress T cell proliferation (130, 187). Importantly, hUC–MSCs
also protect oligodendrocytes, reduce astrogliosis, and improve
long-term functional outcomes in a model of preterm postna-
tal day 3 rats hypoxia–ischemia (174). Moreover, hUC–MSCs
undergo successful cell expansion using animal serum-free culture

medium, thereby removing safety concerns of animal-to-human
viral transmission, further encouraging their potential for clini-
cal application (188, 189). hAECs may present a useful therapy in
combination with UCB, hypothermia, or alternate therapies. The
proven anti-inflammatory properties of hAECs appear a principal
mechanism to reduce preterm brain injury (88). They display both
embryonic and pluripotent stem cells with abundant quantity, do
not express MHC class molecules so have low immunogenicity,
and do not form teratomas (190). Furthermore, the ready avail-
ability of hAECs without the need of expansion may enable them
to be used for early autologous transplantation for preterm brain
injury (88, 188, 189), with or without combination therapies.

OPTIMAL TIMING OF TRANSPLANTATION OF UMBILICAL
CORD BLOOD
Recent experimental studies have been aimed at identifying the
therapeutic window for UCB therapy. In adult rats who under-
went middle cerebral artery occlusion-induced stroke, intravenous
administration of hUCB–MNCs within 72 h resulted in an early
functional recovery with lesion improvement, however cell admin-
istration at 120 h provided only minor functional recovery, and
treatment at 14 days did not show any benefit (132). Whether a
similar result can be obtained in an autologous or allogeneic set-
ting is unknown. However, given that one of the primary benefits
of UCB cells is their anti-inflammatory actions, it is likely that early
intervention may be of greater benefit. Indeed, current ongoing
clinical trials for neonatal HIE by National University Hospital,
Singapore, and Duke University, USA are giving autologous UCB
within the first 3 and 14 days, respectively after term birth asphyxia
(NCT01649648 and NCT00593242). However, in preterm infants,
it is difficult to know the timing of WMI that results in cystic
PVL or diffuse WMI (9, 184, 191) and therefore either combina-
tion therapies, or cell preparations with multiple benefits would
be most appropriate.

CLINICAL TRIALS FOR PRETERM BRAIN INJURY
No trials of neuroprotective UCB for use in treating WMI in
preterm infants are currently registered in humans. A significant
challenge in the design of a clinical trial for preterm infants is the
question of which UCB cells to administer? As described above, it is
becoming apparent that the type and quantity of specific cell types
differs in preterm UCB from that in term UCB. A dose–response
effect of UCB therapy for neonatal hypoxia–ischemia has been
demonstrated (133, 192), but it is unclear whether a therapeutic
quantity of cells can be derived from preterm UCB as the volumes
obtained are low (see Umbilical Cord Blood above). Further to this,
the ability to expand preterm UCB cells is not yet well described.

In preterm infants, as also discussed above, the timing of the
onset, and chronic progression of WMI is usually not known.
It is also not known whether to administer UCB cells before
or after brain injury is identified. Administration following the
identification of brain injury may provide better outcomes than
administration in later childhood, due to the plasticity of the devel-
oping brain; although the evidence for this both in pre-clinical
studies and clinical trials is sparse. In contrast, as cystic PVL
or diffuse WMI tend to develop over days to weeks after birth
(72, 169), early postnatal UCB administration “before defining
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brain damage” in preterm and extremely low birth weight infants
may be more efficacious. Indeed, two clinical trials administering
autologous UCB to preterm infants in the first 5 or 14 days post-
delivery, aiming to examine feasibility and efficacy for a variety of
preterm complications, are currently underway (NCT02050971
and NCT01121328). However, in preterm infants susceptible to
WMI at least until 32 weeks or more gestational age, a single
administration of cells might not span an adequate period of brain
protection. Thus, the need for repeated dose administration and
expansion of UCB samples are further exemplified in a preterm
cohort. Recently described in vivo cell tracking methodology using
MRI, which enables the tracking of migration and distribution of
magnetically labeled cells in tissues, may be useful for optimizing
the time course for UCB treatment (193).

CONCLUSION
Taking into account the similarities and differences in preterm
versus term brain injury, and limitations to date in stem cell
studies for preterm WMI, it is apparent that a number of con-
siderations apply before UCB treatment could be extended to
infants born preterm. The clear advantage of undertaking UCB
administration in a preterm cohort is the relative plasticity of the
developing brain in immature infants, and potential for regen-
eration. However, there are current disadvantages that must be
overcome. Studies to date suggest that early cell administration
post-injury achieves favorable therapeutic outcomes, but a current
lack of sensitive diagnostic tools and inability to accurately deter-
mine the onset of preterm brain injury remains problematic. Work
to define the most appropriate time for therapeutic intervention is
needed. Additionally, the specific cells present in UCB responsible
for brain protection are not yet characterized and the compli-
cations of pregnancy that are often co-morbidities with preterm
birth, such as uteroplacental inflammation or IUGR, may alter the
cellular composition of UCB. A handful of published work sug-
gests that preterm UCB cell number, cell total population and cell
maturity is different to that in term UCB, which may not provide
the expected benefit that has been observed using term hUCB in
experimental animal and clinical studies. It is therefore currently
not known whether autologous or allogeneic UCB cell administra-
tion would confer optimal benefit in a preterm cohort, or whether
expansion of specific cell types should be considered and pursued.
Thus it remains that UCB holds strong promise for the treatment
of preterm brain injury in the neonate, but fundamental questions
must be answered with appropriately designed experimental ani-
mal and clinical studies prior to large-scale randomized clinical
trials for preterm brain injury.
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