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Diffusion magnetic resonance imaging fiber tractography is a powerful tool for investigating
human white matter connectivity in vivo. However, it is prone to false positive and false
negative results, making interpretation of the tractography result difficult. Optimal tractog-
raphy must begin with an accurate description of the subvoxel white matter fiber structure,
includes quantification of the uncertainty in the fiber directions obtained, and quantifies
the confidence in each reconstructed fiber tract. This paper presents a novel and compre-
hensive pipeline for fiber tractography that meets the above requirements. The subvoxel
fiber geometry is described in detail using a technique that allows not only for straight
crossing fibers but for fibers that curve and splay. This technique is repeatedly performed
within a residual bootstrap statistical process in order to efficiently quantify the uncertainty
in the subvoxel geometries obtained. A robust connectivity index is defined to quantify the
confidence in the reconstructed connections. The tractography pipeline is demonstrated
in the human brain.

Keywords: diffusion MRI, fiber orientation distribution function, high angular resolution diffusion imaging, fiber
dispersion, curve inference

1. INTRODUCTION
This paper describes a pipeline for performing fiber tractography
using a complex description of the subvoxel fiber geometry within
a bootstrap probabilistic framework. A curve inference algorithm
that can accurately describe the fiber geometry of straight, cross-
ing, bending, and fanning fibers on a subvoxel scale is examined.
Given this probabilistic description of the subvoxel fiber geom-
etry, confidences are assigned to individual fiber tract segments
and subsequently to entire reconstructed tracts, using a weak-
est link connectivity measure. These advancements demonstrate
promise for accurately mapping the white matter fiber bundles of
the healthy human brain, and may provide improved sensitivity
for tracking fiber changes in disease processes.

Diffusion magnetic resonance imaging (MRI) is the first non-
invasive method capable of exploring neural connectivity and
reconstructing white matter fiber structure in vivo. Diffusion MRI
is able to probe white matter fiber orientation because water dif-
fusion is anisotropic in brain, with greater displacement of water
molecules parallel to white matter fiber tracts. This characteristic
can be used to reconstruct connectivity patterns between different
cortical/subcortical areas of the brain. The first step in diffusion
MRI tractography is estimation of the diffusion probability den-
sity function (PDF) describing the anisotropic diffusion of water
molecules. Several techniques have been developed to compute
the diffusion PDF, ranging from diffusion tensor imaging (DTI)
(2), which is a low angular resolution technique, to high angular

resolution diffusion imaging (HARDI) techniques, such as dif-
fusion spectrum imaging (DSI) (30) and q-ball imaging (QBI)
(31). While DTI was the first successful technique in modeling the
diffusion PDF, it fails to extract the true fiber structure within a
voxel containing a crossing, branching, or merging configuration
of fibers due to its underlying assumption of a single anisotropic
Gaussian PDF. Using the latter techniques, a high angular reso-
lution diffusion orientation distribution function (ODF) can be
obtained, which has the potential to model multiple fiber orienta-
tions within a voxel. More recent techniques have been developed
for calculation of the fiber ODF (1, 8, 26, 27), which is the diffusion
ODF deconvolved with a single fiber response function. The fiber
ODF can be calculated directly by deconvolution of the MRI signal
profile with the single fiber response function in signal space [e.g.,
Ref. (27)], or by calculating a diffusion ODF with q-space tech-
niques and deconvolving with the single fiber response function
in diffusion ODF space [e.g., Ref. (8)].

Regardless of the method used for the computation of diffusion
ODFs or fiber ODFs, there are always uncertainties associated with
the estimated fiber orientations. These uncertainties, which can
be due either to acquisition noise or model deficiencies, should be
incorporated in further processing, such as tractography, in order
to reflect the confidence in the reconstructed fiber pathways. To
address this issue, there has been a large body of research dedicated
to probabilistic tractography. These probabilistic methods can be
divided into two groups: those that model noise parameters by
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some probability distribution (3, 21) and bootstrap based methods
that capture the uncertainty in the data by random selection from
a set of different measurements (15). The bootstrap is a statistical
technique that allows estimation of a given distribution using data
resampling (9). While traditional bootstrap methods can provide
a non-parametric estimation of diffusion uncertainty, the need
for multiple data acquisitions hinders any practical application of
them to HARDI based techniques. A more viable alternative to
the standard bootstrap method is the residual bootstrap, which
requires only a single HARDI measurement. It has recently been
proposed in the context of q-ball imaging (5, 12), and has sub-
sequently been applied to spherical deconvolution diffusion MRI
reconstruction (13, 14, 18).

Fiber ODFs obtained from HARDI measurements, combined
with a bootstrap probabilistic approach, can characterize uncer-
tainties in the fiber orientation well in the case of straight fiber
structure. However, despite the significant improvement that can
be expected using this technique, there still exist ambiguities in
the subvoxel fiber structure that cannot be resolved by fiber ODFs.
An example is the failure to discriminate between a fanning and
curving fiber tract. The fiber ODF for these two geometries is
identical, depicting a continuous range of smoothly varying fiber
directions. Fiber orientation dispersion has been characterized
by several models (25, 32), and curving and fanning fibers exist
throughout the brain at a wide range of length scales. In recent
work by Savadjiev et al. (24), the issue of differentiating curving
from fanning was addressed by implementing a 3D curve inference
algorithm that assigns different labels to such ambiguous con-
figurations. Improvement was shown in tractography using the
curve inference labeling information, which differentiates single,
fanning and crossing fiber configurations, and gives the polarity
of the fanning in the case of fanning.

By properly incorporating uncertainty due to noise in tractog-
raphy, false negative results can be reduced. This is of particular
importance for tractography applications such as surgical plan-
ning. By incorporating accurate descriptions of the subvoxel fiber
geometry, false positive and false negative results can be reduced.
For example, tracking algorithms that fan wherever the fiber ODF
is broad may result in connections that could be eliminated by
characterizing the polarity of the fanning and fanning only in
one direction. This is of benefit when characterizing anatomy in
detail.

In this paper, the curve inference algorithm, which allows for
straight, crossing, bending, and diverging fibers on the subvoxel
scale, is used as an example technique to accurately describe the
fiber geometry; the pipeline can be extended to handle other
subvoxel fiber geometries, such as bottlenecks. Diffusion MRI trac-
tography is performed using the output of the bootstrap curve
inference process, which allows us to define a confidence value for
each reconstructed tract, and subsequently an index of connec-
tivity, at each voxel in the volume, to the region of interest (ROI)
of the user’s choice. This connectivity index is derived using a
weakest link approach (6, 22), and solves many of the problems
inherent in popular connectivity indices that are based on fre-
quency of connection (4, 17, 21), which count the number of times
probabilistic streamlines pass through voxels. Our results demon-
strate the promise of this pipeline in the healthy human brain. We

also evaluate how well the residual bootstrap predicts scan-rescan
repeatability of fiber orientation estimates.

2. MATERIALS AND METHODS
2.1. ACQUISITION
MRI data were acquired for three healthy subjects on a Siemens
3 T Trio MR scanner (Siemens Medical Systems, Erlangen, Ger-
many) using an eight-channel phased-array head coil. The study
was approved by the Montreal Neurological Institute Research
Ethics Board, and informed consent was obtained prior to
the study. Diffusion encoding was achieved using a single-
shot spin-echo echo planar sequence with twice-refocused bal-
anced diffusion encoding gradients. A dataset designed for high
angular resolution reconstruction was acquired with 99 diffu-
sion encoding directions, 2 mm isotropic voxel size, 63 slices,
b= 3000 s/mm2, TE= 121 ms, TR= 11.1 s, and GRAPPA paral-
lel reconstruction with an acceleration factor of two. A 1 mm
isotropic resolution T1 weighted anatomical scan was also
acquired (TR= 9.7 ms, TE= 4 ms, α= 12°). For one subject, the
diffusion-weighted acquisition was repeated four times, without
repositioning.

A second diffusion MRI protocol that is more commonly used
(16) was also explored for one subject. This protocol provides
lower angular resolution, but higher signal-to-noise ratio and a
shorter acquisition time. It used a b-value of 1000 s/mm2 and 64
diffusion encoding directions, 2 mm isotropic voxel size, 65 slices,
TE= 92 ms, TR= 9.3 s, and GRAPPA parallel reconstruction with
an acceleration factor of two.

2.2. PROBABILISTIC DECONVOLUTION
All of the data processing was implemented in C++1. The
diffusion-weighted signal profiles were fit to a spherical harmonic
(SH) basis of order eight, using a least-squares estimation. Mul-
tiple (in this experiment, 100 repetitions) diffusion-weighted sig-
nal profiles were generated using the residual bootstrap method.
For each repetition, the residuals from the SH fit of the origi-
nal diffusion-weighted signal profiles were added at random with
replacement to the SH profile to generate a new diffusion-weighted
signal profile reflecting the noise characteristics of the acquisition.
This residual bootstrap procedure follows the approach of Berman
et al. (5), originally applied to q-ball imaging. The residuals ri were
first corrected for leverage using the following factor:

r̂i =
ri

√
(1− hi)

, (1)

where hi are the diagonal elements of the hat matrix H, which is
the matrix that maps the original signal values S to the SH-fitted
signal values Ŝ:

Ŝ = HS. (2)

The new diffusion-weighted signal profile was checked for neg-
ative values, but these did not occur using data of the quality

1The code is currently available upon request from the authors.
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typical of human in vivo diffusion MRI acquisitions. For the nois-
ier, b= 3000 s/mm2, data, the corrected residual magnitude on
average in the brain was 4.0± 3.5% of the signal profile intensity.
For each bootstrap repetition, the new signal profile was input to a
spherical deconvolution algorithm [an adaptation of the approach
of Anderson (1)], using a spherical harmonic expansion of order
eight. The pipeline can be run with any spherical deconvolution
algorithm, e.g., constrained non-negative spherical deconvolution
(27) would be appropriate.

2.3. PROBABILISTIC CURVE INFERENCE ALGORITHM: LABELING OF
SUBVOXEL FIBER CONFIGURATIONS AND CONSTRUCTION OF
PDF FOR FIBER PROPAGATION

The deconvolved ODFs were used as input to a curve inference
algorithm, the details of which are described by Savadjiev et al.
(23, 24). The curve inference process labels the subvoxel fiber con-
figuration for each bootstrap repetition as either fanning, single,
or multiple (i.e., crossing) curves, and gives the polarity in the
case of fanning. The input to the curve inference algorithm is
the fiber ODF obtained from spherical deconvolution. The 3D
curve inference algorithm exploits the local differential geometry
of 3D curves to infer the likely local curves modeled as helices. A
co-helicity measure is defined to compute the degree of compat-
ibility among triplets of orientations. The algorithm then defines
what curves exist in each voxel, as opposed to what straight lines
exist, thereby allowing fanning and subvoxel curvature to be distin-
guished. In this implementation, only voxels with one fiber ODF
maximum are considered as possible fannings. Hence, voxels that
have a broad fiber ODF will be labeled as fannings if the local
neighborhood fibers support this configuration, and otherwise the
breadth of the fiber ODF is assumed to be due to curvature. In this
paper, curve inference labeling refers to this process of identifying
voxels as containing fibers in one of several geometries including
fanning.

The outputs of the curve inference labeling algorithm are the
geometry labels assigned to each voxel and a vector describing the
fanning fiber polarity. Combined with the fiber ODFs and their
maxima, we can construct a PDF for the direction of propagation
of tractography. In this implementation, only crossings of up to
three fibers are considered, as four way crossings were not detected
with the angular and spatial resolution employed in this study. The
algorithm can be extended to handle an arbitrary number of fiber
ODF maxima. On each bootstrap repetition, a given voxel will be
labeled a fanning or a single fiber (if the fiber ODF has one maxi-
mum and it is not a fanning), a double crossing (if the fiber ODF
has two maxima), or a triple crossing (if the fiber ODF has three
maxima). If it is a fanning, the full fiber ODF is saved. The broad
extent of the fiber ODF is assumed to represent the range of fiber
orientations in the fan. In all cases, the fiber ODF maxima are
saved. These will be the directions of propagation for the merge
direction of a fan, for the single (potentially curving) fiber, for the
double fiber crossing (if there are two maxima), and for the triple
fiber crossing. From the bootstrap repetitions, we then have an
average fiber ODF (Figure 1A), and an average ODF maximum
(or maxima) (Figure 1B). The PDF for the direction of propaga-
tion of tractography for fanning is the combination of the two:
the mean fiber ODF in the direction of the fan polarity vector,

FIGURE 1 |The construction of the PDF for the direction of
tractography is shown. Broad fiber ODFs, shown in box (A), may be due
to either fanning or curvature, and curve inference distinguishes between
these cases. In the case of fanning, fanning of the streamlines propagated
in tractography will occur in only one direction [+, as indicated by the
polarity vector in box (C)], while in the other direction, there is a merge [− in
box (C)]. In the merge direction, and in the case of curvature, tractography
follows non-zero directions in the PDF for the fiber ODF maximum [box
(B)]. The PDF for the direction of propagation for curvature is then equal to
the PDF for the fiber ODF maximum (B), and the PDF for the direction of
propagation for fanning/merging (C) is the combination of the average fiber
ODF (A) and the PDF for its maximum (B). Box (D) illustrates how the
streamlines will propagate using FACT integration in the cases of fanning
(left) and merging (right). Box (E) illustrates how the streamlines will
propagate in the case of curvature. The fiber ODF maximum is assumed to
represent the intermediate tangent to the curve, which is used as a
discretized approximation to the curve segment in the voxel, entering and
exiting the voxel where the curve would have done.

and the mean fiber ODF maximum in the direction of the merge,
which is opposite to the fan polarity vector (Figure 1C). Figure 2A
summarizes the possible PDFs for the direction of propagation of
tractography.

The mean vectors and bootstrap confidence intervals for the
fiber directions were also computed. In the case of crossing, the
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FIGURE 2 | A summary of the fiber configurations obtained from the
probabilistic curve inference labeling is shown. (A) PDFs for the
direction of propagation of tractography. The algorithm produces output for
four possible configurations, which are, from left to right, a single
(potentially curving) fiber bundle, double crossing, triple crossing, and
fanning fibers. These distributions come from one b=3000 s/mm2 dataset
on which curve inference was run. (B) Confidence intervals for the mean of
these distributions are also obtained. Here, the 95% confidence intervals
for the mean fiber ODF maximum are shown for the non-fanning cases,
using the b=1000 s/mm2 dataset.

distinct crossing fibers were treated separately. Mean vectors and
cones of uncertainty for the 95% confidence intervals for the
mean vector are shown in Figure 2B, using the b= 1000 s/mm2

dataset as an example. The PDF for the direction of propaga-
tion for each fiber was normalized to have volume one. Occur-
rence rates were computed for each of the four fiber geometries
at each voxel, equal to the number of times a specific geome-
try label has been assigned to that voxel. As a final step, the
vectors obtained for each different configuration were matched
to obtain an occurrence rate, Ov, of each vector. Specifically, if
a vector is labeled as a single fiber direction on some repeti-
tions, and matches one of many crossing fiber directions on
other repetitions, and falls within a fan on other repetitions, all
of these occurrences will be reflected. Hence, an occurrence Ov

between 0 and 1 is assigned to each vector. The importance of
this occurrence rate for the fiber direction is explained below in
Section 2.5.

Broad fiber ODFs may be due to either fanning or curvature,
and they are used to construct the PDF for the direction of propa-
gation of tractography only when curve inference identifies them
as fannings. In the case of curvature, the fiber ODF maximum is
used as a discrete approximation of the curve, assuming the maxi-
mum represents the intermediate tangent to the curve segment in
the voxel. This is illustrated in Figure 1. Box (b) will be the PDF
for the direction of propagation of tractography in the case of cur-
vature; box (c) will be the PDF in the case of fanning/merging.
Box (d) illustrates how the streamlines will propagate, using FACT
integration (19), in the cases of fanning (left) and merging (right).
Box (e) illustrates how the streamlines will propagate in the case
of curvature. The streamlines will enter and exit the voxel where
the curve would have done.

2.4. COMPARISON OF BOOTSTRAP VARIANCE TO SCAN–RESCAN
REPEATABILITY

Given an accurate description of the fiber geometry in a voxel, the
remaining uncertainty in the fiber orientations is due to imaging
noise. The residual bootstrap estimates this uncertainty. The ideal
validation of the technique would be repeated scanning of the same
subject, but obtaining enough repeated measurements to perform
voxel-wise comparisons of the variability in the fiber orientation
estimates is impractical. However, with O(105) voxels in the brain,
the degree to which the observed data match the bootstrap predic-
tion for variability can be assessed on average for all voxels, despite
the PDF for the fiber orientation being different at each voxel. If
we have a bootstrap computation of the cones of uncertainty for
a given confidence interval for the fiber ODF maxima, we expect
it to predict the direction of the maxima of the fiber ODF for a
subsequent registered MRI measurement. Hence, we expect the
fiber ODF maxima computed from a subsequent scan to lie within
the 95% confidence interval (see Figure 2) in 95% of the voxels in
the brain.

Using one of the repeated diffusion-weighted scans, the PDF
and confidence intervals for the fiber ODF maxima were obtained
from bootstrapping. For a second, registered, MRI scan, the fiber
ODF maxima obtained from spherical deconvolution were com-
puted without bootstrapping. The number of voxels in which the
fiber ODF maxima lay within the 68 and 95% confidence inter-
vals obtained from the bootstrap analysis was counted. This was
repeated for the other two coregistered datasets, and the whole
process repeated four times for the four coregistered scans, mean-
ing each scan was used for bootstrapping once, and the other
three scans compared to it. The results were tabulated for frac-
tional anisotropy (FA) ranges from 0.1 up. The threshold of FA
>0.1 is expected to include many voxels with little or no white
matter, but is often used for fiber tractography in pathways that go
through, e.g., the thalamus, and other regions of partial volume
averaging of fibers with other fibers or gray matter.

2.5. TRACTOGRAPHY
The tractography algorithm used was an extended streamline
tracking procedure implemented in a framework that considers
the fiber orientation information obtained from the probabilistic
curve inference labeling scheme. Tracking was initiated in a user-
delineated seed ROI. Streamlines were propagated iteratively, with
the direction of propagation chosen randomly from within the
PDF for the direction of propagation of tractography described
in Section 2.3. FACT (Fiber Assignment by Continuous Tracking)
(19) integration was used. For each iteration, at each voxel reached,
one fiber geometry was chosen at random from all geometries
with non-zero occurrence. Next, for the case of crossing, the one
fiber with mean ODF maximum direction closest to the incoming
direction was chosen.

The direction of propagation was chosen at random from the
PDF for the direction of propagation (see Figure 2) for the chosen
fiber geometry, as described in Section 2.3. The confidence value
for this vector tract segment was then given by the value of the PDF
in this direction, scaled by a factor that reflects the confidence in
this fiber direction’s existence. In the case of fanning, this scaling
factor is the percent occurrence of the fanning geometry label. For
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all other cases, the scaling factor was the occurrence rate Ov for the
selected fiber direction. For example, if a single fiber is detected
60% of the time, and a second fiber that crosses it is detected 40%
of the time, then the occurrence rate for the fiber direction detected
all the time will be 100%, and for the fiber detected 40% of the
time, the occurrence rate will be 40%. Hence, the confidence value
will reflect our confidence that the fiber exists at all, independent
of which specific geometry (in this example, single fiber or double
crossing) it is part of. This is handled automatically in frequency
of connection voxel-counting schemes, but needs to be handled
explicitly here.

As the iterative tractography process evolved, confidence values
were assigned to the streamlines using a weakest link approach (6,
22): the confidence in a given streamline is given by the lowest
confidence value of all tract segments along the streamline. Before
applying the minimum operation, the confidence values along the
tract were blurred using a 1D Gaussian blurring kernel with a
standard deviation of 2 mm, in order to avoid extreme sensitiv-
ity to isolated voxels. The connectivity index for each voxel in the
imaging volume to a given reference ROI was then assigned: the
connectivity index for a given voxel to the reference ROI is given
by the highest confidence value over all the streamlines connecting
voxels in the reference ROI to this voxel. Figure 3 illustrates this
weakest link connectivity approach, and Figure 4 summarizes the
processing for the combined curve inference labeling and residual
bootstrap probabilistic pipeline.

Tractography experiments were run in different regions of the
brain, using the b= 3000 s/mm2 data. Reference ROIs were drawn
manually in the mid-sagittal corpus callosum, the cingulate bun-
dle, the fornix, Broca’s area (the pars opercularis (area 44), and
the pars triangularis (area 45) of the ventrolateral frontal cortex)
(10), and the internal capsule. Tractography can be initiated in any
seed ROI, but all experiments done here were seeded in the refer-
ence ROI. For all seed ROI voxels, the tracking was initiated on a
3× 3× 3 grid of start points in order to facilitate branching on the

FIGURE 3 |The tractography process propagates streamlines iteratively
with the direction of propagation chosen from within the PDF for the
direction of fiber propagation. The confidence in this tract segment
generated is given by the scaled value of the PDF for the fiber orientation in
the direction propagated. The confidence value for a streamline connecting
voxel C to voxel A is given by the lowest confidence value for all segments
along that streamline. Here, the dashed tract segment, which runs along
the edge of the PDF, has the lowest confidence. The scalar connectivity
index for connection of voxel C to reference voxel A will be given by the
maximal confidence value of all streamlines that connect the two voxels.

intervoxel scale. For each starting point, a large number of itera-
tions of the probabilistic tractography were run in order to ensure
convergence (1000 iterations were used in these experiments).

The tracking was stopped if the FA was less than 0.1, the mean
diffusivity was greater than 1.0−6mm2/ms, or the turning angle
from one voxel to the next was greater than a user-defined thresh-
old. This curvature threshold was 80° for all experiments except
the cingulum and fornix experiments, where it was 70°. For seed
ROIs in the corpus callosum, fornix, and cingulum, tracts that
erroneously turned down the cortical-spinal tract were excluded
using exclusion masks. For the fornix and cingulum seeds, tracts
that jumped onto the corticospinal tract or the corpus callosum
were excluded. For the internal capsule tracking, tracts were seeded
bilaterally in the internal capsule, and only tracts that connected to
additional bilateral ROIs in the motor cortex were retained,exclud-
ing connections that passed through the mid-sagittal plane. For the
seed ROI in Broca’s area, two experiments were run, one excluding
commisural and projection fibers, and one with a second tract-
delineating ROI in the homologous contralateral cortex. These
stopping, exclusion, and inclusion criteria are user-defined and
can be modified to reflect any prior knowledge the user has to the
expected trajectory and curvature of the tract being reconstructed.
In fact, tractography can be an interactive process in which criteria
such as the curvature constraint are modified dynamically, but the
criteria used must be well documented to aid interpretation of the
results.

For comparison in several regions of major fiber tract systems
where significant fanning was expected (the projections of the
corpus collosum and cortical-spinal tract), the tracking was also
done using the bootstrap probabilistic framework, but no curve
inference, i.e., no treatment of fanning fibers. Connectivity index
maps were stored for all experiments, with the connectivity index
reflecting the confidence in connection of each voxel in the volume
to the seed ROI.

3. RESULTS
Figure 5 shows the computed PDF for the direction of propaga-
tion for tractography for the four different fiber configurations
in a small ROI in the brain. The fiber geometry with the highest
occurrence is shown in each voxel. The ROI is at the decussa-
tion of the thalamo-cortical tract (blue), projections of the corpus
callosum (red), and superior longitudinal fasciculus (green); dou-
ble and triple crossings of these fibers are seen, with the superior
longitudinal fasciculus going through plane. Fibers of the corpus
callosum fan to the right (purple arrow).

Figure 6 shows the correspondence between observed and pre-
dicted confidence intervals for the fiber orientation estimates. We
are comparing a single measurement (the fiber ODF maximum)
to a distribution (the bootstrap PDF for the fiber ODF maxi-
mum) for each fiber at each voxel. The blue and red bars show
the percent of the voxels in the brain for which the fiber orienta-
tions, computed without bootstrapping, lay within the 68 and 95%
bootstrap-predicted confidence intervals for the fiber orientation.
The blue and red lines indicate 68 and 95% on the y-axis, respec-
tively. For major fiber tracts (i.e., FA >0.3), the correspondence
between the observed variability in the fiber ODF maxima and
the variability predicted by the bootstrap was very good, with the
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FIGURE 4 | A summary of the data processing pipeline for the combined curve inference labeling and bootstrap probabilistic tractography is shown.

percentages matching closely. For low FA, the residual bootstrap
underestimates the scan-rescan repeatability.

The underestimation of the scan-rescan repeatability could be
due in part to the order eight SH expansion overfitting the noise at
low FA values. It could also be attributed to slight misregistration

between the acquired datasets, despite automated registration.
The bootstrap predicts the variability due to noise, but cannot
be expected to predict the variability due to subject position-
ing. Misregistration, including subvoxel misregistration, would be
expected to affect the cores of major fiber pathways, which span
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FIGURE 5 | PDF for the direction of propagation for tractography in a
small ROI in the brain, shown by white box. The fiber geometry with the
highest occurrence is shown in each voxel. The ROI is at the decussation of
the thalamo-cortical tract (blue), projections of the corpus callosum (red),
and superior longitudinal fasciculus (green).

FIGURE 6 |The comparison of the bootstrap uncertainty profiles for
fiber orientations is shown. The blue and red bars show the percent of
the voxels in the brain for which the fiber orientations, computed without
bootstrapping, lay within the 68 and 95% bootstrap-predicted confidence
intervals for the fiber orientation using a separate dataset. For major fiber
tracts (i.e., FA >0.3), the correspondence between the observed variability
in the fiber ODF maxima and the variability predicted by the bootstrap was
very good.

multiple voxels, less than the edges (i.e., low FA), where there
is significant partial volume averaging. The goal of the residual
bootstrap processing is to predict the uncertainty in the fiber
orientation(s) in order to propagate this uncertainty into fiber
tractography results. Hence, subtle positioning changes could be
expected to influence scan-rescan repeatability of tractography
results more than predicted by residual bootstrap tractography,
in tracking experiments using a low FA threshold. Otherwise, the
residual bootstrap adequately predicts the variability due to noise.

Figure 7 shows the worst-case connectivity index in the fiber
tract systems. The tracking follows the expected course in the

major fiber bundles. For the association connections of Broca’s
area, we see local cortico-cortical connections, the classic arcu-
ate fasciculus, and connections to the temporal lobe through the
extreme capsule, as have been seen in previous works (10). The
expected transcallosal connections are also observed.

The highest connectivity values occur in the cores of major
fiber tracts. For example, in the corpus callosum (Figure 7A), the
highest connectivity values occur in the medial core of the cor-
pus callosum, where the voxels contain large volume fractions of
single fiber directions. This is expected because the reproducibil-
ity of the fiber ODF maximum is lower near the cortex than it
is, e.g., in the middle of the corpus callosum. The connectivity
index reflects our confidence in particular reconstructed stream-
lines, and this confidence will always drop in regions where the
PDF for the fiber direction has more uncertainty. The lower con-
fidence in the fiber direction for propagation near the cortex may
occur because there is more partial volume averaging of fibers with
other fiber populations and with gray matter and cerebral spinal
fluid.

In Figure 7A, the reference ROI is the mid-sagittal corpus callo-
sum, therefore the connectivity index values are high throughout
the central region of the corpus callosum. When the reference
ROI is cortical, as shown in Figure 7F, the streamlines have
lower confidence segments early on their trajectory toward the
contralateral cortex, and therefore, the connectivity index values
are low throughout the entire course of the pathway, including
the center of the corpus callosum (note color bar shows differ-
ent scaling of connectivity index values compared to the rest of
Figure 7).

Figure 8 shows the tractography results using the bootstrap
probabilistic framework but no curve inference labeling (left – a)
and the results using the bootstrap probabilistic approach and
curve inference labeling (right – b). Row (1) shows the results for
a small multi-voxel seed ROI (shown in blue) in the center of the
corpus callosum, row (2) shows the results in the genu of the cor-
pus callosum, and row (3) shows the results for the seed ROI in
the internal capsule. The reference ROIs are shown in blue, and
two isosurfaces of the connectivity index map are shown, the red
surface being that encompassing the lowest non-zero connectiv-
ity index values, and the yellow surface a higher isosurface of the
connectivity index map.

The difference between incorporating fanning and not is subtle
and manifests as a higher connectivity index for certain connec-
tions (see Figure 8, column b, green arrows); the extent of a given
isosurface is greater in the case of fanning than without fanning.
The explicit inclusion of fanning ameliorates the drop in fiber tract
confidence near the cortex. This is expected because even when
these voxels were reached in both tracking experiments, in the case
of fanning, they were reached by propagating within the fan, where
all confidence values are high. But without fanning information,
the same voxels were reached by propagating near the edge of the
PDF for the direction of a single fiber, where the confidence values
are low. Note, however, that the streamlines have many opportuni-
ties to splay on the intervoxel scale with this approach, even when
propagating only along the fiber ODF maximum instead of fan-
ning on the intravoxel scale, because the dense subvoxel seeding
on a grid facilitates splay. The differences between using fanning
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FIGURE 7 |The worst-case connectivity index map is shown in
human fiber tract systems. (A) Corpus callosum, (B) cingulate bundle,
(C) fornix, (D) association connections of Broca’s area (left hemisphere),

(E) corticospinal tracts, (F) transcallosal connections of Broca’s area. The
connectivity index map is shown as a maximum intensity projection, and
the reference ROIs are shown in blue.

and not are more marked near the cortex and smaller in large fiber
bundles.

The computation time for tractography depends highly on the
size of the seed region, as well as the number of iterations and sub-
voxel seed density, but as run here, it takes on the order of 15 min
for a seed ROI of roughly 100 voxels on a 2.13 GHz processor. The
computation time for 100 repetitions of the probabilistic deconvo-
lution without curve inference, i.e., without explicit identification
of fanning, was approximately 30 min. With curve inference, the
processing time is long – on the order of days for each boot-
strap repetition on one processor. Hence, the total processing time
depends on the number of processors used and the number of
bootstrap repetitions.

4. DISCUSSION
We have presented a residual bootstrap approach for tractography
using a comprehensive description of possible subvoxel white mat-
ter fiber geometries. These geometries were straight, parallel fibers,
curving fibers, crossing fibers, and fanning/merging fibers. Using
the curve inference technique combined with spherical deconvo-
lution, the iterative bootstrap process allowed us to define PDFs

for the direction of fiber propagation for tractography, as seen in
Figure 5. The bootstrap process was found to be an effective sur-
rogate for multiple scanning sessions, as seen in Figure 6. This
uncertainty was then propagated to the streamline tractography
results (Figures 7 and 8).

The aim of this approach is to quantify uncertainty due to
noise in the tracking results. There exist methods to reduce noise
in the input data before running the processing described here.
These approaches make assumptions such as similarity of different
regions of the brain, and include linear minimum mean squared
error and unbiased nonlocal means filters (7, 29). Such methods
were not explored here, but could be useful in future investigations.

Quantifying uncertainty due to noise, and accurately model-
ing subvoxel fiber geometry, does not mean that we should have
absolute faith in all results from the tractography, even connections
to which we have assigned high confidence. Diffusion MRI data
can, in the theoretical noise-free case, still support the existence of
fiber connections that do not exist. When tracts pass close by each
other, it is possible to jump from one tract system to another. This
is a problem of spatial resolution for the most part. False posi-
tive results can be reduced by inputting user-defined priors. These
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FIGURE 8 | Fiber tractography results in the human brain are
shown. (a) Bootstrap probabilistic framework, no curve inference
labeling; (b) bootstrap probabilistic framework and curve inference
labeling of fanning fibers. The results are shown by plotting isosurfaces
of the connectivity index map superimposed on the T1 weighted
anatomical image. The translucent red surface is that encompassing the

lowest non-zero connectivity index values, and the yellow surface is a
higher isosurface of the connectivity index map (shown in legend). Row
(1) is the result using a seed ROI in the center of the corpus callosum,
row (2) is the result starting in the genu of the corpus callosum, and row
(3) is the result using an internal capsule seed ROI. The reference ROIs
are shown in blue.

include the exclusion masks and curvature constraints described
here. User-input priors such as the curvature constraint can intro-
duce bias in the tracking results (11), and the results change as these
inputs change. Tractography is often a highly interactive process
where the user inputs priors for curvature and excursion of the
tracts. The inputs used here are not meant to be prescriptions,
but rather to inform the viewer what priors were used so that the
results can be interpreted with that knowledge.

We note that the fanning geometry incorporated in this analy-
sis includes the case of branching. It is unlikely, at this resolution,
that a sharp branch will occur on the subvoxel scale. Hence, if
a fiber bundle is splitting into two bundles on a subvoxel scale,
for example, this will present as a slow divergence of the two
bundles, and cannot be differentiated from the slightly more uni-
form splay of fanning. This processing pipeline can easily be
used to perform tractography using other complex descriptions of

subvoxel geometries, such as bottlenecks, should the algorithms to
describe these geometries be available. The curve inference algo-
rithm used here treats only single fanning fibers, however, it is
possible that fanning fibers might cross other fibers, and these
other fibers might themselves fan. In fact, two fanning fiber sys-
tems could cross each other at 180°! Such cases, for instance, fibers
fanning away from the cortex and fibers fanning toward the cortex,
would require a different implementation.

The connectivity index used here, the weakest link approach,
differs from other indices used in probabilistic tractography, such
as the frequency of connection, which is obtained by counting the
number of times a given voxel is reached by the iterative tracking
process. The frequency of connection map can be non-monotonic
in the case where a voxel is reached by two different pathways that
merge at that voxel, i.e., a voxel can be more connected to the refer-
ence region than the voxels through which the connections occur.
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This feature may or may not be desired by the user. In the weak-
est link approach, these “hot spots” in the connectivity index map
do not exist: a voxel cannot be more connected to the reference
region than the voxels through which the connection passes, and a
voxel is only as connected to the reference region as the most likely
pathway between them.

In addition to the lack of “hot spots,” the confidence values
obtained with the weakest link approach are independent of the
size and shape of the tract-delineating ROIs, which is not the case
with the frequency of connection approach. In the frequency of
connection approach, extending the seed ROI parallel to the direc-
tion of the fiber pathway will result in a pileup of connections,
hence higher connectivity indices. In contrast, the weakest link
connectivity index reflects the integrity of the strongest voxel to
voxel connection, and we have only as much confidence in this
pathway as in the segment thereof in which we have the least
confidence. The weakest link approach is also less corrupted by
distance effects, which give a strong bias to shorter connections in
the frequency of connection approach (20).

In summary, this pipeline consists of many steps that are com-
bined to produce maps of our confidence that the diffusion MRI
data support the existence of a connection between any two regions
of the brain. MRI acquisition designed for high angular resolution,
spherical deconvolution, curve inference, and a bootstrap proba-
bilistic framework are combined to produce PDFs for the direction
of propagation of tractography. These PDFs are then used, with
an intuitive worst-case connectivity index, to create maps of our
confidence in white matter connectivity. The pipeline is useful
with and without the use of curve inference to identify fanning,
but explicit identification of fanning increases the inferred confi-
dence in connections near the cortex. If time does not permit, the
pipeline can be run without the curve inference step as shown in
Figure 8 (column a), with the benefit that the processing time is
much shorter and suitable for fast analysis and large cohorts. The
pipeline is a way to perform quality control on the uncertainty due
to noise and visualize how this propagates into the tractography
result.

These tractography results demonstrate the ability of the pro-
posed probabilistic tractography pipeline to describe fiber path-
ways that pass through regions of complex subvoxel geometries.
Accurately describing the fiber geometries and propagating the
uncertainties in these geometries through to the final tractography
map facilitates interpretation of this map. Coupled with this more
complete description of possible fiber geometries, the weakest link
connectivity index provides a robust and logical approach for the
description of white matter connectivity in vivo. As opposed to
existing tractography approaches that do not identify fanning (3),
or essentially assume splay of fibers in both directions when the
fiber ODF is broad (28), this approach can increase both sensitivity
and specificity of the tractography results.
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