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Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic
zone and then spread to other brain regions.This is a key concept for semiological electro-
clinical correlations, localization of relevant structural lesions, and selection of patients for
epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combi-
nations, thereof, have been validated as contributory tools for focus localization. In parallel,
these techniques have revealed that widespread networks of brain regions, rather than a
single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multi-
modal imaging and analysis strategies of brain connectivity patterns have been developed
to characterize the spatio-temporal relationships within these networks by combining the
strength of both techniques to optimize spatial and temporal resolution with whole-brain
coverage and directional connectivity. In this paper, we review the potential clinical con-
tribution of these functional mapping techniques as well as invasive electrophysiology in
human beings and animal models for characterizing network connectivity.
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INTRODUCTION
Epilepsy is one of the most frequent chronic neurological dis-
order, with an incidence of 50/100,000/year and a prevalence of
0.5–1% (1, 2). One third of these patients are drug resistant (3).
Focal seizures are classically considered to be caused by an abnor-
mal neuro-electrical activity of a focal epileptogenic zone and a
subsequent spreading to other brain regions. This concept is inti-
mately linked to the correlation between ictal signs and symptoms,
electro-physiological activity, and structural lesion [anatomo-
electro-clinical correlation (4)]. Furthermore, this hypothesis is
crucial to select drug-resistant focal epilepsy patients for surgery,
a widely accepted effective therapy (5, 6). The aim of epilepsy
surgery is to remove the epileptogenic zone with the preservation
of the eloquent areas (7).

Recent progress in neuro-imaging and electro-physiology sug-
gests that focal seizures and focal epilepsies are actually related
to an abnormal function of a network of cortical and subcorti-
cal brain structures rather than to a single epileptogenic region
(8–14). The occurrence of epileptic activity is due to the abnor-
mal neuronal activity of these connected regions and abnormal
interactions between them (epileptic network). This conceptual
shift is reflected in the new terminology proposal for seizures
and epilepsies of the International League against Epilepsy, which
proposes “focal” as indicating seizures arising primarily “within
networks limited to one hemisphere and that may be discrete or
more widely distributed”(15). Generalized seizures are considered
as “originating within and rapidly engaging, bilaterally distrib-
uted networks” of cortical and subcortical regions. Inside these

networks, some brain regions are responsible for seizure initia-
tion and propagation, whereas other nodes are more remotely
involved, their activity modulating, or being modulated by the
epileptic discharge.

There is increasing evidence that epileptic activity strongly
interacts with physiological brain networks, notably the so-called
“resting-state networks” (RSNs) (8, 16). A RSN is a set of brain
regions that shows temporal correlations in their activity (as mea-
sured by hemodynamic or electrical signals) and that are function-
ally related. They are observed during rest but correspond to the
networks revealed in different behavioral and cognitive task (e.g.,
attention, vision, etc.). This has led to the new concept that the
apparently resting spontaneous brain activity shows continuous
interaction among brain networks responsible for various classes
of sensory/behavioral functions (17). RSNs are highly organized in
space, reproducible from subject to subject, and differ with aging
and between genders (18).

In this paper, we review the converging evidence from dif-
ferent brain mapping techniques in human and animal models
that epilepsy is related to the dysfunction of a large-scale brain
networks, with alterations of physiological brain networks. We
will particularly focus on the clinical impact of this new view of
epilepsy as a network disease.

METHODS
An electronic literature search was conducted for articles on this
topic regarding human and animal subjects. Sources searched
included PubMed and relevant books. Words used in the search
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included the text words and subject headings of epilep*, functional
connect*, resting-state functional network*, temporal epilepsy,
extra-temporal epilepsy, electroencephalogram (or EEG), simul-
taneous functional MRI (fMRI) and EEG (or EEG-fMRI), electric
and magnetic source imaging (or MSI, ESI), intracranial EEG (or
iEEG or sEEG), cortico-cortical evoked potential, and single-pulse
electrical stimulation. The words were searched independently and
in combination. For each citation considered, the abstract was read
(when available), and articles were excluded if they were outside
the scope of the review. Studies published only in abstract form,
letters, and technical reports were excluded. The bibliography of
each of the retrieved papers was examined to identify relevant
references that could have been missed by electronic search. The
findings were described taking into account the limit of words and
the critical insight of the authors.

HOW TO MEASURE RESTING-STATE NETWORKS?
FUNCTIONAL CONNECTIVITY
Functional interactions between brain regions activity, can be
characterized in several ways. On the one hand, functional con-
nectivity (FC), the most widely used metrics, measures the statisti-
cal dependency between different signals obtained by correlation
analysis. However, such strategy does not account for the direc-
tion of the information flow and cannot therefore infer causality
relationships. On the other hand, effective or directed connec-
tivity investigates directional relationships and aims at describ-
ing causal influences. Effective connectivity can be investigated
using model-driven techniques such as structural equation mod-
eling (19) and dynamic causal modeling (DCM) (20), data-driven
techniques such as Granger-causal modeling (21), or by record-
ing the response of remote areas to focal stimulation of a given
brain region [cortico-cortical evoked potentials (22)]. Connec-
tivity studies can be applied among a set of predefined relevant
brain regions selected by the investigator, between one seed region
and the rest of the brain or at the whole-brain scale, using the
spatial resolution of the recording technique. A detailed descrip-
tion of the various approaches used for measuring connectivity is
beyond the scope of this review and the reader is referred to studies
comparing various approaches to better understand the specific
limitations of each technique (23–25). The results obtained by
such connectivity analysis between all pairs of brain regions can
be represented in so-called connectivity matrices. Graph topo-
logical analysis is then increasingly applied to reduce the com-
plexity of the data and extract meaningful characteristics of the
networks (26).

BLOOD OXYGEN LEVEL DEPENDENT SIGNAL AND PHYSIOLOGICAL
RESTING-STATE NETWORKS
The concept of brain networks originated, and has largely ben-
efited, from the use of resting-state fMRI. fMRI detects blood
oxygen level dependent (BOLD) signal change reflecting metabol-
ically active brain areas not only in relation to a specific physiologic
or pathologic event (27) but also in resting-state (RS) condition
(resting-state-fMRI or RS-fMRI).

Biswal and colleagues demonstrated for the first time (1995)
that brain regions that are functionally related, show temporal cor-
relations in the low frequency component of the BOLD signal. In

other words, fMRI FC detects zones that exhibit correlated BOLD
fluctuations and, as a result, belong to the same functional network
(28). Studies in monkeys (29) and in human beings (30) suggest
that FC is related to neuronal processes.

Functional connectivity can be measured while the subject is
performing a behavioral and cognitive task (task-related FC), or
while the subject is not performing any specific task (RS-FC).
The RSN that is mainly activated in condition of resting wake-
fulness and deactivated in task performing is called default-mode
network (DMN) (31). This physiological RSN is involved in self-
referential thoughts and consciousness (32, 33). The concept of
“resting” is debatable. Usually, subjects are instructed to lie down
in the scanner with the eyes closed, and are invited to not sleep.

Different methods have been developed to extract RSNs, some
requiring an “a priori hypothesis,” like seed-based approach (34),
other do not [i.e., independent component analysis (35), or boot-
strap analysis (36)]. The description of the methodological aspects
is outside the scope of this review. Other papers can be consulted
(14, 37, 38).

EEG/MEG AND PHYSIOLOGICAL RESTING-STATE NETWORKS
Functional connectivity algorithms similar to those used for fMRI
BOLD signals can be applied to MEG or EEG current-density
estimations in the source space, revealing brain areas that are syn-
chronized in specific frequency bands. As with fMRI, such analysis
can be applied to task-related (39), as well as to spontaneous
resting-state activity (40, 41). The unique advantage of EEG/MEG
connectivity analysis is the high temporal resolution that allows
studying fast fluctuations within large-scale network interactions
and fast switches between resting-state networks.

FC analysis of EEG/MEG considers the time-course of electro-
magnetic signals and looks at correlations of oscillating networks
(42). Beyond this view of temporal oscillations, EEG record-
ings can be considered as time-series of scalp potential maps
that vary across time with the temporal resolution in the order
of milliseconds (43). Several studies have shown that sponta-
neous EEG signals can be explained by the alternation of periods
of stable topography, lasting almost 100 ms, very reproducible
across subjects, and modifiable by neurological (44) or psychi-
atric impairment (45). These periods are called microstates and
can be identified throughout an individual’s life (46) suggesting
that they might be mediated by predetermined anatomical con-
nections. During rest, four different microstates are consistently
observed, and they can be considered as “basic building blocks” of
spontaneous mental activities (47). A recent review on this topic
is available (48).

It has been shown (49) that the temporal dynamic of EEG
microstates have hemodynamic correlates that can be measured
with EEG-fMRI and that each physiological microstate map corre-
sponds to one of the well-described BOLD RS network. Such clear
correlates between EEG and BOLD are less well found when look-
ing at classical power fluctuations in specific EEG frequency bands
(50). This finding strongly suggests that the EEG microstates can
be the candidates for the electro-physiological signatures of fMRI
RSNs. Scale-invariance of the alternation between microstates has
been demonstrated to be the base of this coupling over such a wide
temporal scale (51).
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EVIDENCE FOR BRAIN NETWORKS INVOLVED IN EPILEPTIC
ACTIVITY
As described above, FC at the whole-brain level can be stud-
ied with EEG, MEG, fMRI, iEEG, or the combination of these
techniques. They have been applied to patients with focal or gen-
eralized epilepsy to characterize spatial and temporal properties of
epileptic networks.

EEG AND MEG-BASED CONNECTIVITY IN EPILEPSY
EEG and MEG are appealing non-invasive techniques for estimat-
ing brain connectivity in epilepsy because they measure neuro-
electrical activity more directly than fMRI and can potentially
offer a higher temporal resolution.

Several studies using concordance with intracranial record-
ings or post-operative outcome have established that electric and
magnetic source imaging (ESI, MSI) are reliable techniques for
estimating the localization of the cortical generators of epileptic
activity (52–55) and these techniques now offer a much more con-
vincing strategy to investigate connectivity directly between the
activity of cortical regions. Therefore, both ESI and MSI studies
will be discussed together hereunder. Studies using connectiv-
ity analysis in the sensor space are not discussed here because
of their severe limitations of interpretation due to important
caveats related to sensor cross-talk, volume conduction, and refer-
ence choice of the electromagnetic signals (56). The projection of
the signal in source space requires the selection of a head model
describing the propagation of the electromagnetic signal (forward
problem) and an inverse solution (estimating the cortical activ-
ity from the EEG/MEG recording, inverse problem) (48, 57, 58).
A variety of head models exists, from template averaged normal
brain to highly sophisticated realistic models based on individual
anatomy, and they have been used in epilepsy imaging and cog-
nitive neurosciences. Validation in patients with invasive EEG or
surgical resection showed that the individual anatomy was impor-
tant for the localization accuracy (54), but that the performance
of highly sophisticated models did not outperform less computer-
intensive models also based on individual anatomy, as these were
disturbed by the presence of brain lesions in patients with epilepsy
(59). Regarding inverse solutions, dipole models consider a sin-
gle or a few equivalent dipole(s) as sources of the EEG/MEG
signals of sources distributed in the whole cortex (48). While
both approaches might yield complimentary results for localiz-
ing epileptic sources (60), distributed sources are best suited to the
study of connectivity between cortical patches at a large brain scale.

The analysis of interictal epileptic discharges has principally
aimed at localizing epileptic generators in the context of pre-
surgical evaluations rather than studying large brain networks.
Case reports or small MEG series showed promising results for
the localizing value of the regions with high information outflow,
estimated by connectivity analysis (61–63). In addition, based on
development in cognitive neurosciences, the background activity
measured by MEG and EEG in the classical frequency bands has
also been used as a substrate to estimate abnormal connectivity
in patients with epilepsy and correlate it with clinical variables.
In patients with brain tumors, increased theta-band connectiv-
ity and more profound network alterations were associated with
a higher number of epileptic seizures (64) and there is higher

post-operative network improvement in patients who become
seizure free (65).

In generalized epilepsies, connectivity studies have highlighted
a network of hyperconnected anterior regions in photosensitive
patients (66). Network analysis using graph theory in five patients
with absence epilepsy showed a build-up of connectivity changes
occurring before the onset of generalized spike-wave discharges
(67). This shows the potential of such a technique for our under-
standing of the large-scale brain networks underlying hyperex-
citability and interictal to ictal transition. A similar approach has
been applied to iEEG recordings of interictal to ictal transition in
patients with focal cortical dysplasia (12).

Another study used co-occurrence of MEG interictal spikes
to build graphs of connectivity between the estimated sources of
these spikes. In seven patients also investigated with stereotac-
tic iEEG, the connections revealed by MEG were confirmed by
iEEG (68).

Similarly to fMRI studies, future work will need to distinguish
between transient connectivity alterations related to interictal dis-
charges, that are known to be associated with subtle cognitive
impairment (69), and deeper connectivity changes based on back-
ground activity alterations. The tools are now available to benefit
from the high temporal resolution of EEG/MEG to further inves-
tigate these issues and this field has recently attracted an intense
interest. While MEG offers advantages over EEG for longitudi-
nal studies of post-operative cases, due to its insensitivity to skull
defects, the development of long-term high-density EEG system,
its greater versatility compared to MEG and its potential com-
bination with fMRI will be precious for recording seizures and
exploring network changes leading to their initiation, spread, and
termination.

EEG-fMRI CONNECTIVITY IN EPILEPSY
Simultaneous EEG and fMRI (EEG-fMRI) detects hemodynamic
changes in the brain related to events of interest identified in
the EEG (70). Combining high temporal resolution of EEG sig-
nal with high spatial resolution of BOLD images, EEG-fMRI has
been shown to be useful to characterize various forms of focal
and generalized epileptic abnormalities (hereunder called “spikes”
for practical reasons) (71). EEG-fMRI helps to localize epileptic
focus in patients with drug-resistant focal epilepsy candidate for
surgery (72, 73). From the first publications (74, 75), EEG-fMRI
has demonstrated that BOLD responses to a focal spike can be
multifocal, also present at a distance from the presumed focus
(Figure 1), corroborating the concept of epileptic network (9).
Studying such networks can inform about patients’ prognosis after
surgery. While focal responses predict a good post-operative out-
come, diffuse results are associated with a poor outcome, probably
reflecting that a larger network is involved in the epileptogenic
zone (76, 77). Epileptic activity can also be detected in the absence
of spikes and fMRI analysis based on EEG topography can reveal
epileptogenic networks (78).

BOLD responses to a neural event are usually detected with
a delay of 4–6 s (79). Nevertheless, hemodynamic changes to
spikes can have different peak times (80), and can occur before
the spike is visible on the scalp (81). Dynamic analysis of BOLD
response (82, 83) can tell us which brain areas are first activated,
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FIGURE 1 | Interictal network revealed by EEG-fMRI. Patients with
non-lesional right frontal epilepsy. Marked events inside the EEG-fMRI
session: right frontal spikes with phase reversal at F4 (on the left:
longitudinal bipolar montage from 204 channels EEG). On the middle:
scalp voltage map of the spike (204 electrodes, viewed from the top)

with the maximal right frontal negativity (blue). BOLD response
(t -value = 4; p < 0.05 corrected for family-wise-error) has maximal
activation in the spike topography but other clusters with inferior
statistical values are present in the contra-lateral homologous region and
in the thalamus.

by comparing early BOLD response vs. late BOLD response. How-
ever, this analysis does not address the concept of causality and the
sluggishness and variability of BOLD responses prevent a more
accurate investigation into the temporal dynamics and directional-
ity of the connections (24). Causality within epileptic network can
be addressed by effective connectivity approaches like Dynamic
Causal Modeling (DCM) (37, 84).

The combination of ESI with EEG-fMRI can offer complemen-
tary information for improving each single technique (Figure 2).
Although EEG-fMRI and ESI measure different signals (hemody-
namic the first, electrical the second), the concordance between
ESI performed during fMRI recordings can allow distinguishing
between hemodynamic changes related to spike onset vs. propaga-
tion, adding important temporal information to the limited fMRI
temporal resolution (85, 86).

EEG-fMRI studies can give insights about epileptogenesis.
Interictal spikes of different types of epilepsy (frontal, temporal,
and posterior quadrant), are associated with deactivation in the
precuneus and posterior cingulate cortex (10), regions involved in
the DMN (Figure 3). Other physiological RSNs could be affected
by spikes: this interaction and its clinical consequences need to be
clarified in future studies. A common involvement of the cingulate
gyri in temporal lobe and frontal lobe epilepsy was reported (10),
probably resulting from rapid spread of epileptic activity originat-
ing from the temporal and frontal areas, which both involve the
limbic system.

FIGURE 2 |Techniques using different types of signal are concordant in
localizing the epileptic focus in a patient with right orbito-frontal focal
cortical dysplasia. On the top-line: ESI (256 electrodes, simplified realistic
head model lSMAC, distributed inverse solution LORETA) performed on
right frontal spikes (FP2-F8). On the bottom-line: EEG-fMRI performed on
the same type of events recorded inside the scanner.

A specific area, localized in the medial orbito-frontal gyrus
(piriform cortex), called “area tempestas”, seems to be involved
in the genesis or propagation of epileptic activity (87, 88) in focal
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FIGURE 3 | Interictal involvement of DMN in focal epilepsy. Patients
with right hemispheric extended periventricular nodular heterotopia.
Marked epileptic events inside the scanner: right posterior temporal spikes
with phase reversal at P8 (on the left: 256 channel EEG; referential montage
Fz-Cz). BOLD increase is concordant with the spike topography
(topographic map on the middle), whereas BOLD decrease is present in the
regions of default-mode network (DMN).

epilepsies. A DCM study supported the hypothesis of a causal link
between hemodynamic changes in this structure and a specific
type of reflex epilepsy, although in a single patient (89). Sev-
eral other findings seem to corroborate the important role of the
area tempestas: (i) its decrease in benzodiazepine receptor (87),
(ii) its epileptogenic role in animal kindling models of temporal
lobe epilepsy (TLE) (90–92), and (iii) its increase in gray matter
volume in patient with frontal lobe epilepsy when compared to
controls (93).

From a methodological point of view, multimodal combination
between EEG/ESI, fMRI, and diffusion imaging tractography will
allow exploring functional and structural connectivity at a finer
spatio-temporal scale. Some initial small studies have highlighted
the potential of these combinations (94–96).

fMRI and EEG-fMRI studies in focal epilepsy
Unfortunately, only few of the many studies on RS-FC have been
done with the simultaneous recording of EEG. Spikes cause a tran-
sient cognitive impairment, by affecting, e.g., memory retrieval in
rats (97), and memory maintenance and retrieval in human beings
(69). Therefore, a more consistent use of simultaneous EEG while
performing fMRI for RS or task-related studies in epileptic patients
is needed to determine the influence of spikes on the determined
BOLD networks. Indeed a study where EEG activity was moni-
tored during a working memory-fMRI session (98) has shown that
the task-related BOLD dramatically changes when spikes occur.
Another advantage of the simultaneous recording of EEG in the
scanner is that it allows monitoring the transition between differ-
ent alertness states in order to assure that the subject is in RS and
not in drowsiness/sleep state. A very recent review (99) has accu-
rately discussed this issue and summarized the relevant studies.

Temporal lobe epilepsy. The majority of RS-fMRI studies in focal
epilepsies have focused on TLE, which is the most common form of

focal epilepsy in adults and offers the advantage of being one of the
most homogeneous groups within the focal epilepsy syndromes.

Temporal lobe epilepsy has been the first epileptic syndrome to
be considered as epileptogenic network (100) with relatively well
characterized components encompassing different structures in
the mesial temporal lobe (amygdala and hippocampus), adjacent
cortex including enthorhinal cortex and lateral temporal cortex,
and extra-temporal structures (i.e., thalamus and orbito-frontal
cortex). fMRI connectivity studies (some with simultaneous EEG
recording, others without) conducted by seeding the principal
nodes of the mesial temporal network showed impaired connec-
tivity with the other nodes of the network (101–103). Decreased
connectivity is the most common finding among those studies.
Nevertheless, there are reports of increased function of the unaf-
fected hippocampus in patients with unilateral MTLE, both in the
RS (104) and during task-related (105, 106) acquisitions. Mor-
gan et al. (107) have shown that RS cross-hippocampal FC is
disrupted at the beginning of the disease and then increases lin-
early with epilepsy duration after 10 years, suggesting that length
of disease influences FC patterns. Bettus et al. (108) studied the
electro-physiological correlates of BOLD signal fluctuations in
structures exhibiting epileptiform discharges, by measuring cor-
relations between intracerebral EEG and resting-state fMRI in five
patients with TLE. They found an increase in connectivity mea-
sured from the intracerebral EEG but a decrease of connectivity
measured from the BOLD signal in regions with epileptiform
abnormalities relative to non-affected areas. This discrepancy,
obtained by measuring connectivity of two signals of different
nature (electrical and hemodynamic), demonstrates the challenge
in interpreting connectivity changes. It could also suggest an
alteration of neurovascular coupling in TLE.

In unilateral mesial TLE (MTLE), the affected amygdala and
hippocampus (and to a lesser extent on the contra-lateral side)
are less connected between them and also with other consis-
tent RSNs, such as the mesolimbic and the DMN, suggesting
that these functional interictal changes explain cognitive and psy-
chiatric impairments often found in patients with this type of
epilepsy (109). Several fMRI studies, with and without EEG, have
shown an abnormal FC between physiological consistent RSNs
[i.e., language (110)] and MTL structures.

Default-mode network. Laufs and colleagues (8) have shown that
deactivation in DMN, involved in consciousness, is more frequent
for spikes in patients with TLE than extra-TLE. Deactivation in
the same regions in response to temporal spikes was also demon-
strated by Kobayashi et al. (111) and by Fahoum et al. (10). Frings
et al. (112) showed decreased DMN-hippocampus FC in MTLE
patients compared to controls during an object-location memory
task, underlying the importance of the intact connection between
these structures to preserve memory. This concept was validated in
post-surgical follow-up studies (see below). An impairment of the
connections between DMN and MTL structures has been demon-
strated also in RS with a seed-based fMRI analysis (113). The same
group (114) combined fMRI RS-FC and diffusion tensor imaging,
and showed that the decreased FC within the DMN in MTLE is cor-
related to abnormal structural connectivity. Although functional
DMN connectivity is generally decreased in MTLE, few nodes can
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be hyperconnected and this may play a compensatory role for the
loss of functional connections in other regions of the network
(115). The same study, performed with an independent compo-
nent analysis, has also shown distinct patterns of FC impairment
with DMN between the left and right MTLE. The same difference
has been further reported (116), suggesting that impaired cogni-
tion and memory in TLE may be different in right vs. left TLE.
Morgan and colleagues (117) have identified a region in the ven-
tral lateral nucleus of the right thalamus whose connectivity to the
hippocampi separates left from right TLE subjects, suggesting that
quantifying resting-state FC across this network may be a potential
indicator of lateralization of TLE (useful step in the pre-surgical
assessments).

Functional connectivity findings are related with clinical data:
McCormick et al. (118) shows that MTLE patients with respect
to controls have reduced connectivity from the posterior DMN to
the epileptogenic hippocampus and increased DMN connectivity
to the contra-lateral hippocampus. Stronger DMN connectivity
to the epileptogenic hippocampus was associated with better pre-
surgical memory and with greater postsurgical memory decline,
whereas stronger DMN connectivity to the contra-lateral hip-
pocampus was associated with less postsurgical memory decline.
Following surgery, DMN connectivity to the remaining hippocam-
pus increased from pre-surgical values and showed enhanced
correlation with postsurgical memory function.

Hippocampi are considered by some authors as nodes of the
DMN (119), but there is not unanimity on this interpretation (32,
120, 121). It is important to remember that all the regions of the
brain can be functionally connected: a region belonging to a spe-
cific network (like the mesial temporal network) can belong also
to a less specific network encompassing the previous one. This
classification depends on how many different physiological RSNs
are extracted from specific analyses: for instance, by extracting
four physiological RSNs, the probability that the mesial temporal
regions will be included in the DMN is higher than if the number
of extracted network is higher (122).

Mesolimbic network. Patients with unilateral MTLE have impor-
tant decreases of FC with the ventromesial limbic prefrontal
regions and with the nucleus accumbens (109). These regions
belong to a dopaminergic mesolimbic network, involved in long-
term memory for novel events and reward (123). Hippocampus
and amygdala have been often described as part of this net-
work (124, 125), and several findings suggest that this network
is affected in MTLE. The preferential seizure spread from mesial
temporal lobes to mesial frontal lobes, especially the orbito-frontal
cortex, has been demonstrated by ictal iEEG in patients with
MTLE, suggesting that mesial orbito-frontal cortex is strongly
affected by mesial temporal activity (126). On the other hand,
dopaminergic alterations have been demonstrated in the patho-
physiology of major depression, and dysfunctional activity of the
mesolimbic dopaminergic system plays a crucial role in depres-
sive behavior (127, 128). Structures belonging to mesolimbic
network are functionally (129) and structurally (130) impaired
in MTLE patients who have psychiatric impairments, such as
anxiety/depression. A recent study (131) showed that the sub-
genual anterior cingulate cortex (mesolimbic network key-node)

is affected only in MTLE patients that have primary affective dis-
orders and not in those without such disorders and neither in
controls. The same study confirms these FC findings with voxel-
based morphometry and diffusion tensor imaging, corroborating
the concept that the affective psychopathology often diagnosed
in patients with MTLE has a neurobiological correlate. Antide-
pressant drugs, when effective, could modulate these connectivity
impairments.

The amygdala has often been described as part of mesolimbic
network and it is also involved in emotional processing of stimuli.
Facial emotion recognition, particularly for “fear,” is impaired in
patients with TLE, especially on the right hemisphere (132–135).
Broicher and colleagues (136) showed through fearful-face fMRI-
paradigm that the altered amygdala FC in TLE patients is strongly
related to the poor performance in behavioral tests evaluating the
theory of mind abilities (ability of decoding thoughts and behavior
of other human beings). Another study with the same paradigm
showed that, in right TLE patients, pre-operative right amygdala
activation correlates with post-operative change of anxiety and
depression scores [i.e., greater increases in anxiety and depression
in patients with greater preoperative activation (137)]. This con-
firms that pre-surgical study of FC between TLE and other brain
structures can help to predict post-surgery neuropsychological
consequences.

Attention network. Several studies have shown that dorsal and
ventral attention networks are functionally altered in MTLE,
explaining why patients with this type of epilepsy have often
worse performances than healthy controls (HC) in attention tasks.
Cataldi et al. (138) have recently reviewed this topic.

Extra-temporal lobe epilepsy. Extra-temporal lobe epilepsies
are characterized by a wide range of focus localization and eti-
ology. For this reason, group studies with homogeneous clini-
cal phenotype are difficult to achieve. This contrasts with the
large body of group studies in MTLE, which take advantage
from the frequent uniform pathology of atrophy and cell-loss in
amygdala-hippocampus structures. A group-analysis EEG-fMRI
study in different types of epilepsy (frontal, temporal, and pos-
terior quadrant) showed that focal spikes are associated with
networks of widespread metabolic changes, specific for each type
of epilepsy (10).

Negishi et al. (139) revealed higher lateral pre-surgery FC maps
in drug-resistant patients with good surgical outcome (seizure-free
at 1-year) compared to those with poor outcome. A recent study
on 23 patients with frontal lobe epilepsy used the same seed-FC
approach (seed at maximal BOLD value of the spike-related acti-
vation map) (140), finding an increased FC in the neighborhood of
the seed and a decrease in regions remote to the seed compared to
controls. Patient-specific connectivity pattern was not significantly
changed when comparing fMRI runs with spikes vs. fMRI without
any spike detectable on the simultaneous EEG. Patients with drug-
resistant frontal lobe epilepsy (141) recruit wider areas compared
to controls when performing an fMRI memory encoding task par-
adigm, particularly in the contra-lateral frontal lobe, suggesting
the presence of compensatory mechanisms to maintain memory
function.
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Generalized epilepsy
Different theories have been proposed about the patho-physiology
of “generalized seizures”. Meeren et al. (142) reviewed this topic.
All these theories consider cortex and thalamus as being involved
in the generation of the typical 2.5–4 Hz generalized spike-wave
discharges (GSWD) detected on scalp EEG, but it is still unclear,
which of them is the “primum movens” (143). As discussed below,
animal studies in genetic models of absence epilepsy are crucial
to gain understanding of these conditions because no invasive
validation can be contemplated in human beings. These animal
studies suggest that GSWDs are triggered in a restricted cortical
region (144–147).

Several EEG-fMRI studies showed that during short GSWD
(16, 148–150) and absence (151–154), there is a characteristic pat-
tern of subcortical (medio-dorsal thalamic and striatus) activation
and cortical deactivation, especially in areas of the DMN. It has
been hypothesized that the DMN deactivation is linked to reduced
consciousness (i.e., absences) (16, 155, 156). A dynamic analysis
study on 17 absences from nine patients with absence epilepsy
and classical pattern of 3–4 Hz GSWDs (83) showed that BOLD
responses were remarkably consistent in space and time across dif-
ferent absences of one patient, but were different from patient to
patient. Furthermore, this study shows early frontal BOLD acti-
vations (specific for each patient), supporting the cortical focus
theory. Another EEG-fMRI study on 11 children with absence
seizures (157) revealed that the first brain zone showing BOLD
increase was the parietal cortex, this activity starting 10 s before
the onset of the discharge. Additionally, this study demonstrated
the hemodynamic involvement of subcortical structures in GSWD,
including the reticular structures of the brainstem. Focal cortical
involvement before the onset of GSWD has been demonstrated
also by a magnetoencephalography study in human beings (158)
and a near-infrared spectroscopy study applied on the frontal
cortex (159). An exhaustive review on focal abnormalities in idio-
pathic generalized epilepsy (IGE) has been recently published
(160). All these findings support the conceptual transition from
“primarily generalized epilepsy,” (implying that all brain regions
simultaneously would generate GSWD) to seizures “originating
within and rapidly engaging, bilaterally distributed networks” of
cortical and subcortical regions (15).

Concerning the role of subcortical structures, in patients
with IGE, it has been shown that both the anterior nucleus of
thalamus (ANT) and the centromedian/parafascicular (Cm/Pf)
nucleus (which provides diffuse inputs to the cortex) are acti-
vated during GSWD; the activity of the cortico-reticular Cm/Pf
preceded that of the ANT, suggesting that the Cm/Pf is involved
in GSWD initiation or early propagation, while the ANT in its
maintenance (161).

Recent studies have used fMRI to investigate whether resting-
state FC between thalamus, basal ganglia, and DMN areas is altered
in patients with IGE, even during GSWD-free periods of brain
activity (Figure 4). Wang et al. (162) used ICA to map RSNs
in 16 patients with IGE and 16 HC. They found that the DMN
had simultaneously reduced FC within the anterior cingulate
cortex,but increased connectivity in the precuneus. Moreover, they
found widespread connectivity reductions in prefrontal, sensori-
motor, and even auditory cortices (162). Reduced resting-state FC

FIGURE 4 |This diagram summarizes the functional connectivity (FC)
changes in patients with idiopathic generalized epilepsy compared to
healthy controls. The color map shows the default-mode network
(z-scores) derived from independent component analysis or RS-fMRI data
overlaid on a standard single-subject anatomy (Montreal Neurological
Institute space). Widespread FC reductions were found within the DMN
(dashed lines), as well as between anterior DMN and the thalamus.
Increased FC related to increased disease duration has been observed
between posterior DMN regions and the parahippocampal gyrus (solid line).
ACC, anterior cingulate cortex, IPL, inferior parietal lobule, PRE, precuneus,
PHG, parahippocampal gyrus, TH, thalamus.

between frontal areas and the rest of the DMN was later confirmed
(163). An important question is whether these changes in DMN
connectivity are meaningfully related to clinical information, e.g.,
disease duration or responsiveness to medication. Of note, in
both aforementioned studies, there were significant correlations
between RS-FC and disease duration: the reduction in connec-
tivity was inversely correlated to disease duration, indicating that
long-standing epilepsy leads to progressive disruption of DMN
integration. Interestingly, a study of structural and FC in 26 IGE
patients and HC, showed that the degree of coupling between
functional and structural connectivity networks is decreased,
and exhibited a negative correlation with epilepsy duration in
patients (164).

Other RSNs can be affected in patients with IGE, reflect-
ing specific cognitive impairment when compared to controls.
A seed-based RS-FC study in 14 patients with IGE showed that
attention network is impaired even in interictal periods, and that
this impairment is related with the disease duration (165).

One study in 60 IGE patients specifically addressed the question
whether pharmacoresistance was correlated with RS-FC changes
in the DMN (166). DMN connectivity was reduced in the IGE
group compared to HC, and the strongest decrease was found
in those patients that were resistant to valproate. Finally, a recent
study directly addressed RS-FC within the thalamo-cortical system
(167), finding decreased RS-FC between thalamus and anterior
DMN. Collectively, these studies suggest that there is a loss of
functional integration in the thalamocortical and default-mode
system of the brain in IGE, even outside the GSWD. Although
small sample size and heterogeneous methodology limit “gen-
eralization,” the abnormal RS-FC patterns found in IGE so far
could serve as endophenotypes of different IGE syndromes, and
thus inform clinical diagnostics. Importantly, the confounding
effect of anti-epileptic drug on dysconnectivity needs to be further
elucidated.

The most frequent IGE syndrome is juvenile myoclonic epilepsy
(JME), where seizures are characterized by myoclonic jerks of
the upper limbs, often triggered by cognitive inputs. Several RS
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and task-related functional studies have shown an impairment
of connectivity among supplementary motor area and the rest
of the brain (168–170), suggesting that this structure may rep-
resent the anatomic basis for triggering motor seizures in JME.
JME patients have often personality characteristics suggestive of
a frontal lobe dysfunction (e.g., risk-taking behavior, dysexecu-
tive syndrome). A task-related FC study in JME patients (171)
shows that patients with ongoing seizures learn less from previous
experiences compared to seizure-free patients and to controls.

Pediatric syndromes
Numerous EEG-fMRI studies have been conducted on pedi-
atric syndromes [for review, see in Ref. (172)]. Several studies
in Lennox–Gastaut syndrome (173–175) have shown hemody-
namic involvement of brainstem, thalamus, and basal ganglia dur-
ing paroxysmal fast activity and slow spike-and-wave discharges,
underlying the importance of cortical–subcortical networks in
Lennox–Gastaut syndrome. A group-analysis study in patients
with myoclonic-astatic-epilepsy (176) showed that GSWD are
related not only to a thalamo-cortical network (commonly found
in IGE), but also to brain areas associated with motor function,
suggesting that the involvement of these structures may predispose
to the typical myoclonic jerks observed in this syndrome.

Concerning idiopathic focal epilepsies of childhood, these com-
prise a broad spectrum of phenotypes showing an overlap with
each other, from benign childhood epilepsy with centro-temporal
spikes (BECTS) to more severe seizure and cognitive disorders, like
atypical benign partial epilepsy (ABPE), continuous spikes and
waves during slow sleep (CSWS), and Landau-Kleffner syndrome.
In patients with BECTS, EEG-fMRI studies have revealed focal
spike-associated BOLD signal changes in the sensorimotor cor-
tex, well corresponding to spikes localization, and typical seizure
semiology (177–180). In patients with CSWS, a consistent neu-
ronal network including both cortical and subcortical structures
was described with positive BOLD signal changes in the perisyl-
vian region, insula, cingulated cortex, and thalamus, and negative
BOLD signal changes in the DMN areas and caudate nucleus
(181). Source analysis of the simultaneously recorded EEG in
these patients allowed differentiating initiation from propagation
of epileptic activity in these common networks. The importance
of assessing sleep state when studying networks is given by the
report of a patient, whose centro-temporal spikes were recorded
during wakefulness and sleep. BOLD response during wakefulness
showed a focal activation concordant with the spike topography,
whereas BOLD response to the same event during sleep showed
the involvement of a thalamic–perisylvian neural network similar
to the one previously observed in patients with CSWS, suggesting
a common sleep-related network dysfunction even in cases with
milder phenotypes (182).

A single-subject and group-analysis study (183) on patients
with ABPE demonstrated that this syndrome is characterized by
patterns similar to studies in rolandic epilepsy (focal BOLD sig-
nal changes in the spike field) as well as patterns observed in
CSWS (distant BOLD signal changes in cortical and subcortical
structures), thereby corroborating the concept that idiopathic
focal epilepsies of childhood form a spectrum of overlapping
syndromes.

An EEG-fMRI study in thirteen patients with ring 20 chro-
mosome syndrome (184) shows specific networks involved by
different interictal and ictal events of interest, suggesting that some
hemodynamic networks are the expression of epilepsy-related
cognitive and behavioral deficits typical of ring 20 chromosome
syndrome, whereas others can be common to other syndromes
with neurobehavioral regression.

INTRACRANIAL EEG STUDIES
The indication for video-iEEG monitoring is the absence of a
unique focal hypothesis regarding the source of the patient’s
seizures (obtained with non-invasive investigation), or the need
for cortical mapping of the epileptogenic cortex vs. eloquent cor-
tex (7). Therefore, intracranial electrodes often sample from more
than one lobe, although their spatial sampling remains limited and
needs to be targeted using all available clinical and paraclinical
information. Subdural grids allow dense sampling of the corti-
cal convexity while intracerebral depth electrodes are able to reach
deeper structures (e.g., medial temporal structures); combinations
of both techniques are feasible. Therefore, iEEG studies represent
a unique opportunity to investigate seizure networks in human
beings with optimal temporal and excellent spatial resolution.

The concept of the seizure-onset zone as a single, circumscribed
brain region implies that, assuming that intracranial electrodes
sample this region, ictal iEEG activity should invariably start there.
Careful observation of ictal iEEG recordings, however, reveals that
this is not always the case. Rather, there are patients in whom
clinically indistinguishable seizures seem to start at any of two or
more distinct brain areas (100). Observations such as this were one
of the major factors spurring the interest in considering seizure-
generating brain regions as distributed networks. Therefore, the
seizure-onset zone could be seen as the particular regions with the
lowest seizure threshold while other regions could also give rise to
independent seizure onsets, which explains the need to consider
more than the sole seizure-onset zone for estimating the epilepto-
genic zone. In an attempt to quantitatively analyze seizure-onset
patterns, Bartolomei and colleagues (185) developed the epilepto-
genicity index (EI), which takes into account the transition of iEEG
activity toward higher frequencies (a general observation of ictal
iEEG patterns) together with the delay in which the transition is
observed compared to the ictal onset. This approach has revealed
that in a significant portion of TLE patients, the medial and lateral
temporal lobe display similar EI, implying that both structures
could equally subtend seizure generation. Also of interest, some
patients with what seemed like TLE before implantation actually
displayed the highest values of EI in the fronto-orbital, opercular,
or insular cortex rather than the temporal lobe, and these patients
had poorer outcomes after resective surgery, suggesting that they
harbored more distributed seizure-generating networks not easily
amenable to full resection (186). The number of brain regions with
a high EI increases with the duration of epilepsy, suggesting that
epilepsy networks may extend over time as a result of plasticity
triggered by pathological activity (185, 186).

The same authors analyzed the neurophysiological correlates
of alterations of consciousness in TLE (187). They found that
alteration of consciousness was associated with increased broad-
band synchronization in a network of structures, which were
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mainly extra-temporal, including the thalamus, cingulate cortex,
and parieto-temporal association cortex. Consciousness was pre-
served as long as excessive synchrony was confined to the temporal
lobe. Similarly, loss of consciousness in parietal seizures was associ-
ated with widespread parietal and frontal synchronization (188).
The authors framed these observations into the context of the
global workspace theory, in which the sustained synchronization
of neuronal activity in widely distributed modules renders percep-
tions, memories, and intentions available to consciousness (189).
This work rejoins observations made with single photon emis-
sion computed tomography that temporal lobe seizures causing
altered consciousness were associated with widespread cortical
and subcortical blood-flow alterations (190). That group later
showed increases in the power of delta oscillations in the frontal
and parietal association cortices during seizure-related loss of con-
sciousness (191). Results from studies in a rat model of complex
partial seizures suggest that these widespread changes are caused by
transient alteration of activity in the subcortical septal nuclei (192),
implying that the widespread effects of temporal lobe seizures on
cortical networks could be mediated indirectly via the midline
arousal structures (193).

Measures of directed connectivity in seizure networks are start-
ing to reveal the internal organization of the individual nodes that
make up the network. To date, most iEEG studies use mathemat-
ical approaches to determine the direction of connections. For
instance, using focal cortical dysplasia as a model of a circum-
scribed seizure-onset zone and applying partial directed coherence
analysis, Varotto et al. (12) found that the focal dysplasia indeed
acted as the initial generator of ictal activity, as evidenced by its
greater out-degree both interictally, pre-ictally, and during ictal
onsets [the out-degree is a summary measure of the influence of
one network node on all the others (194)]. Cortical-areas remote
from the morphological lesion could also be involved in the onset
or early propagation of ictal high-frequency activity and could thus
represent secondary foci. Wilke et al. (195) used frequency-band-
specific betweenness centrality, a graph theoretical measure of the
“importance”of a node in network pathways, to demonstrate a sig-
nificant overlap between the intracranial electrodes showing the
highest betweenness centrality and the seizure-onset zone delin-
eated visually by clinical neurophysiologists, as well as the resected
cortical area. That correspondence was present both during ictal
and interictal recordings and was highest for gamma-band fre-
quencies. In addition, the analysis also revealed nodes with high
betweenness centrality that had not been clinically identified as
part of the seizure-onset zone. Van Mierlo et al. (196) showed
that the single intracranial electrode with the highest out-degree
during seizure onsets was included in the clinically defined seizure-
onset zone as well as the resection area in all of eight patients.
These first findings suggest that analyzing epileptic networks in
the framework of graph theory, taking into account the direction
of connections between nodes in the network, can help clinicians
delineate the primary drivers from secondary nodes in seizure
nodes [see also in Ref. (197) for a review]. In the near future, we
expect that the tools of graph theory will be applied more generally
to iEEG data to describe more fully the spatio-temporal dynamics
of seizure networks. Another unique perspective could be offered
by the analysis of simultaneous recordings of iEEG and fMRI (198,

199) to combine the spatial resolution of iEEG with the mapping of
whole-brain BOLD changes related to epileptic activity. This could
allow bridging the poorly understood gap between increased iEEG
connectivity and reduced BOLD connectivity within epileptic
networks (108).

Micro-electrode studies in human beings
Another potential breakthrough in the investigation of epileptic
networks could stem, in a somewhat paradoxical fashion, from
micro-electrode array recordings, which revealed new insights on
the pathophysiology of epilepsy. Schevon et al. (200) inserted
arrays comprising of 96 electrodes arranged in a 4-by-4-mm
square pattern in the putative seizure-onset zone allowing to
record single unit activity in cortical layers 4 and 5 as well as
recording the local-field potentials. They showed that there is a
sharp delineation (at a sub-millimetric scale) between cortical-
areas involved in intense hypersynchronous firing (the hallmark of
ictal activity, based on animal studies) and adjacent areas with only
mildly increased firing rate and synchrony. Crucially, visual inspec-
tion of the iEEG alone did not allow distinguishing between what
the authors termed the seizure core and its (presumably) inhibitory
penumbra. The same investigators further proposed that ictal
high-frequency oscillations phase-locked to the lower-frequency,
high-amplitude ictal iEEG recorded by standard intracranial elec-
trodes might represent a signature of increased firing in the seizure
core (201). These new findings open the possibility of investigating
neuronal firing in distributed seizure networks using conventional
iEEG electrodes, without the need for micro-electrode arrays.
Future work building on these exciting findings will likely increase
our understanding of the ways in which seizures alter normal
neuronal firing across the nodes of the involved networks.

Direct electrical stimulation studies
Direct electrical stimulation (DES) in epileptic patients consists
of administering electrical currents to the brain tissue in order to
transiently influence or perturb its function. A technique almost
as old as epilepsy surgery, it has mostly been used to probe the
function of the cortex directly underlying or surrounding the stim-
ulation site (202–205). In that context, DES is generally delivered at
high frequencies (e.g., 50–60 Hz) for a few seconds with the aim of
inducing clinical changes in the patient (206). More recently, DES
has also been used to investigate FC; in that case, single stimulation
pulses are delivered at low frequencies (e.g., 1 Hz) and the readout
consists of time-locked perturbations in the activity of points dis-
tant from the stimulation site (cortico-cortical evoked potentials,
CCEPs) (207). An interesting aspect of DES-based FC assessments
is that they are directed, i.e., the effect of stimulation at site A on
site B is not necessarily symmetrical with the effect of stimulating
B on A (Figure 5). There is an intuitive appeal to this “hands-on”
interventional approach to reveal directional connectivity. Evoked
effective connectivity was found to correlate with FC measured
by resting-state fMRI (22) as well as with anatomical connectiv-
ity probed by diffusion tensor imaging (208). It has been pointed
out, however, that DES can activate axons in the antidromic as
well as the orthodromic direction, and could also stimulate fibers
de passage, an important caveat to keep in mind when interpret-
ing the directionality information provided by these data (209).

www.frontiersin.org November 2014 | Volume 5 | Article 218 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive


Pittau et al. Functional connectivity in epilepsy

FIGURE 5 | Evoked effective connectivity reveals the directionality of
neural connections in the human brain. In this example, subdural
electrodes are represented by circles, and CCEP responses as lines linking
bipolar electrode pairs. Missing (e.g., artifacted) data are indicated by light
gray lines, sub-threshold (non-significant) responses by black lines, and
significant responses by progressively lighter shades of blue.
(A) Stimulation of the middle frontal gyrus (electrode pair colored in pink)
triggers widespread responses in the frontal and temporal lobes, including
the middle temporal gyrus (inset: CCEP waveform from 50 ms before to
250 ms after stimulation; the arrow indicates the time of stimulation). By
contrast, stimulation of the middle temporal gyrus (B) does not evoke any
significant response in the frontal lobe, illustrating that effective
connectivity between remote brain structures is not necessarily reciprocal.

This highlights the importance of aiming at obtaining multimodal
functional and structural information to better understand brain
connectivity and dynamics.

Evoked effective connectivity has revealed strong intralobar
connectivity in the temporal and frontal lobes, as well as connec-
tions between the frontal and temporal lobes that are more promi-
nent in the frontal-to-temporal than in the temporal-to-frontal
direction (210, 211). An intriguing aspect of these studies is the
observation that, whereas interhemispheric connections between
the frontal lobes are relatively common, temporal-temporal con-
nections appear sparse, being observed in <20% of patients (211).
This begs the question of which neuronal pathways are responsible
for bitemporal synchronized spiking as well as the propagation of
seizures from one temporal lobe to the other one (212). Recently,
David et al. (213) generalized this approach offering to develop an
atlas of evoked effective connectivity that would eventually allow,
through data sharing, sampling most of the human brain’s volume.

Direct electrical stimulation has also been used to specifi-
cally evaluate epileptic networks, the general idea being that the
responses of remote sites to stimulation of epileptogenic cortex
(214) or the responses of epileptogenic cortex to stimulation of
remote sites (215) differ from those involving only normal brain
tissue. Interestingly, the network of brain areas that respond to
DES of the seizure-onset zone overlaps partially but not completely
with the areas of ictal propagation, suggesting both that seizures
propagate sequentially through multiple nodes in the network and
that some existing connections between the seizure-onset zone
and distant brain areas “shut down” during seizures (216). Further
research combining iEEG and DES, as well as integrating these
techniques with fMRI and high-density non-invasive electromag-
netic recordings, will improve our understanding of the physiology
of seizure networks.

WHAT WE CAN LEARN FROM ANIMAL MODELS
Recording the activity of any node suspected to be determinant in
the disease is not feasible in human beings, contrarily to animal
research. Moreover, animal-related technologies offer the possibil-
ity to desiccate and manipulate cellular and molecular components
of such networks, as well as scrutinizing the associated structural
and functional alterations. A great perspective in pathological
networks study is detecting features associated with the risk of
recurrence after a first seizure as well as predicting the evolution
toward pharmaco-resistance.

Animal models allow studying networks connectivity and
recording the underlying brain activity with high spatial coverage
and resolution (217), and addressing the process of epilepto-
genesis and ictogenesis, including their molecular and genetic
mechanisms at cellular and subcellular levels (218–222). Imbal-
ance between excitation and inhibition might not only occur at the
local microscopic level (223, 224), but could also reflect dysregula-
tion of excitatory and inhibitory neuronal interactions at a larger
(network) scale. Recent evidence emphasizes the modifications of
the network dynamic, or network configuration that character-
izes, and sometimes precedes or even predicts a seizure. Network
analysis could be a powerful tool to more precisely define the dif-
ferent epilepsies and develop new treatments that target networks,
instead of focal activity (11, 100).

In animals and human beings, focal onsets have been identified
in generalized epilepsy, and complex large-scale network involve-
ment has been shown in focal epilepsies (8, 11, 14). Spontaneous
epileptic disease occurs in animals, as in the case of the genetic
absence epileptic rats of Strasbourg (GAERS) or in the WAG/Rij
rats (225–227); other models studied are epileptic conditions
induced by – mainly – chemical or electrical interventions (220).
A major animal model of TLE is the kainate, or pilocarpine, model
of hippocampal sclerosis (HS) (228–232). Kainate, a glutamatergic
agonist, is injected either in the hippocampus or intraperitoneally.
It is suspected that the kainate has a tropism for the hippocam-
pus, which led several authors to consider that the kainate induces
specifically a HS. Yet, the mechanisms by which kainate induces
an epileptic activity is still debated; the immune system and leak-
age of the blood–brain barrier have been cited as critical for the
expression of the disease (233, 234). Hence, it is not excluded that
systemic kainate may have diffuse effects on the brain.
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Models of focally induced epileptic disorders might avoid this
limitation. One of them, electrical kindling, triggers focal epilep-
tic activity using focal electrical stimulation in accordance with
standard stimulation parameters, e.g., duration of the stimulation,
frequency, and intensity of the stimulus (220, 235, 236). The emer-
gence of a distant pathological activity can be related to remote
effects of the focally induced epilepsy, and not to the direct diffuse
effects of the electrical or chemical triggers. Electrical stimulation,
in particular of the performant-path, has also been described as a
model of induced status epilepticus (237, 238).

CONNECTIVITY STUDIES IN ANIMALS
Electrophysiology can assess connectivity and RS networks in ani-
mal models of epilepsy by recording several brain regions simul-
taneously. The great advantage is that the signal can be directly
linked to neuronal activity. Using intrahippocampal recording
in a rat model of induced TLE, Wang et al. (239) showed that
neuronal pairs presented a decreased FC prior to the status epilep-
ticus induced by an intraperitoneal injection of pilocarpine. Using
Graph Theory measures in an in vitro Mg2+-free model of hip-
pocampal epilepsy, Gong et al. (240) reported the modifications
in network configuration that appear in parallel to epileptiform
discharges. More interestingly, they revealed that the changes in
network configuration appeared before and lasted longer than the
epileptiform discharges (240). These two observations suggest that
the classical ictal activity, i.e., the presence of spikes in the EEG,
could be the resultant of network reconfiguration, i.e., it could
even be an epiphenomenon of a more profound alteration in brain
connectivity, indicating that it could be possible to identify certain
network alterations as a biomarker of epilepsy. Such studies aimed
at identifying markers of an upcoming ictal activity and have
mainly looked at the local activity changes (241). Knowledge on
remote involvement is sparse. Recent works (224) showed struc-
tural alterations remote from the focus, but only a few evidence of
distant, abnormal neuronal activity exists (242). Major advance-
ment has been made to record as many neurons or neuronal
populations as possible at the same time (145, 243–248); this shows
the feasibility to investigate large-scale networks in animal models
with high temporal and spatial resolution (Figure 6). Their combi-
nation with effective connectivity measures (25) will help to better
understand the hierarchical organization of epileptic networks.
Gong et al. (240) demonstrated the leading activity of pyramidal
cells over granular cells in an in vitro model of TLE, illustrating
the utility of effective connectivity in the field of epilepsy.

Research on animal models of epilepsy has been dominated by
invasive electro-physiology technique. Recently, the combination
of EEG and fMRI has emerged with interesting results, such as
those reported by Englot et al. (192), where they describe how a
partial limbic seizure lead to neocortical slow-wave activity; yet,
technical issues makes difficult to obtain combined EEG-fMRI in
awake animals. As in Englot et al. (192), fMRI could possibly be
a powerful in vivo screening method for anatomical regions that
could then be more deeply investigated with EEG.

Using fMRI, Mishra et al. (249) showed that rats submitted
to traumatic brain injury through left parietal fluid percussion
presented a decreased correlation coefficient between the left pari-
etal cortex and other brain regions. Dysfunctional activity in the

FIGURE 6 | Dynamic of somato-sensory network mapped with
high-density EEG. Somato-sensory evoked potential (SEP) from left
whisker stimulation. Top left: each black dot represents the position of one
recording electrode; the most anterior one is ground. Top right: 31 electrode
traces displaying the SEP with sub-milliseconds resolution. Bottom left: the
same electrode traces represented over the mouse brain. In the
lissencephalic mouse brain, dipoles are estimated to be generated below
the recording electrodes. Bottom right: segmentation of the SEP in six
stable configurations of potential maps. The technique’s high spatial and
temporal resolutions identify the first component, somato-sensory barrel
field activity, followed by motor cortex and contra-lateral somato-sensory
areas recruitment within a few milliseconds. Adapted from Megevand et al.
(243) with permission.

left parietal cortex, as highlighted by the decreased correlation
coefficient could have been expected, yet the pattern of resting
BOLD-fMRI connectivity showed that only certain regions were
specifically affected, namely the left hippocampus and the contra-
lateral parietal cortex. This illustrates that BOLD-fMRI can be
used to identify secondary dysfunctional brain regions in rodents
following a proepileptogenic injury (249). The same group inves-
tigated with fMRI the FC in WAG/Rij rats (250) and found an
increased correlation between brain areas suspected to be involved
in seizures when compared to non-epileptic rats; more impor-
tantly, this increase was observed outside of the ictal periods. Choi
et al. (251) performed a FC study using the 18fluorodeoxyglucose
positron emission tomography (PET) signal in a rat model of
TLE. They revealed the decreased correlation of several pairs of
brain structures, most of them included left amygdala and left
entorhinal cortex (251). Hence, despite the systemic injection of
pilocarpine, the affected network appeared to be mainly restricted
to the left hemisphere (251). It would have been very interesting
to see if the electro-physiological counterpart of such functional
deficit was also restricted to one hemisphere, yet no EEG record-
ing was reported. Asymmetry in the central nervous system is well
recognized, e.g., asymmetry of the temporal lobes, but the reason
why the left hemisphere appears to be more functionally altered
in this rat model of TLE is unclear, although electro-physiological
experiments suggest that the left hemisphere is indeed more prone
to develop epileptic discharges (252). The authors claimed that
the PET images were acquired in the interictal period, but no
EEG recording was used (251); yet, if true, this would suggest that
epileptic animals can be identified as such on the basis of the FC
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of particular networks outside of any ictal activity. These studies
(249–251) indicate that the pathological process in these rats is
ongoing: the epileptic brain is not suffering from epilepsy only
during seizures.

The anatomical basis of FC is largely unclear. Zhou et al. (253)
nicely investigated the anatomical substrate and plasticity of such
connections. They observed that after partial posterior calloso-
tomy of wild-type rats, the FC of the auditory and visual cortices
decreased at day 7 and returned to baseline at day 28, whereas
this decrease was still present in rats submitted to complete cal-
losotomy (253). The authors concluded that it could be possible
to identify the anatomical basis of FC, and that these functional
connections were also capable of plasticity. This is an important
proof-of-concept: it is possible to identify morphological substrate
of functional connections and manipulate them.

DIFFERENTIAL INVOLVEMENT OF SPECIFIC BRAIN REGIONS IN ANIMAL
MODELS OF GENERALIZED EPILEPSY
Different rat models of generalized absence epilepsy have been
studied and all share the presence of the characteristic SWDs (254,
255). Using combined EEG-fMRI in WAG/Rij rats, Mishra et al.
(250) demonstrated that during SWDs, the associated fluctuations
in the BOLD signal were specific to certain brain regions. Indeed,
the somato-sensory barrel field showed an increase, whereas the
striatum showed a decrease in the BOLD signal and cerebral blood-
flow (225, 250). On the other hand, the local-field potential (LFP)
and the multi-unit activity (MUA) were increased in both regions
(225). Vascular steal or dopamine-regulated blood volume could
account, at least in part, for this lack of matching between BOLD
signal and CBF on the one hand and LFP and MUA on the other
hand (225). An earlier study using surface and deep EEG record-
ings in the same rat-model showed that these rats shared a similar
focus located in the ventrolateral part of the somato-sensory cortex
(SC) (145). More importantly, the authors observed that the ictal
activity of the cortical focus preceded the one in the thalamus, sug-
gesting that the cortex was leading the thalamus (145). Nersesyan
et al. (256) investigated the relation between SWDs and CBF in the
same animal model. They showed that regions involved in SWDs,
i.e., SC, presented a 1- to 2-s delayed increase in CBF during a SWD,
whereas this increase did not appear in regions not involved in the
SWDs, such as primary visual cortex (256). In a parallel work using
the same animal model of absence epilepsy, they observed that the
BOLD signal was not equally modified across brain regions during
a SWD (257): the somato-sensory and motor cortices, as well as
subcortical regions, i.e., thalamus, basal ganglia, and brainstem,
showed an increased BOLD signal, whereas other regions such as
the occipital cortex did not show such a modulation of the sig-
nal (257). Again, the increase in the BOLD signal appeared with
a lag of a few seconds after the electro-physiological SWDs (257).
This finding is in contrast with a work by Desalvo et al. (258), in
which they used a rat model of generalized tonico-clonic seizures
induced by injection of iv bicuculline, and observed that BOLD
increased significantly in primary and secondary somato-sensory
cortices, as well as in primary auditory cortex and thalamus before
the onset of electro-physiological seizures. The role of the SC in
initiating GSWDs was further investigated through inactivation

of this cortical region in GAERS animals (259). The pharmaco-
logical inactivation of the SC with the sodium channel blocker
tetrodotoxine prevented the spike-and-wave activity; yet unilateral
application of the drug did not completely abolish the abnormal
contra-lateral oscillations. On the whole, these studies highlight
the importance of abnormal focal brain activity as a potential trig-
ger of generalized seizures (258). The identification of interacting
yet independent nodes within a network of suspected generalized
epilepsy is a major advance in epilepsy research. Indeed, it will per-
mit to refine the therapeutic intervention toward the manipulation
of one particular and decisive node.

SHORT-RANGE AND LONG-RANGE NETWORK MODULATIONS IN
ANIMAL MODELS OF FOCAL EPILEPSY
Different animal models of focal epilepsy exist (220), such as the
kainate- or pilocarpine-models of MTLE (228, 229, 260), posttrau-
matic epilepsy (261, 262), or electrical kindling (227, 263). Despite
an initially focal insult, recent evidence (e.g., 242) shows that
remote brain areas become affected by the pathological activity
of the epileptic focus.

The induction of a focal epileptic syndrome in a rat model
of generalized epilepsy allows better understanding how these
two entities interact. Carcak et al. (227) took advantage of the
fact that absence epilepsy may increase the resistance to limbic
seizures. They investigated the role of the cortico-thalamo-cortical
circuitry, involved in SWDs, in the development of limbic seizures
induced by unilateral electrical stimulation of the rat amygdala.
Whereas control rats, i.e., those without absence epilepsy, pre-
sented all convulsive epileptic seizures following amygdala elec-
trical stimulation, rats suffering from absence epilepsy did not
(227). In order to understand how the circuit involved in absence
epilepsy could affect the one of TLE, the authors investigated
the spontaneous activity in the reticular thalamic nucleus (RTN),
known to be involved in the slow-waves discharges that character-
ize absence epilepsy (227). Remarkably, the electrical stimulation
of the amygdala had a different effect on the mean firing fre-
quency of neurons of the RTN: in not-stimulated animals, there
was no significant difference between epileptic and non-epileptic
rats, whereas the increase after stimulation was higher in epilep-
tic rats when compared to non-epileptic rats (227). This suggests
first that the development of an epileptic focus alters the activity
of neurons in the RTN and second that this alteration depends
on the activity before the induction of the epilepsy. The use of
Wistar rats as controls for GAERS rats in that study is commonly
accepted, but could still be questioned; yet the conclusion would
still remains the same: the effects of an epileptic focus seem to
depend on the brain state in which it is being established. It
would hence be interesting to investigate how an epileptic focus
affects a given network, but also how a particular network con-
figuration can modulate the effects of an epileptic focus. The
involvement of the thalamus in propagation of temporal lobe
seizures has already been the scope of several studies (156, 264).
If the thalamus has a major role in the generation of SWDs
(227), this could highlight the relevance of studying the interac-
tion between hippocampus and thalamus, in the context of focal
epilepsies.
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Hippocampal sclerosis is a frequent lesion that has been
deeply investigated, although, most of the works conducted local,
intrahippocampal recordings. Yet, recent publications have shown
the involvement of remote brain areas. Using 16 bipolar deep elec-
trodes in the pilocarpine rat-model of HS, Toyoda et al. (247)
showed that the initial focus varied from one seizure to another
in each individual rat. The subiculum, the dorsal and ventral
hippocampus, and the amygdala were the regions where seizure
onsets were most often recorded. All regions could be considered
as belonging to the same network; indeed, an interesting obser-
vation is that most seizures were convulsive, and this did not
depend upon where the seizure started (247). This suggests that the
involved network is more determining than the seizure-onset zone
for the clinical expression of a seizure. Long-range modifications
in the kainate mouse-model of TLE were also observed. It has been
shown that non-injected hippocampus presented indeed morpho-
logical alterations, notably in the expression of the neuropeptide-Y,
which is known to modulate neuronal activity (265, 266), and
electro-physiological changes, such as significant decrease in the
power of the theta frequency band (265). In vitro, Khalilov et al.
(267) demonstrated that a mirror focus in the contra-lateral hip-
pocampus appears after 10–15 successive applications of kainate
in the ipsilateral hippocampus. These findings are in line with
the hypothesis that an epileptic focus leads to permanent electro-
physiological and morphological modifications in remote brain
areas (268–270). Other works have also stressed the possibility that
subcortical brain regions, such as the basal ganglia, could influence
or even inhibit the progression of an ictal activity originating from
the temporal lobe (271, 272).

Evidence of distant brain involvement arises also from electri-
cally induced epilepsy. For instance, during hippocampal seizures
induced by electrical stimulation in rats, the frontal neocortex
presented a parallel modification in spontaneous activity, i.e., fast
polyspike activity when the seizure was generalized and slow oscil-
lations when it was partial (242). This example illustrates that
distant brain areas are affected even after a few or only one focal
epileptic seizure. It would be extremely interesting to study how
this involvement evolves in a chronic disease.

On the whole, evidence exists that other brain areas are
recruited in propagation or in inhibition of the seizure spread.
Hence, the epileptic threshold does not seem to depend only on
the imbalance between excitation and inhibition within the focus,
but could also be determined by the intricate interactions between
the components of a given network.

EXPERIMENTAL THERAPEUTIC INTERVENTIONS ON THE EPILEPTIC
NETWORK
Conceiving epilepsy as a network disease has therapeutic con-
sequences. The classical view is to modulate the activity of the
so-called epileptic focus, or seizure-onset zone, in order to con-
trol the disease. Yet, any node of an epileptic network could
possibly be a target. In this sense, open-loop or closed-loop
devices, either through electrical or optogenetic stimulation, are
promising tools for generalized (217) as well as for focal epilepsy
(273, 274). Major work has shown that it is possible to iden-
tify critical nodes in a given epileptic network: the modification

of their activation – mainly inhibition – could help to control,
or even stop an ictal activity. Paz et al. (274) showed in a rat
model of cortical epilepsy that the inactivation through optoge-
netics of the thalamic ventrobasal nucleus could stop an ongoing
seizure. In the same line, Langlois et al. (264) showed in an
in vivo model of TLE that DBS of the ipsilateral parafascicular
nucleus of the thalamus (PF) stopped the ongoing hippocam-
pal paroxysmal discharges (HPD), while higher current intensities
were needed to stop the HPD if DBS was applied to neighbor-
ing areas (264), illustrating the specificity of PF in controlling
HPDs. The anterior thalamic nucleus (ANT) appears also to be
involved in control or spread of epileptic activity of mesial tempo-
ral onset (156). Ablation or electrical stimulation of ANT increases
the epileptic threshold (263, 275–277); yet, opposite results have
also been observed (278). On the whole, ANT is a recognized
target for refractory epilepsy, although mechanisms by which
manipulation of the ANT increases epileptic threshold are poorly
understood. Use of animal research and the possibility to iden-
tify how the activity of ANT may modulate epileptic activity
at remote sites, e.g., with the use of effective connectivity mea-
sures, is crucial to tailor therapeutic interventions. Such recent
evidence shows that the manipulation of the primary epilep-
tic focus does not seem to be the only possibility to achieve
the control of an epileptic disease. The thalamus in particular,
and other subcortical regions as well (272) have been identified
as major targets for epileptic network modulation culminating
in clinical applications in the form of DBS of ANT in focal
epilepsies (279).

CONCLUSION
With increasingly complex methodological strategies and an ever-
increasing wealth of possible approaches, the study of brain con-
nectivity and its neuroscientific and clinical correlates are very
promising. Nevertheless, the application of connectivity tech-
niques for diagnostic or prognostic purposes requires further
studies to be firmly grounded by invasive studies and sufficient
follow-up investigations before it can be reliably applied to the
clinical management of individual patients. Combining func-
tional techniques can lead to the achievement of complementary
information for improving each single technique.

Focal epilepsies, despite focal epileptogenic zone, are dis-
eases affecting the whole brain: altered large-scale FC is reflected
in neuropsychological features of individual specific syndrome.
Hippocrates (400 years b.c.) considered epilepsy as a systemic
disease, centered in the brain, due to an altered “defluxion of
cold phlegm” through the body. In more recent times, the con-
cept of epilepsy as “focus disease” has been largely developed
(280–282), whereas in the last decade it has shifted to a “brain-
network disease” (15). In parallel to the “brain-network” concept
of epilepsy, psychiatric and neurological co-morbidities, such as
strokes, dementia, and migraine are more and more defined.
Interestingly, somatic co-morbidities have also come to light,
since several medical conditions, such as cardiac, gastrointesti-
nal, and respiratory disorders, are often associated with epilepsy
(283). These findings may lead to re-consider epilepsy as a “sys-
temic disease,” this time with the diagnostic and therapeutic
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knowledge obtained recently by ground-breaking work on net-
work analysis.

Concerning “generalized” epilepsy, neuro-imaging, and espe-
cially connectivity studies have allowed considering them as focal
brain disorders with fast bilateral discharge propagation. This
concept leads to the idea that focal and generalized epilepsies
are the two extremes of a single spectrum and to a possible
new way of studying mechanisms of AED: do they have an
effect on particular nodes of a network where receptors are more
expressed? Is it possible to detect an anatomical target to avoid
generation/propagation of seizures, using disconnection or stim-
ulation? For all these reasons, translational research in light of
network analysis, based on fundamental science through animal
experiments and clinical perspectives through human research,
opens new opportunities to better understand the complexity
of epilepsy and define new and more effective treatments for
patients.
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