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Lennox–Gastaut Syndrome (LGS) is a category of severe, disabling epilepsy, characterized
by frequent, treatment-resistant seizures, and cognitive impairment. Electroencephalog-
raphy (EEG) shows characteristic generalized epileptic activity that is similar in those with
lesional, genetic, or unknown causes, suggesting a common underlying mechanism. The
condition typically begins in young children, leaving many severely disabled with recurring
seizures throughout their adult life. Scalp EEG of the tonic seizures of LGS is characterized
by a diffuse high-voltage slow transient evolving into generalized low-voltage fast activity,
likely reflecting sustained fast neuronal firing over a wide cortical area. The typical inter-
ictal discharges (runs of slow spike-and-wave and bursts of generalized paroxysmal fast
activity) also have a “generalized” electrical field, suggesting widespread cortical involve-
ment. Recent brain mapping studies have begun to reveal which cortical and subcortical
regions are active during these “generalized” discharges. In this critical review, we examine
findings from neuroimaging studies of LGS and place these in the context of the electri-
cal and clinical features of the syndrome. We suggest that LGS can be conceptualized
as “secondary network epilepsy,” where the epileptic activity is expressed through large-
scale brain networks, particularly the attention and default-mode networks. Cortical lesions,
when present, appear to chronically interact with these networks to produce network insta-
bility rather than triggering each individual epileptic discharge. LGS can be considered as
“secondary” network epilepsy because the epileptic manifestations of the disorder reflect
the networks being driven, rather than the specific initiating process. In this review, we
begin with a summation of the clinical manifestations of LGS and what this has revealed
about the underlying etiology of the condition. We then undertake a systematic review of
the functional neuroimaging literature in LGS, which leads us to conclude that LGS can
best be conceptualized as “secondary network epilepsy.”

Keywords: Lennox–Gastaut syndrome, generalized epilepsy, tonic seizure, EEG–fMRI, default-mode network,
attention network, paroxysmal fast activity, slow spike and wave

LENNOX–GASTAUT SYNDROME – DEFINITION AND
CLINICAL FEATURES
Lennox–Gastaut Syndrome (LGS) is a severe epilepsy phenotype,
usually beginning in childhood, and commonly associated with
intellectual disability. Onset of LGS is typically before the age of
8 years (1–3), with peak onset age between 3 and 5 years (4). Once
established, 80% of LGS patients will continue to have seizures
into adulthood (5, 6). Individual patients may have a variety of
genetic abnormalities or cortical lesions (7), and in a significant
proportion of patients, perhaps 25% (8, 9), the underlying cause
is unknown.

The core features of LGS were described by Henri Gastaut in
1966 (10). Patients may have a variety of seizure types, often with
multiple daily attacks, but tonic seizures, which cause patients to
suddenly and unpredictably stiffen and drop to the ground, are a
key diagnostic feature (11). On electroencephalography (EEG),
tonic seizures are characterized by a diffuse high-voltage slow
wave followed by generalized low-voltage fast activity (LVFA)

(Figure 1A), likely reflecting sustained fast neuronal firing over a
wide cortical area (12). The interictal EEG shows frequent runs of
pseudo-rhythmic 1.5–2.5 Hz diffuse slow spike-and-wave (SSW),
and intermittent bursts of generalized paroxysmal fast activity
(GPFA), particularly in sleep (4). The electrical features of GPFA
show similarity to the LVFA of tonic seizures, suggesting that they
probably recruit similar brain networks.

Although LGS is relatively uncommon [0.24–0.28 per 1,000
births; (14, 15)], the persistent nature of seizures results in a rel-
atively high prevalence, estimated at 1–10% of all children with
epilepsy (8, 16–21), and 3–17% of patients with epilepsy and
intellectual disability (22–24). LGS patients are not uncommon
in epilepsy clinics.

LENNOX–GASTAUT “PHENOTYPE”
Patients with some, but not all, the features of LGS, were previ-
ously classified as having “secondary generalized epilepsy” (6, 25,
26). This term was removed from the 2010 International League
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FIGURE 1 | Ictal EEG features and peri-ictal SPECT of tonic seizures in
LGS. (A) Clinical onset of seizure corresponds with a high-voltage slow
transient (vertical arrow) followed by apparent diffuse attenuation, evolving
into low-voltage fast activity (LVFA) and later a run of slow spike-and-wave
mixed with notched delta. (B) Early radiotracer injection (<10 s after offset of
LVFA) and subsequent SPECT shows an early pattern of increased (red)
cerebral blood flow in frontal and parietal “attention” areas, pons, and
cerebellum, and decreased (blue) CBF in primary cortical areas. (C) Late

radiotracer injection (>10 s after offset of LVFA) and subsequent SPECT
shows an evolution toward a pattern of increased CBF over lateral parietal
cortex and cerebellum, and decreased CBF bi-frontally, while the pons is no
longer involved. (B,C) Top: surface renderings displayed at p < 0.02
(uncorrected), extent k > 125 voxels. Below: overlay onto axial slice of MNI T1
152 average brain displayed at p < 0.05 [cluster-corrected for family-wise error
(FWE)]. R = right, L = left, I = inferior, S = superior. Adapted and re-printed
with permission from Intusoma and colleagues (13).

Against Epilepsy (ILAE) updated classification of the epilepsies
(11), as it was felt the diagnostic category had become an unhelp-
ful“dumping ground”for poorly defined cases of severe epilepsy. It
is clear that many recent advances in understanding disease mech-
anisms in epilepsy have come from genetic discoveries, derived
from careful electroclinical phenotyping (27, 28). Unfortunately,
in clinical practice, this has meant patients who manifest most of

the electrical features of LGS (tonic seizures, SSW, and GPFA), but
who might have an older than usual age of onset, minimal EEG
background slowing, or mild intellectual disability, are no longer
easily classified. We have begun using the term “Lennox–Gastaut
Phenotype” (LGP) to describe these patients (29), as we believe the
similarities in electroclinical expression likely reflect similarities in
the neural networks being driven by epileptic activity.
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EPILEPTIC ENCEPHALOPATHY
Lennox–Gastaut Syndrome is classified as one of the epileptic
encephalopathies (11), as it seems likely that the epileptic process
pervasively inhibits cognition and cognitive development. Patients
with LGS frequently show cognitive regression around the time of
diagnosis, while established LGS is almost always associated with
moderate to severe cognitive impairment. Twenty to sixty percent
of patients show intellectual disability at the time of diagnosis,
increasing to 75–95% within 5 years of the syndrome’s onset (4).
Fifty-five percent of LGS patients have an IQ under 50 (30), and
impairment is often global. On continuous performance tasks,
children and adolescents with LGS show impaired information
processing with marked slowing of reaction times to cognitive
and motor stimuli (31). Behavioral and psychiatric disturbances
are frequent in LGS, compounding the burden of care. Common
problems include aggressiveness, hyperactivity, and autistic traits
(32–38). Long-term outcomes are typically very poor, with the
majority of patients remaining under home-care or institution-
alization (2, 39), and some needing to wear a helmet to prevent
seizure-related head and face injuries (40).

Cognitive impairment in LGS appears related to the age of
onset and persistence of seizures. An earlier age of seizure onset
(<5 years) has been associated with more severe cognitive impair-
ment,while patients who develop LGS later in life (>9 years) follow
a more favorable cognitive course (3, 30, 32, 41–43). In a group of
patients with normal mental development before the onset of LGS,
Ohtsuka (44) found that 95.7% (22/23) of patients with persistent
seizures showed cognitive impairment after a follow-up period of
at least 5 years compared with 12.5% (1/8) of patients who had
been seizure free for at least 1 year.

If seizures remain poorly controlled, there appears to be pro-
gressive cognitive impairment over time. Oguni (1) followed 72
patients for a mean of 17 years and found a decrease of at least
15 IQ points from onset of diagnosis to end of follow-up in
around 80% of patients with LGS. In contrast, there are a number
of case reports of improved cognitive trajectory in patients with
LGS due to a lesion, who become seizure free following resective
surgery (45, 46).

VARIABLE CAUSES, COMMON ELECTROCLINICAL FEATURES
No single pathophysiology underlies the development of LGS
(25), although the age-dependent expression implies that there
is something about the immature brain that renders it suscepti-
ble to development of the LGS phenotype (47). Approximately
10–30% of patients have an epileptogenic abnormality visible on
structural MRI (3, 48), with focal, multifocal, or diffuse structural
abnormalities described. Etiologies include focal cortical dysplasia,
perinatal anoxia, ischemic stroke, intracranial hemorrhage, and
encephalitis (7, 49). A variety of genetic factors, particularly de
novo mutations, have been implicated in some patients (7, 50).
However, approximately 25% of patients with LGS (8, 9) have no
obvious structural brain abnormalities and no confirmed genetic
abnormalities. These cases may be considered LGS of unknown
cause (11). It is notable that the electroclinical features of tonic
seizures and interictal discharges in LGS are remarkably similar
whether or not there is a causative lesion, and independent of
lesion location or pathology. Conversely, the same etiology may
lead to LGS or a more benign epilepsy phenotype. For example,

tuberous sclerosis is a condition, in which inherited or sponta-
neous mutations of the TSC1 or TSC2 gene lead to a failure of
inhibition of the mTOR (mammalian target of rapamycin) path-
way, causing abnormal cell proliferation. In this condition, defects
in the same molecular pathway, and at times the same genetic
abnormality, may produce epileptic spasms, an LGS phenotype,
or focal epilepsy (51, 52). Hence, there are factors other than the
specific molecular mechanism that determine whether a patient
will express the LGS phenotype.

POTENTIALLY REVERSIBLE
Seizures and developmental delay are not necessarily permanent
in LGS. With regards to seizures, as early as 1979 it was shown
that surgical removal of a parietotemporal neoplasm in a child
with LGS led to a complete remission of seizures and SSW pat-
terns on EEG (53). We recently showed similar improvements in
three patients who had their lesions removed (29) (Figure 2),
consistent with other reports of seizure freedom following focal
or lobar resections in LGS patients with parietal, frontal, tempo-
ral, and hypothalamic lesions on MRI (45, 46, 54–62). Following
successful epilepsy surgery, some LGS patients show an initial per-
sistence of seizures or “generalized” epileptic discharges, which
subsequently resolve (“winding down”; Figure 2) (29, 45, 46, 54,
56). This demonstrates that although lesions can cause the LGS
phenotype, at least in some patients the lesions themselves are
not triggering each individual epileptic discharge (“secondary bi-
synchrony”). It suggests instead that lesions are interacting with
key networks to create an unstable mode of network behavior (29).
Once the destabilizing influence is removed, in this case the corti-
cal lesion, cerebral networks are able to gradually return to a more
stable (non-epileptic) state.

In addition to reductions in seizure frequency and normal-
ization of EEG abnormalities, there are several reports of post-
operative cognitive gains (45, 46, 54, 55, 57–60), supporting
the notion that intellectual deterioration may in part be due
to seizures and interictal discharges (63, 64). For example, Liu
(59) performed comprehensive pre- and post-operative neuropsy-
chological assessment in 15 patients with LGS who underwent
single-lobe/lesionectomy or multi-lobe resection, and found a sig-
nificant mean IQ increase from 56.1 to 67.4 after surgery. These
benefits become less certain as duration of LGS prior to surgery
increases (59, 65), a trend found in other severe childhood epilep-
sies (66–69). Hence, there appears to be a time window in which the
epileptic brain is both vulnerable to irreversible cognitive decline
and amenable to treatments that restore normal development.

INVOLVEMENT OF SUBCORTICAL STRUCTURES
THALAMUS
The generalized nature of epileptic discharges and seizures has
led many to postulate that the thalamus may be a key initiator of
epileptic activity in LGS. Recordings from the thalamus during
generalized epileptic discharges of LGS confirm that the thal-
amus is involved (70, 71). EEG–functional magnetic resonance
imaging (fMRI) studies have shown thalamic involvement during
SSW (29, 72, 73) and generalized spike-and-wave (74, 75). High-
frequency electrical deep brain stimulation (DBS) of the thalamic
centromedian nucleus has been reported to reduce generalized
seizures by 80% in a group of 13 LGS patients (76). However,
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FIGURE 2 | Pre- and post-operative EEG. Pre- and post-operative EEG in a
38-year-old male with LGS, a lesion, and intractable seizures since childhood.
Prior to resection of a left frontal cortical dysplasia (arrowed), the patient
suffered daily seizures. Pre-operative interictal EEG showed bursts of slow
spike-and-wave (SSW) and generalized paroxysmal fast activity (GPFA). Day 3

post-operative EEG showed persistence of SSW, while day 30 EEG showed
complete normalization, consistent with a winding down of the epileptic
process. The patient is 2 years seizure free, consistent with LGS being
potentially reversible. Re-printed with permission from Archer and
colleagues (29).

given that cortical lesions can cause LGS, and their removal can
lead to abolition of the epileptic process, it seems likely in this
case that the thalamus is probably acting as a synchronizer and
amplifier, rather than initiator.

PONS
The pons appears involved in tonic seizures. Direct electrical stim-
ulation of pons in animals reproduces posturing similar to a
tonic seizure, with predominant axial muscle involvement (77).
Auditory stimulation of the brainstem in a rat model of gen-
eralized epilepsy causes animals to have convulsive attacks with
electrophysiological evidence of excessive brainstem firing, but no
evidence of cortical involvement (78). We have shown increased
blood flow in the pons during tonic seizures in humans, consistent
with increased pontine neuronal activity (13). However, as noted
above, cortical lesions can cause LGS, and their removal can lead
to abolition of the epileptic process. Hence, although the pons is
involved in seizure expression, it does not appear to be the initiator
of epileptic activity and seizures (79).

A NETWORK DISORDER
The shared electroclinical and cognitive features of LGS suggest
that common cerebral networks are involved. Epilepsy is increas-
ingly being recognized as a disorder of cerebral networks (29, 72,
74, 80–84). The electroclinical features of an epilepsy syndrome
can be considered as reflecting the specific cerebral networks being
recruited. In this context, a neural network comprises anatomically
and functionally connected cortical and subcortical brain struc-
tures, where activity in any one part of the network may affect
activity in all the others (80). Network-based considerations of
epilepsy are useful and clinically relevant because they can help
explain seizure semiology can suggest which cerebral networks
may be dysfunctional in the interictal state, and can help guide
medical and surgical management directions. For example, the

diagnosis of temporal lobe epilepsy (TLE), reflecting seizures pre-
dominantly expressed in the limbic system, makes sense of the
memory, olfactory, and other symptoms the patient may experi-
ence during an “aura.” It permits interpretation of ictal features,
including spread patterns. It suggests particular imaging and
genetic studies directed at epilepsy involving this region, while
leaving open the idea that seizure activity could have started else-
where (e.g., occipital lobe) but be maximally expressed through
the temporal lobe. Finally, the label of TLE helps interpretation
of memory deficits, which are associated with dysfunction of
this particular network. The neuroimaging evidence for network
involvement in LGS is reviewed below.

EPILEPSY NETWORKS OF LGS: A SYSTEMATIC REVIEW OF
THE FUNCTIONAL NEUROIMAGING LITERATURE
In this section, we review the functional neuroimaging studies in
LGS, in particular, positron emission tomography (PET), inter-
ictal and peri-ictal single-photon-emission computed tomogra-
phy (SPECT), and combined electroencephalography (EEG) and
functional magnetic resonance imaging (EEG–fMRI).

SEARCH STRATEGY
A literature search in the bibliographic database PubMed (1982
to April 2014) was undertaken. Search terms were restricted to
articles’ titles and abstracts. A combination of the following search
terms was used: LGS AND PET OR positron OR SPECT OR pho-
ton OR fMRI OR EEG–fMRI OR neuroimaging. Furthermore, we
examined each article’s reference list and used Google to search
for websites that might provide additional references. This effort
resulted in 95 citations that were selected for review. Included
articles were limited to studies reporting primary data; review
articles were read but are excluded here. A total of 70 citations
were excluded as irrelevant, with 25 remaining for review.
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POSITRON EMISSION TOMOGRAPHY
The most common radio-ligand is fluoro-2-deoxy-d-glucose
(FDG-PET), which images glucose uptake, to display average cere-
bral metabolism over the course of the image acquisition, usually
30–60 min in duration (85). Several interictal PET studies with
small numbers of LGS patients have shown unilateral focal or mul-
tifocal hypometabolic abnormalities,predominantly in frontal and
temporal regions, that tend to correlate with structural abnormal-
ities observed on structural imaging or epileptic foci determined
by EEG (86–89). Others have observed more diffuse abnormali-
ties, including generalized bilateral hypometabolism, most promi-
nent fronto-temporally (90). Some patients show normal cerebral
glucose metabolism (91). The variability in these results was reca-
pitulated in a larger series of 15 children with LGS (92), where
four major metabolic subtypes were identified: unilateral focal
hypometabolism in frontal or temporal regions; unilateral diffuse
hypometabolism; bilateral diffuse hypometabolism; and normal
metabolic patterns. Ferrie (93) aimed to establish whether PET
would reveal focal abnormalities in a group of LGS patients who
had no localizing features evident on clinical examination, EEG, or
high resolution MRI. Using asymmetry indices for patients’ own
homologous cortical regions to detect metabolic defects, no focal
abnormalities were found in patients with de novo LGS, while LGS
cases following West syndrome more commonly showed unilat-
eral focal hypometabolism in temporal, frontal, or parietal regions.
Repeat PET performed 1 year later in a subset of patients with focal
abnormalities showed that hypometabolic defects were stable over
time (94). In a further semi-quantitative analysis comparing meta-
bolic rates in LGS to age-matched controls, Ferrie (95) observed
widespread, generalized hypometabolism in cortical and thalamic
regions in LGS patients with and without previously reported focal
abnormalities (93). The degree of hypometabolism in the frontal
lobes was later reported to be inversely correlated with measures
of patients’ adaptive behavior (96).

Taken together, these results agree with the clinical impres-
sion that LGS is a disorder of heterogeneous etiologies. However,
they add further evidence that, in some cases at least, generalized
epileptic activity in LGS may be caused by focal cortical abnormal-
ities. This notion is supported by more recent uses of PET in the
identification of metabolic defects in LGS patients who undergo
resective surgery and subsequently show seizure improvement (57,
58, 60). An additional observation across these studies is that in
patients who do show aberrant metabolic activity, whether focal,
multifocal, or diffuse, the abnormality appears largely confined
to association cortex (involving frontal, temporal, and parietal
lobes), typically sparing primary cortical areas (e.g., primary visual
and motor cortex). This pattern of common cerebral network
involvement has been observed in other functional neuroimaging
modalities, which are discussed below.

SINGLE-PHOTON-EMISSION COMPUTED TOMOGRAPHY
Single-photon-emission computed tomography is able to image
regional cerebral blood flow (CBF) to identify brain regions that
are active during a seizure (97, 98). To date, very few studies have
been performed in LGS patients. A small number of case reports
have found diffuse foci of reduced CBF in frontal, temporal, or
parietal regions (99–103); however, their interpretation is limited

because studies were only performed interictally, making it dif-
ficult to differentiate normal from epileptogenic tissue (104). To
address this gap in the literature, we recently performed a voxel-
wise comparison of ictal and interictal SPECT in a group of 10
scan pairs from 7 LGS patients who were studied during video
EEG-confirmed tonic seizures (13). Five patients had focal struc-
tural abnormalities on MRI. Across the whole group, tonic seizures
were associated with increased CBF in the lateral parietal lobe and
cerebellum, and reduced CBF bilaterally in frontal and occipital
regions. The evolution of CBF changes was also explored by exam-
ining patient subgroups who were injected with a radiotracer early
(<10 s) or late (>10 s) after the offset of EEG LVFA (Figure 1).
The early injection group showed increased CBF in the pons, cere-
bellum, and bilateral fronto-parietal regions, and reduced CBF
in primary cortical areas, including pericentral and occipital cor-
tex. The late injection group showed an evolution of this pattern
toward increased CBF over lateral parietal cortex and the cerebel-
lum, and reduced CBF frontally. Despite some of these patients
having a focal cortical lesion in different locations, we observed
a common pattern of early association cortex involvement and
reduced activity in primary cortical areas. We postulated that tonic
seizures in LGS reflect activity in a corticopontine pathway, arising
in a network of bilateral frontal and parietal association cortices
before projecting via cortico-reticular pathways to the pons, and
from there via reticulo-spinal pathways to spinal motor neurons
(Figure 3).

FIGURE 3 | Schematic illustration of proposed mechanism of tonic
seizures in LGS is shown. (A) Epileptiform activity initiated in cortex, and
rapidly amplified within intrinsic attention and default-mode networks.
(B) Epileptiform activity projects via cortico-reticular pathway – Brodmann
area 6 (premotor cortex) to ponto-medullary reticular formation (105, 106).
(C) Epileptiform activity projects via the reticulo-spinal pathway to motor
neurons innervating proximal muscles at multiple levels (107).
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EEG–fMRI
An understanding of the importance of cerebral networks in
epilepsy has been driven by insights gained through combined
EEG and functional MRI (EEG–fMRI) studies, including key pub-
lications from our laboratory (29, 72, 74, 75, 108–114). Recording
low-voltage scalp EEG signals in the MR environment poses a
number of challenges (115–117), but these can be largely overcome
(118, 119).

Electroencephalography–functional magnetic resonance imag-
ing utilizes the blood–oxygen-level-dependent (BOLD) response
(120) to visualize activity changes associated with epileptiform dis-
charges across the whole brain. Functional MRI activity represents
summed local field potentials across time [fMRI volume acquisi-
tion time (TR) is typically 2–3 s] and space (voxel size is typically
3–5 mm3) (121). Hence, EEG–fMRI provides an overview of cere-
bral network behavior during epileptic discharges. Indeed, because
fMRI is sensitive to brain activity that is not necessarily hyper-
synchronized, it can do more than simply map the brain regions
active at the time of the spike; it can also map brain activity time-
locked to but preceding the EEG spike (113, 122), thus providing
a more complete picture of the brain networks associated with
epileptic discharges.

A relatively small number of EEG–fMRI papers have examined
LGS. One study of spike-and-wave activity in 16 subjects with“sec-
ondary generalized epilepsy” who were scanned at 1.5 T showed
thalamic activation in addition to widespread cortical changes
that included variable activation and deactivation in frontal and

parietal regions (123). Similar results were observed in two of
these patients who were studied again at 3 T using simultaneous
EEG with BOLD and arterial spin label (ASL) fMRI (124). BOLD
activation and deactivation during spike-and-wave observed in
frontal and parietal regions corresponded, respectively, with CBF
increases and decreases recorded with ASL. A group analysis of
11 children with LGS, with EEG–fMRI performed under chlo-
ral hydrate sedation, found BOLD increases in the thalamus and
brainstem (73). These changes were found on an analysis that com-
bined all discharges, including SSW and “polyspike” discharges,
potentially diluting the differential effects of SSW and GPFA on
cortical activity.

We have recently shown that GPFA and SSW, the two pathog-
nomonic interictal discharges of LGS, are associated with quite
different changes in neuronal activity (29, 72). GPFA is associated
with diffuse association network activation (Figure 4), consistent
with the GPFA EEG signature of widespread fast activity. Associa-
tion cortex contains two dominant cognitive systems: the attention
network, which modulates focused attention to task across a range
of cognitive domains; and the default-mode network (DMN),
that engages during quiet reflection, reminiscing, and internal
thinking. Neural activity in these two networks is normally anti-
correlated, consistent with their diametrically opposed cognitive
functions (125–128). Epileptiform activity in LGS appears to be
associated with a highly unusual pattern of co-activation of atten-
tion networks and the DMN. Furthermore, there is a very similar
pattern of network activation in LGS whether or not there is

FIGURE 4 | Electroencephalography–functional magnetic resonance
imaging of generalized paroxysmal fast activity (GPFA) and slow
spike-and-wave (SSW) in individual LGS patients is shown. In
individual patients, GPFA and SSW produce different
blood–oxygen-level-dependent (BOLD) response patterns. GPFA shows
increased BOLD in diffuse association network regions, as well as

brainstem, basal ganglia, and thalamus. SSW shows a different pattern,
with decreased BOLD signal in primary cortical areas. The number of
events in seconds, at the bottom of each panel, is the sum of the length
of all individual epileptiform events recorded during the EEG for each
patient. Pt, patient. Re-printed with permission from Pillay and
colleagues (72).
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FIGURE 5 | Group-level EEG–fMRI activation maps and peri-event BOLD
signal time-courses in LGS patients with epileptogenic lesions in
different cortical locations are shown. (A) Generalized paroxysmal fast
activity (GPFA). Left : fixed-effects whole-brain group EEG–fMRI analysis in six
patients with cortical lesions in different locations showing co-activation of
two normally anti-correlated cognitive systems in diffuse association cortex:
the attention and default-mode networks. Activations are displayed as
two-tailed t -statistics thresholded at p < 0.05 (corrected for FWE) and overlaid
on axial slices of the MNI T1 152 average brain. Right : random-effects
peri-event time-course analysis showing GPFA group mean BOLD signal
change from regions of interest. Time-courses are displayed in 3.2 s time-bins,
from 32 s before to 32 s after event onset (indicated by vertical line). Error bars
indicate standard errors. Asterisks indicate time-bins of significant mean
BOLD signal change (two-tailed single sample t -tests, p < 0.05, uncorrected).
Time-course analysis confirms simultaneous BOLD signal increases in frontal

and parietal association cortical areas, thalamus, and pons, and reduced
signal in primary cortical areas. (B) Slow spike-and-wave (SSW). Left :
fixed-effects whole-brain group EEG–fMRI analysis in three subjects with
cortical lesions in different locations showing mixed increased and decreased
BOLD signal, including activation in thalamus and lateral frontal and parietal
areas, and deactivation in primary cortex including pericentral and occipital
regions. Activations are displayed as per (A). Right : random-effects peri-event
time-course analysis showing SSW group mean BOLD signal change from
regions of interest, as displayed in (A). Time-course analysis shows a complex
set of activity changes that are only partially captured by the whole-brain
maps. Attention and default-mode networks are being driven simultaneously,
but with a steady “pre-spike” increase in activity followed by a decrease in
signal at the time of scalp-detected SSW. Primary cortical regions show signal
decreases. Adapted and re-printed with permission from Archer and
colleagues (29).

an underlying epileptogenic lesion, and independent of lesion
location (Figure 5), supporting our hypothesis that the shared
electroclinical features of LGS reflect underlying similarities in the
recruited brain networks.

Slow spike-and-wave also appears to simultaneously recruit the
attention and DMNs, but with a more complex pattern (Figure 4).
SSW shows a steady upward drift of activity for more than 6 s prior

to scalp-detected activity, followed by an abrupt fall in activity with
the appearance of SSW on the scalp (Figure 5). The curious phe-
nomenon of “pre-spike” fMRI activity changes has been observed
in generalized spike-and-wave of genetic generalized epilepsy (74,
129–131), and may reflect the need of the brain to be in a specific
state for spike-and-wave discharges to occur. The shape of the
hemodynamic changes around the time of SSW is a poor fit for
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the canonical hemodynamic response function (HRF) that is typ-
ically used in event-related analyses to generate maps of activity
changes (132). This may explain the variability seen with our EEG–
fMRI maps of SSW. EEG–fMRI studies of epileptic discharges in
other epilepsy syndromes have also observed that BOLD responses
to discharges show differences to the canonical HRF (113, 114,
133–135).

We and others have observed reduced activity in primary corti-
cal regions during interictal discharges (GPFA and SSW; Figures 4
and 5) (29, 73). This is consistent with our observation of reduced
blood flow in sensorimotor cortex during tonic seizures (13).
Hence, it appears that epileptic activity in LGS is not predomi-
nantly expressed through primary cortical regions. This suggests
that an alternate pathway generates the axial predominant move-
ments of tonic seizures, perhaps cortico-reticular pathways (105,
106), driving the pontine reticular formation, with outflow via
reticulo-spinal projections, which innervate predominately axial
muscles at multiple spinal levels (107) (Figure 3).

CONCLUSION
Patients with LGS have a similar electroclinical phenotype, despite
varying etiologies, consistent with a common underlying mecha-
nism. The EEG features suggest that there is widespread cortical
recruitment during epileptic activity. Functional neuroimaging
has confirmed that epileptic activity in LGS recruits widespread
areas of association cortex (diffuse association network activity),
and spares primary cortical regions. Hence, LGS appears to be
a network epilepsy, where the epileptic discharges and seizures
reflect abnormal neuronal firing within intrinsic cognitive brain
networks, specifically the attention and DMNs. Furthermore,
epileptic activity in LGS appears to be characterized by a fun-
damental breakdown in normal brain network behavior, with
co-activation of attention networks and the DMN. However, it
is not yet clear whether it is the attention network, the DMN, or
both that are key to the LGS phenotype.

The epileptic process in LGS appears to be initiated from the
cortex. Cortical lesions can cause LGS, and their removal can
abolish seizures. Some patients show “winding down” of inter-
ictal discharges following removal of an epileptogenic lesion. This
strongly suggests that cortical lesions, when present, chronically
interact with these networks to produce network instability rather
than triggering each individual epileptic discharge. Presumably,
a wide range of molecular and neuronal mechanisms could pro-
duce a similar pattern of network instability. In patients without
an obvious cortical lesion, therapies that seek to reduce network
instability, such as “generalized” anti-convulsants, are likely to
be beneficial (4). Preliminary evidence suggests that thalamic
DBS may also be beneficial (76), possibly by modulating net-
work excitability. Although the epileptic process is driven from
the cortex, it appears that tonic seizures are expressed through the
reticular formation of the pons. We propose that when epileptic
activity in the cognitive networks reaches a particular threshold, it
triggers cortico-reticular pathways, which connect premotor cor-
tex (Brodmann area 6) to the pontine reticular formation. Trunkal
predominant movement is likely generated via reticulo-spinal
pathways, which innervate axial muscles at multiple levels. These
primitive pathways are normally responsible for postural control

and orienting behavior, such as turning to visual, auditory, or tac-
tile stimuli (105, 106), but in LGS are being driven by epileptic
outflow from the cortex.

Lennox–Gastaut syndrome can be conceptualized as secondary
network epilepsy, where the epileptic discharges and seizures
reflect epileptic activity being amplified through intrinsic cogni-
tive brain networks. The epileptic features of LGS reflect activity in
these networks, rather than the specific lesional, genetic, or other
cause. We believe that the label of “secondary network epilepsy”
is useful as it captures and explains the key electroclinical fea-
tures, including tonic seizures, SSW, and GPFA. The label allows
initial management decisions to be made, including considera-
tion of “generalized” drug therapies, while acting as a reminder
to continue to search for specific underlying causes. Finally, the
label reminds us that the process is potentially reversible, if an
underlying treatable cause such as a lesion can be identified early.
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