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Tinnitus, the perception of a monotonous sound not actually present in the environment,
affects nearly 20% of the population of the United States. Although there has been great
progress in tinnitus research over the past 25 years, the neurochemical basis of tinnitus
is still poorly understood. We review current research about the effects of various types
of cochlear damage on the neurotransmitter chemistry in the central auditory system and
document evidence that different changes in this chemistry can underlie similar behav-
iorally measured tinnitus symptoms. Most available data have been obtained from rodents
following cochlear damage produced by cochlear ablation, intense sound, or ototoxic drugs.
Effects on neurotransmitter systems have been measured as changes in neurotransmitter
level, synthesis, release, uptake, and receptors. In this review, magnitudes of changes are
presented for neurotransmitter-related amino acids, acetylcholine, and serotonin. A variety
of effects have been found in these studies that may be related to animal model, survival
time, type and/or magnitude of cochlear damage, or methodology. The overall impression
from the evidence presented is that any imbalance of neurotransmitter-related chemistry
could disrupt auditory processing in such a way as to produce tinnitus.

Keywords: acetylcholine, aspartate, carboplatin, GABA, glutamate, glycine, taurine, tinnitus

INTRODUCTION
AN EMERGING ISSUE FOR SOCIETY
Tinnitus, the perception of a monotonous sound, most commonly
ringing (1), not actually present in the environment, can result
from many different types of cochlear damage, including espe-
cially those resulting from acoustic trauma and ototoxic drugs
(1, 2). It has been reported that over 10% of the US popu-
lation suffers from hearing loss and nearly 20% from tinnitus
specifically (3). Tinnitus and hearing loss were reported as the
first and second most prevalent service-connected disabilities of
all veterans and together constituted more than a third of the
most prevalent disabilities of both all veterans and new veter-
ans (4). Tinnitus has not been a major subject of study until
recently. A general PubMed search for“tinnitus”reveals that at least
75% of all studies related to tinnitus have been published within
the last 25 years. A need has been expressed for a better under-
standing of the rebalancing of excitatory and inhibitory signaling

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;
Aud Ctx,auditory cortex;AVCN,anteroventral cochlear nucleus (generally more ros-
tral portion); CN, cochlear nucleus; CN Granular, cochlear nucleus granular region,
usually that portion adjacent to AVCN; CNQX, 5,6-cyano-7-nitro-quinoxaline-2,3-
dione; DCN, dorsal cochlear nucleus, divided into deep layer and superficial layers
(combined fusiform soma and molecular layers); GABA, γ-aminobutyric acid or γ-
aminobutyrate; IC, inferior colliculus (IC ventral approximately corresponds to the
central nucleus of the IC); LSO, lateral superior olivary nucleus; MG, medial genic-
ulate; mRNA, messenger RNA (ribonucleic acid); NMDA, N -methyl-d-aspartate;
PVCN, posteroventral cochlear nucleus (generally more caudal portion); VCN,
ventral cochlear nucleus; VNTB, ventral nucleus of the trapezoid body.

mechanisms in auditory disorders (5), but the study of the neu-
rochemical basis for these signaling mechanisms is still in an early
stage (2, 5).

PURPOSE OF THIS REVIEW
The vast majority of available data on the neurochemical changes
in the central auditory system after cochlear damage is based on
animal studies in rodents. These studies have used a variety of
post-insult survival times. One study (6) found similar behav-
iorally measured tinnitus symptoms in chinchillas associated with
three different patterns of cochlear damage following acoustic
exposure, cisplatin, and carboplatin treatments. In our previous
studies, we have found different effects on central auditory system
neurotransmitter systems of different types of cochlear damage,
including partial damage from acoustic trauma (7–10) and car-
boplatin treatment (11, 12), both of which have been associated
with tinnitus (2, 13), and complete destruction via cochlear abla-
tion (14–17). Cochlear ablation produces complete transection of
auditory nerve fibers, which has been associated with tinnitus (18,
19). Although any chemical change could underlie a hearing disor-
der (5, 20–29), changes in neurotransmitter chemistry would affect
the balance of interactions among neurons and could thereby lead
to distorted hearing, which might be perceived as tinnitus. The
purpose of this review is to compare the effects of various types
of cochlear damage on the neurotransmitter chemistry in the cen-
tral auditory system, thereby to document evidence that different
changes in this chemistry can underlie similar behaviorally mea-
sured tinnitus symptoms. Although the types of cochlear damage
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Lee and Godfrey Central auditory neurotransmitter chemistry

employed in these studies can lead to tinnitus, behavioral evidence
of tinnitus was not actually assessed in most of the studies.

CATEGORIZATION OF REVIEW COMPONENTS
Most of the available data are summarized in tables. Effects of
intense sound exposure, or acoustic trauma, and ototoxic drugs
are compared to those of cochlear ablation. Most available data
for ototoxic drugs are for carboplatin, but some data for sali-
cylate, kanamycin, and neomycin are also included. Data from
studies that used various survival times are grouped into short (1–
2 weeks),mid (about 1 month),and long (2 months or more) times
after the event leading to cochlear damage. Although short-term
chemical changes could induce other systemic changes related
to sustained hearing loss and tinnitus, the chemical changes
related to chronic symptoms should presumably be present at long
times after cochlear damage. Previous publications have expressed
changes as increases, decreases, or no change (2, 5). We have taken a
more objective approach of presenting the data from various quan-
titative studies numerically, as percent difference from control. Any
change, no matter how small, could theoretically be important,
particularly if consistent across neural regions; changes reported
to be statistically significant are marked.

NEUROCHEMICALS OF INTEREST
Most chemical data available for neurotransmitter systems after
cochlear damage concern amino acids and acetylcholine. Of the
amino acids, glutamate is well established as an excitatory neuro-
transmitter of auditory nerve fibers (30–35), and there is evidence
that it is also a neurotransmitter of ascending (35), interneuronal
(36), and descending (37, 38) pathways of the auditory system.
There is some evidence for aspartate as a neurotransmitter of audi-
tory nerve fibers (30–32, 35), but its association with the auditory
nerve may also reflect its close metabolic relationship with gluta-
mate (39, 40). Glutamine is also closely related metabolically to
glutamate as an important precursor (40, 41), although predomi-
nantly located in glial cells (42). Both glycine and γ-aminobutyric
acid (GABA) are well established as inhibitory neurotransmitters
of the central auditory system, especially in the cochlear nucleus
(CN), superior olive, and inferior colliculus (IC) (35, 43–55).
Although taurine is not well established as an inhibitory neu-
rotransmitter, there is evidence that taurine, in addition to its
relatively high levels in glia (42, 56), is closely associated with
GABAergic and glycinergic neurotransmission and may act as an
agonist at GABA and glycine receptors (57–59). Available evidence
suggests that acetylcholine serves as a neurotransmitter for several
centrifugal pathways of the auditory system, particularly olivo-
cochlear and olivo-CN connections (10, 35, 36, 60, 61). Its effects
are mostly excitatory in the CN (62, 63) as well as other loca-
tions (64), and it may function as a neuromodulator as well as a
neurotransmitter (64).

Changes in neurotransmitter chemistry have been measured
as changes in chemical level; synthetic capacity (synthesis), usu-
ally measured as enzyme activity; release, presumably from nerve
terminals, by artificial stimulus; tissue uptake rate (uptake); and
transmitter receptors (receptors), usually measured by recep-
tor binding or immunohistochemistry. Although data for mes-
senger RNA (mRNA) levels are available for some aspects of

neurotransmitter chemistry (5, 52, 54) and often support the
respective protein expression data, we did not include them in
the tables of this review because there is often discordance between
measurements of mRNA and protein expression (52). This implies
that there are other complicating factors that may result in a
lack of proportionality between mRNA expression and protein
expression.

HISTOLOGICAL EFFECTS OF COCHLEAR DAMAGE
The most common methods of inducing cochlear damage in ani-
mal studies include cochlear ablation, ototoxic drugs, and intense
sound (acoustic trauma). The different types of cochlear damage
produce distinct histological effects in the central auditory sys-
tem. Cochlear ablation leads to total degeneration of the auditory

FIGURE 1 | Sections through central auditory regions for which data
are shown in the tables. Sections were traced from hamster brain. Names
of subregions correspond to those in the tables. Abbreviations: I–VI, layers
of auditory cortex; AVCN, anteroventral cochlear nucleus; DCN, dorsal
cochlear nucleus; G, granular region; LSO, lateral superior olivary nucleus;
PVCN, posteroventral cochlear nucleus; VNTB, ventral nucleus of the
trapezoid body. Scale bar is shown at left; dorsal is up, and lateral is left.
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Lee and Godfrey Central auditory neurotransmitter chemistry

nerve (65, 66). Besides degeneration of auditory nerve fibers and
terminals in the CN, there is also a hypertrophic reaction of nearby
glial cells (67–69) and transneuronal effects in CN neurons and
in neurons of higher auditory centers (66, 70). Cochlear abla-
tion can also result in delayed, progressive volume decreases in
heavily innervated portions of the CN (15, 16, 50). The auditory
nerve degeneration following acoustic trauma (71–74) or carbo-
platin (75–77) is only partial. Nevertheless, transneuronal effects
of acoustic trauma have been reported (73). Decreases in volume
of CN regions after intense sound have been reported in some
studies (28, 74) but not others (9). No volume changes in CN
regions were found after carboplatin administration (11).

LIMITATIONS OF CURRENT DATA
Most data available for effects of cochlear damage on central
auditory system chemistry have been obtained in rodents, includ-
ing guinea pigs, rats, chinchillas, and hamsters. As with any

comparison of data among animal species, interpretations are
limited by interspecies differences. Another limitation of the data
results from differences among individual animals within the same
species. For this reason, comparisons between ipsilateral and con-
tralateral sides in the same animal following a unilateral lesion
are more reliable than comparisons between individual animals.
However, any of the cochlear lesions can have bilateral effects,
which can only be detected by comparisons to undamaged control
animals.

NOTABLE CHEMICAL CHANGES AFTER COCHLEAR DAMAGE
The regions represented in the tables are identified in Figure 1.
Each table contains available quantitative data for one neurochem-
ical. In the following descriptions, which are keyed to Tables 1–7,
we highlight the more prominent chemical changes or patterns
presented in the tables. Each item in the tables includes a citation
of its respective study.

Box 1 Table Notes

Data are presented as percentage changes from control, which was usually an average for control or sham animals, but sometimes (as
noted) from the corresponding contralateral structure of animals with unilateral damage. For IC, MG, and Aud Ctx, the affected side is
contralateral to the damaged cochlea. Data from the different rodents are marked by C for chinchilla, G for guinea pig, H for hamster, and R
for rat.The terms short, mid, and long refer to survival times after the cochlear damage: at or close to 1 week, about 1 month, and 2 months
or more, respectively. Except as noted, data for level and synthesis were from quantitative assays of brain tissue. Data for amino acid levels
after carboplatin in chinchilla IC, MG, and Aud Ctx and for acetylcholine synthesis in CN are unpublished data from one of us (DAG; treatment
of animals was approved by and in accordance with existing regulations of the University of Toledo Health Science Campus Institutional
Animal Care and Use Committee, which are consistent with guidelines of the National Institutes of Health). These data are less reliable
since they were obtained from fewer animals, but they give some indication of chemical changes. Average data from mid and long survival
times were combined for IC and compared to control chinchilla data.

* Differences reported as statistically significant.
† Godfrey et al. unpublished.
‡ Godfrey et al. in preparation.
a Measured levels on lesioned side compared to contralateral.
b Quantitative histochemical methods (90).
c Where there was a decrease in sample dry weight per volume at long survival times, probably resulting from myelin loss, data were corrected for that change.
d AMPA receptor binding.
e CNQX (5,6-cyano-7-nitro-quinoxaline-2,3-dione) receptor binding; lesioned side compared to contralateral, superficial DCN is molecular layer only, and deep

DCN is combined fusiform soma and deep layers.
f Glutaminase activity 3 days after surgery, lesioned side compared to contralateral for total VCN, entered into PVCN space in table, and total DCN.
g Vesicular glutamate transporter (VGLUT1) immunoreactivity.
h Compared to contralateral.
i Ratios of contralateral to ipsilateral values; data for glycine receptors based on immunoreactivity for the α1 subunit.
j Data for IC total are protein levels measured with Western blot, and data for individual subdivisions of IC are optical density measures of immunoreactive

somata; the more recent report (85) states that changes in GAD65 protein levels for total IC were predominantly in the membrane fraction.
k The value for GABA receptors (muscimol binding to GABAA receptors) in IC is for number of binding sites.
l α1 subunit, GABRA1 immunoreactivity; the value for ventral IC was for the 10–16 kHz portion, which had the largest and only statistically significant effect.
m For high characteristic frequency portion only; first value based on immunolabeled puncta counts and second based on Western blot; survival time 10 days

(personal communication from Dr. S. Bao).
n The value for GABA synthesis is for GAD65 level measured by Western blot; the value for receptors (GABAA) in IC is for number of binding sites; the value

reported for combined dorsal and lateral IC was entered into the dorsal IC space in the table; subjects were treated with salicylate continuously for 4 months

up to the time of euthanization.
o Corrections were made for tissue shrinkage at longer times after cochlear damage.
p Number of binding sites.
q Immunolabeled puncta.
r Choline acetyltransferase immunoreactivity.
s Scopolamine binding to muscarinic receptors, lesioned side compared to contralateral.
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Lee and Godfrey Central auditory neurotransmitter chemistry

Table 1 | Glutamate.

Region Measurement Cochlear ablation Intense sound Carboplatin Kanamycin

Short Mid Long Short Mid Long Short Mid Long Short

AVCN Level −27G* (31)a,

−26R* (17)b,

−16C*,‡,b,c

−18C*,‡,b,c,

−13R (17)b
−23C*,‡,b,c ,

−8R (17)b
+7H (9)b +5C (12)b −2C (12)b −22C

(12)b

Synthesis −30C* (11)b −63G* (38)g

Release −52G* (78) −38G* (78) −19G (78) +72C* (79)d +6C (79)d

Uptake −31G* (78) −43G* (78) −40G (78) −60C* (79)d −47C* (79)d

Receptors −35G* (80)d,

−25R* (81)e
−15R (81)e,

−4G (80)d
+6G (80)d 0C (79)d +70C* (79)d

PVCN Level −32R* (17)b,

−27G* (31)a,

−20C* (16)‡,b,c

−66C*

(16)‡,b,c ,

−36R* (17)b

−59C*

(16)‡,b,c ,

−25R* (17)b

−7H (8)b +15H* (9)b 0C (12)b −6C (12)b −39C*

(12)b

Synthesis −28G* (33)f −38C* (11)b −63G* (38)g

Release −76G* (78) −13G (78) −8G (78) +131C* (79)d +30C (79)d

Uptake −43G* (78) −50G* (78) −17G (78) −47C* (79)d −50C* (79)d

Receptors −14R* (81)e,

+83G* (80)d
−14R (81)e,

−10G (80)d
−13G (80)d −5C (79)d +62C* (79)d

DCN total Synthesis −2G (33)f

Release −50G* (78) −53G* (78) −52G* (78) +72C* (79)d +44C (79)d

Uptake −38G* (78) −25G (78) +21G (78) −41C* (79)d −12C (79)d

DCN deep Level −19R (17)b,

−18C‡,b,c , −6G

(31)a

−22C‡,b,c ,

−15R (17)b
−21C‡,b,c,

−14R (17)b
−16H* (8)b −9H (8)b +16H (9)b +8C (12)b −1C (12)b −6C

(12)b

Synthesis −5C (11)b +13G (38)g

Receptors −18R* (81)e,

+60G* (80)d
−17R (81)e,

0G (80)d
+5G (80)d

DCN superficial Level −10C‡,b,c , −6R

(17)b, +7G (31)a
−9R (17)b,

−2C‡,b,c
−8C‡,b,c ,

−3R (17)b
−13H* (8)b −3H (8)b +6H (9)b +3C (12)b −5C (12)b 0C (12)b

Synthesis −8C (11)b 0G (38)g

Receptors +8R (81)e,

+10G (80)d
−7G (80)d,

+3R (81)e
−5G (80)d 0C (79)d −10C (79)d

CN granular Level −18R (17)b,

−16G (31)a,

−14C‡,b,c

−3R (17)b,

+8C‡,b,c
−12R (17)b,

0C‡,b,c
+5H (9)b −7C (11)b

Synthesis −8C (11)b +7G (38)g

Receptors −2G (80)d −24G* (80)d +9G (80)d

LSO Level +16R (17)b +10R (17)b −24R (17)b

Release −20G (78) +1G (78) +18G* (78)

Uptake −18G* (78) −1G (78) +34G* (78)

Receptors −39G* (80)d −9G (80)d −23G* (80)d

IC dorsal Level +12H* (9)b −3C

(31a, 78)†,b

Receptors +6G (80)d −4G (80)d +2G (80)d

IC ventral Level +10H* (9)b +15C†,b

Release +14G (78) +55G* (78) +41G* (78)

Uptake −14G (78) −5G (78) −5G (78)

Receptors +12G (80)d +18G (80)d +6G (80)d

IC lateral Level +7H (9)b +16C†,b

Receptors +16G (80)d −2G (80)d −9G* (80)d

MG total Level +7C†,b
+7C†,b

+1C†,b

MG dorsal Level +6H (9)b

MG ventral Level +2H (9)b

MG medial Level −2H (9)b

(Continued)
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Table 1 | Continued

Region Measurement Cochlear ablation Intense sound Carboplatin Kanamycin

Short Mid Long Short Mid Long Short Mid Long Short

Aud Ctx total Level +5C†,b
+4C†,b

−8C†,b

Aud Ctx layer I Level +6H (9)b

Aud Ctx layer II Level +6H (9)b

Aud Ctx layer III Level +6H (9)b

Aud Ctx layer IV Level +8H (9)b

Aud Ctx layer V Level +8H (9)b

Aud Ctx layer VI Level +8H (9)b

See Box 1 for table notes.

Table 2 | Aspartate.

Region Measurement Cochlear ablation Intense sound Carboplatin

Short Middle Long Short Mid Long Short Mid Long

AVCN Level −42G* (31)a, −19R*

(17)b, +13C‡,b,c
−19C*,‡,b,c ,

0R (17)b
−18R (17)b,

−12C‡,b,c
+17H* (9)b −20C (12)b −27C* (12)b −28C* (12)b

PVCN Level −37G* (31)a, −31R*

(17)b, +58C*,‡,b,c
−63C*,‡,b,c ,

−31R* (17)b
−57C*,‡,b,c ,

−18R (17)b
−11H (8)b +36*H (9)b −14C (12)b −24C (12)b −40C* (12)b

DCN deep Level −16R (17)b, −7G

(31)a, +19C‡,b,c
−30C‡,b,c,

+3R (17)b
−24C‡,b,c , −4R

(17)b
−3H (8)b −30H (8)b +21H (9)b −19C (12)b −9C (12)b −19C* (12)b

DCN superficial Level −9C‡,b,c , −5R (17)b,

0G (31)a
−8C‡,b,c , −3R

(17)b
−1R (17)b,

+2C‡,b,c
−8H (8)b − 13H (8)b +11H (9)b −6C (12)b − 2C (12)b −10C (12)b

CN granular Level −10G (31)a, −7C‡,b,c,

+2R (17)b
−6C‡,b,c , +9R

(17)b
−13R (17)b,

−2C‡,b,c
+23H* (9)b −4C (11)b

LSO Level +18R (17)b +4R (17)b −39R (17)b

IC dorsal Level +12H* (9)b +9C†,b

IC ventral Level +10H* (9)b −1C†,b

IC lateral Level +12H* (9)b +31C†,b

MG total Level −16C†,b
−14C†,b

−22C†,b

MG dorsal Level +13H* (9)b

MG ventral Level +12H* (9)b

MG medial Level +12H* (9)b

Aud Ctx total Level −7C†,b
+2C†,b

−25C*,†,b

Aud Ctx layer I Level +12H (9)b

Aud Ctx layer II Level +13H (9)b

Aud Ctx layer III Level +10H (9)b

Aud Ctx layer IV Level +7H (9)b

Aud Ctx layer V Level +16H* (9)b

Aud Ctx layer VI Level +21H* (9)b

See Box 1 for table notes.

GLUTAMATE
In all three species studied, cochlear ablation resulted in decreased
glutamate levels in each time category and in all regions receiv-
ing sizable innervation from auditory nerve fibers (AVCN, PVCN,
and deep DCN, Table 1). Effects in superficial DCN and granular

regions were smaller and inconsistent. Glutamate release was
also consistently decreased at all times. Uptake was decreased
in each time category of the CN regions except in the DCN
at long survival times. Changes in glutamate receptors (AMPA
type) were not consistent in guinea pig, but in rat they were all
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Lee and Godfrey Central auditory neurotransmitter chemistry

Table 3 | Glutamine.

Region Measurement Cochlear ablation Intense sound Carboplatin

Short Mid Long Short Mid Long Short Mid Long

AVCN Level −9C*,‡,b,c ,

−6R (17)b
+4C‡,b,c ,

+6R (17)b
+12R (17)b,

+16C*,‡,b,c
−2H (9)b +6C (12)b +14C (12)b +16C (12)b

PVCN Level −7C‡,b,c ,

+2R (17)b
−22C*,‡,b,c ,

+11R (17)b
+1C‡,b,c ,

+35R* (17)b
−3H (8)b +3H (9)b +17C (12)b +11C (12)b +3C (12)b

DCN deep Level −19C*,‡,b,c ,

+2R (17)b
−8C‡,b,c ,

+16R* (17)b
−12C‡,b,c ,

+21R* (17)b
+11H (8)b −23H (8)b 0H (9)b +19C (12)b +11C (12)b +15C (12)b

DCN superficial Level −15C*,‡,b,c ,

−5R (17)b
0C,‡,b,c ,

+5R (17)b
−7R (17)b,

−6C‡,b,c
+6H (8)b −14H (8)b −2H (9)b +12C (12)b +1C (12)b +5C (12)b

CN granular Level −18C*‡,b,c ,

−3R (17)b
+7R (17)b,

+10C‡,b,c
0C‡,b,c , 0R

(17)b
−3H (9)b −18C* (11)b

LSO Level +17R (17)b +4R (17)b −12R (17)b

IC dorsal Level +2H (9)b −4C†,b

IC ventral Level +3H (9)b +16C†,b

IC lateral Level +3H (9)b −5C†,b

MG total Level −5C†,b
−12C†,b

−8C†,b

MG dorsal Level 0H (9)b

MG ventral Level −4H (9)b

MG medial Level −3H (9)b

Aud Ctx total Level −15C*,†,b
−6C†,b

−10C†,b

Aud Ctx layer I Level +5H (9)b

Aud Ctx layer II Level +5H (9)b

Aud Ctx layer III Level +1H (9)b

Aud Ctx layer IV Level +4H (9)b

Aud Ctx layer V Level +5H (9)b

Aud Ctx layer VI Level +1H (9)b

See Box 1 for table notes.

decreased in regions receiving sizable innervation from auditory
nerve fibers. Large decreases in glutamate transporter (synthesis)
in VCN (AVCN+PVCN) following kanamycin damage in guinea
pigs correlated with decreased glutamate levels after cochlear abla-
tion. Glutamate level and synthesis data in VCN after carboplatin
resembled those for cochlear ablation except for a slower progres-
sion. To some extent, this slower progression paralleled a slower
progression of the cochlear damage following carboplatin admin-
istration (12). At the mid time, inner hair cell loss was partial. In
one chinchilla, where the loss of inner hair cells was largest in an
intermediate portion of the cochlear spiral, the decrease in glu-
tamate level was larger in an intermediate portion of the PVCN
than in more dorsal or ventral locations (Figure 2). The effects
of intense sound were more complex. In contrast to the data
for other types of cochlear damage, glutamate levels increased
in all CN regions at long times after intense sound. Although
glutamate uptake decreased, as with cochlear ablation, release
increased at all measured survival times. Receptors in the chin-
chilla VCN increased greatly at longer times after intense sound.
A non-quantitative immunohistochemical study (not included
in Table 1) reported a redistribution of N -methyl-d-aspartate

(NMDA) type glutamate receptors, from mostly axo-somatic to
mostly axo-dendritic locations, in the VCN at various times
up to more than a year after cochlear ablation (91). Another
immunohistochemical study (not included in Table 1 because
non-quantitative) found a loss of vesicular glutamate transporter
(vGLUT1) from auditory nerve terminals and its appearance in
VCN neuron somata 3 days after mechanical ablation of cochlear
hair cells (92).

For more central auditory regions after cochlear ablation or
carboplatin, many changes for glutamate were increases, unlike
corresponding effects in the CN. As in the CN, glutamate levels
increased in almost all central auditory regions at long times after
intense sound.

Decreases in glutamate chemistry in the CN coupled with
degeneration of auditory nerve fibers are consistent with evidence
that glutamate serves as transmitter of auditory nerve fibers (30–
35). The mixed neurochemical changes of glutamate in the more
central auditory regions after cochlear ablation or ototoxic dam-
age may correlate with the evidence that glutamate serves as a
neurotransmitter of various ascending (35), interneuronal (36),
and descending (37, 38) pathways. These pathways would undergo
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Lee and Godfrey Central auditory neurotransmitter chemistry

Table 4 | GABA.

Region Measurement Cochlear ablation Intense sound Carboplatin Neomycin Salicylate

Short Mid Long Short Mid Long Short Mid Long Mid Long

CN total Synthesis −18G* (44)h

AVCN Level −81C*‡,b,c ,

−14R (17)b
−17R

(17)b,

−8C‡,b,c

−15R

(17)b,

−14C‡,b,c

+2H (9)b −5C (12)b −13C (12)b −18C (12)b

Release +8G (51)

Uptake +20G (51)

PVCN Level −41C*,‡,b,c ,

+5R (17)b
−42C*‡,b,c ,

−7R (17)b
−26C‡,b,c,

+19R*

(17)b

−7H (8)b +3H (9)b −18C* (12)b −22C* (12)b −18C* (12)b

Release +5G (51)

Uptake +9G (51)

DCN total Release −2G (51)

Uptake 0G (51)

DCN deep Level −15C‡,b,c ,

0R (17)b
−6C‡,b,c ,

0R (17)b
−15C‡,b,c ,

+11R (17)b
+3H (8)b +14H (8)b 0H (9)b +22C (12)b −1C (12)b +11C (12)b

DCN

superficial

Level −17R (17)b,

+2C‡,b,c
−20R*

(17)b,

−4C‡,b,c

−10R

(17)b,

−8C‡,b,c

0H (8)b −3H (8)b +1H (9)b −1C (12)b −14C (12)b −20C* (12)b

CN

granular

Level −6C‡,b,c ,

−4R (17)b
−13R

(17)b,

+26C‡,b,c

−5R (17)b,

+2C‡,b,c
−2H (9)b −24C* (11)b

LSO Level −42R* (17)b −48R*

(17b)

−47R*

(17)b

IC total Synthesis −34R* (82)i,

−7G* (44)h
−30R*

(82)i
+9R (83)j −21R (83)j +57R* (84)n

Receptors −1R (85)k +19R* (85)k −17R* (84)n

IC dorsal Level +9H (9)b −20C†,b

Synthesis −13R

(83)j
−4R (83)j

Receptors −15G

(55)l, 0R

(85)k

+24R* (85)k −15R (84)n

IC ventral Level +11H* (9)b +15C†,b

Synthesis −11R (83)j −2R (83)j

Release +26G* (51) +11G (51) +39G*

(51)

−74G (86)

Uptake +6G (51) −5G (51) −29G*

(51)

Receptors −36G*

(55)l, −2R

(85)k

+22R (85)k −22R* (84)n

IC lateral Level +11H* (9)b −15C†,b

Synthesis −12R

(83)j
+3R (83)j

Receptors −13G

(55)l, +9R

(85)k

+20R (85)k

MG total level −13C†,b
−22C*,†,b

−15C†,b

MG dorsal Level −6H (9)b

MG ventral Level +2H (9)b

MG medial Level +12H (9)b

(Continued)
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Lee and Godfrey Central auditory neurotransmitter chemistry

Table 4 | Continued

Region Measurement Cochlear ablation Intense sound Carboplatin Neomycin Salicylate

Short Mid Long Short Mid Long Short Mid Long Mid Long

Aud Ctx total Level −22C†,b
−14C†,b

−20C†,b

Synthesis −57R* (87)m ,

−32R* (87)

Aud Ctx layer I Level +1H (9)b

Aud Ctx layer II Level +1H (9)b

Aud Ctx layer III Level +6H (9)b

Aud Ctx layer IV Level +2H (9)b

Aud Ctx layer V Level +7H (9)b

Aud Ctx layer VI Level +2H (9)b

See Box 1 for table notes.

relatively little physical degeneration after cochlear damage but
may undergo complex compensatory changes. On the other hand,
the effects on glutamate neurotransmission in the central audi-
tory system at long times after intense sound differ from those
of cochlear ablation and carboplatin administration. Under these
conditions, glutamate is present at higher levels and is released
more efficiently to receptors that are more sensitive; whereas glu-
tamate is removed (uptake) from receptors less efficiently. All these
changes together would make the central auditory system more
excitable, which could result in or contribute to tinnitus.

ASPARTATE
Results for aspartate levels after cochlear ablation resemble those
for glutamate levels with one notable, unexpected exception:
in chinchillas, aspartate levels increased at short survival times
(Table 2). Decreases in aspartate level in the CN after carboplatin
treatment were similar to those for glutamate except that they
developed more rapidly. At long survival times after intense sound,
aspartate levels were consistently and often significantly increased,
more so than glutamate levels, in all central auditory regions. Thus,
for aspartate, even more so than for glutamate, the changes at long
times after intense sound were opposite to those after cochlear
ablation or carboplatin.

Parallel changes of aspartate neurochemistry are consistent
with its close metabolic relationship with glutamate (39, 40).
Increases in levels of aspartate at long times after intense sound
exposure, combined with its ease of conversion to glutamate
through the activity of aspartate aminotransferase (40), would
contribute to a greater excitability of the central auditory system.

GLUTAMINE
Although glutamine is a major precursor for synthesis of glu-
tamate, its changes after cochlear damage, except in the lateral
superior olivary nucleus (LSO), were usually opposite to those
of glutamate (Table 3). Intense sound damage resulted in no
clear effect on glutamine levels. The most consistent effects were
increased glutamine levels in VCN and deep DCN of rat after
cochlear ablation and of chinchilla after carboplatin administra-
tion. Since glutamine levels are relatively high in glial cells (42, 56),
these increases could reflect glial hypertrophy in the regions where
auditory nerve fibers are degenerating.

γ-AMINOBUTYRIC ACID
After cochlear ablation, there were striking decreases of GABA
levels in chinchilla VCN [which were bilateral (16)], especially at
shorter times (Table 4). In rat, there were [bilateral (17)] decreases
in AVCN but not in PVCN. There were similar but less striking
decreases in chinchilla VCN GABA levels after carboplatin (12). In
superficial DCN, which receives little innervation from auditory
nerve fibers (93,94),GABA levels surprisingly decreased in rat after
cochlear ablation and in chinchilla after carboplatin administra-
tion. One possible explanation for these decreases in GABA levels
could be non-specific effects of trauma (95), which would be pro-
duced by cochlear damage, since GABA is not substantially related
to auditory nerve fibers (17). A transneuronal effect of cochlear
ablation on GABA levels in ipsilateral CN neurons is supported
by an immunohistochemical study in rats (96). Counts of GABA-
immunoreactive neurons decreased by 56% at 1 week and by 63%
at 2 weeks after cochlear ablation, compared to contralateral, but
there was no significant difference between the sides at 1 month
(these data were not included in Table 4 due to uncertainty of
sampling location within the CN).

There were also consistent decreases of GABA level in the rat
LSO ipsilateral to cochlear ablation, which might result from a
retrograde effect on olivocochlear neurons after destruction of
their terminals (17). Measurements for GABA, especially GABA
receptors, usually showed decreases after ototoxic drug adminis-
tration. The striking increase in GABA synthetic capacity in the
IC after continuous, long-term salicylate administration in rats
(84) might represent a compensatory response to the decrease
in GABA receptors. After cochlear ablation, GABA synthesis and
uptake decreased in the IC, whereas its release increased. These
directions of change for release and uptake were similar to those
for glutamate. In another study (not included in Table 4 due to
uncertainty of sampling location within the IC), counts of GABA-
immunoreactive neurons decreased by 33% in the contralateral
IC at 1 week after unilateral cochlear ablation, but the decrease
was not statistically significant at 1 month (97). Although GABA
receptors and synthesis usually decreased in the IC at short times
after intense sound, GABA receptors and levels increased at mid
and long times, respectively. Similarly, GABA levels showed some
tendency to increase in the medial geniculate (MG) and auditory
cortex (Aud Ctx) at long times after intense sound.
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Lee and Godfrey Central auditory neurotransmitter chemistry

Table 5 | Glycine.

Region Measurement Cochlear ablation Intense sound Carboplatin Neomycin

Short Mid Long Short Mid Long Short Mid Long Short Mid

AVCN Level −11C‡,b,c ,

+2R (17)b
−3C‡,b,c ,

−1R (17)b
+5C‡,b,c ,

−4R (17)b
−5H (9)b +13C (12)b +5C (12)b −2C (12)b −58R* (88)q

Release +3G (51) −34G* (51) −5G (51)

Uptake −3G (51) +21G (51) +53G* (51)

Receptors −24G* (50)o −8G (50)o −11G (50)o

PVCN Level −35C*‡,b,c ,

+10R (17)b
−40C*‡,b,c ,

+8R (17)b
−11C‡,b,c,

+29R* (17)b
−1H (8)b −1H (9)b −3C (12)b −10C (12)b −7C (12)b −54R* (88)q

Release −4G (51) +16G (51) +8G (51)

Uptake +5G (51) +10G (51) +79G* (51)

Receptors −8G (50)o +3G (50)o −29G* (50)o

DCN total Release −5G (51) −42G* (51) −55G* (51)

Uptake 0G (51) +47G* (51) +55G* (51)

Receptors −44R* (52)p

DCN deep Level −10C‡,b,c ,

−5R (17)b
−11C‡,b,c ,

−1R (17)b
−12C‡,b,c ,

−2R (17)b
−2H (8)b −17H (8)b 0H (9)b +43C* (12)b +22C (12)b +17C (12)b

Receptors +2G (50)o +16G* (50)o 0G (50)o

DCN

superficial

Level −6R (17)b,

+1C‡,b,c
−9C‡,b,c ,

−8R (17)b
−6C‡,b,c ,

−3R (17)b
−5H (8)b −13H (8)b −8H (9)b +22C (12)b +23C (12)b +1C (12)b −63R* (88)q

Receptors −6G (50)o −10G* (50)o −11G* (50)o

CN granular Level −14C‡,b,c ,

+23R (17)b
+7C‡,b,c ,

+16R (17)b
−10R (17)b,

+6C‡,b,c
−11H (9)b −23C* (11)b

Receptors −3G (50)o 0G (50)o −12G* (50)o

LSO Level −13R (17)b +2R (17)b −2R (17)b −24R* (89)q

Release 0G (51) −5G (51) −3G (51)

Uptake −26G* (51) 0G (51) +7G (51)

Receptors −22G* (50)o −29G* (50)o −55G* (50)o

VNTB Level −46R* (89)q

IC total Receptors −22R* (82)i −39R* (82)i

IC dorsal Level −3H (9)b +11C†,b

Receptors −10G (50)o +1G (50)o −10G (50)o

IC ventral Level +6H (9)b +12C†,b

Release −9G (86)

Receptors −14G* (50)o 0G (50)o −14G* (50)o

IC lateral Level 1H (9)b +1C†,b

Receptors +7G (50)o −9G (50)o −9G (50)o

MG total Level +10C†,b
−12C†,b

+11C†,b

MG dorsal Level −8H (9)b

MG ventral Level −8H (9)b

MG medial Level −9H (9)b

Aud Ctx total Level −10C†,b
−13C†,b

−4C†,b

Aud Ctx

layer I

Level +1H (9)b

Aud Ctx

layer II

Level −5H (9)b

Aud Ctx

layer III

Level +3H (9)b

Aud Ctx

layer IV

Level +9H (9)b

Aud Ctx

layer V

Level −2H (9)b

Aud Ctx

layer VI

Level 0H (9)b

See Box 1 for table notes.
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Lee and Godfrey Central auditory neurotransmitter chemistry

Table 6 |Taurine.

Region Measurement Cochlear ablation Intense sound Carboplatin

Short Mid Long Short Mid Long Short Mid Long

AVCN Level −24C*‡,b,c ,

+14R (17)b
+12C‡,b,c ,

+14R* (17)b
+14C‡,b,c ,

+25R* (17)b
−9H (9)b +17C (12)b +19C (12)b +34C (12)b

PVCN Level −53C*‡,b,c ,

+5R (17)b
−53C*‡,b,c,

+23R (17)b
−10C‡,b,c ,

+61R* (17)b
−7H (8)b −13H* (9)b −10C (12)b +14C (12)b +25C (12)b

DCN deep Level −12C‡,b,c ,

+1R (17)b
−4C‡,b,c,

+9R (17)b
−10C‡,b,c ,

+24R (17)b
−11H (8)b −21H* (8)b −10H (9)b +3C (12)b +13C (12)b +25C* (12)b

DCN superficial Level −12R (17)b,

0C‡,b,c
−6R (17)b,

+3C‡,b,c
+3C‡,b,c ,

+8R (17)b
−12H* (8)b −21H (8)b −7H (9)b +2C (12)b +9C (12)b +7C (12)b

CN granular Level −21C‡,b,c,

+4R (17)b
−1R (17)b,

+13C‡,b,c
−12R (17)b,

+1C‡,b,c
−10H (9)b −7C (11)b

LSO Level −6R (17)b 0R (17)b −2R (17)b

IC dorsal Level −12H* (9)b +17C†,b

IC ventral Level −6H* (9)b +34C†,b

IC lateral Level −6H (9)b +31C†,b

MG total Level +26C*,†,b
+21C†,b

+41C*†,b

MG dorsal Level −11H (9)b

MG ventral Level −13H* (9)b

MG medial Level −4H (9)b

Aud Ctx total Level +44C*,†,b
+46C*,†,b

+59C*,†,b

Aud Ctx layer I Level −3H (9)b

Aud Ctx layer II Level −4H (9)b

Aud Ctx layer III Level −4H (9)b

Aud Ctx layer IV Level −5H (9)b

Aud Ctx layer V Level −6H (9)b

Aud Ctx layer VI Level −9H (9)b

See Box 1 for table notes.

Overall, the changes in the neurochemistry of GABA after
cochlear damage do not consistently support a simultaneous
correlation between loss of GABA inhibition and tinnitus.

GLYCINE
In the central auditory system, up through the IC, glycine receptors
were almost always decreased at all times after cochlear abla-
tion (Table 5). There are some striking contrasts, such as that
between increased uptake and decreased release in AVCN and
DCN total, and that between decreased levels in chinchilla PVCN
and increased levels in rat PVCN. In both deep and superficial
portions of the DCN, glycine levels decreased slightly after cochlear
ablation but increased after carboplatin administration. These
directions of change resembled those for glutamine in chin-
chillas but were opposite to those for glutamate and aspartate.
At short times after neomycin administration, large decreases in
density of glycine-immunoreactive puncta in the CN were local-
ized on specific neuron types including spherical bushy cells,
globular bushy cells, and radiate cells in the VCN and fusiform
cells in the DCN (88). These decreases in numbers of glycine-
immunoreactive puncta in rat CN (88), and also superior olive

(89), were much more striking than decreases in measured glycine
levels in the same regions after cochlear ablation. This suggests
compensating increases of glycine levels in some structures besides
puncta, such as in reacting glial cells (67–69). In cerebellar cul-
tures, glial cells have been reported to contain higher glycine levels
than neurons (98). The only major change in glycine chemistry
after intense sound was a prominent decrease of receptors in DCN
total (52). In this same study, immunohistochemistry for glycine
receptor subunits suggested that these decreases were most promi-
nent at fusiform cells. Thus, the increased spontaneous activity of
fusiform cells after intense sound exposure, which has been asso-
ciated with tinnitus (99, 100), may at least partially result from
decreased inhibitory input because of less glycine receptors (52)
and maybe also less glycine neurotransmitter levels (9).

TAURINE
In regions of the CN that are well innervated by auditory nerve
fibers, taurine levels were consistently increased in rat after
cochlear ablation, but effects in chinchilla were mixed (Table 6).
After carboplatin administration, there were increased taurine lev-
els in all regions of the chinchilla CN except the granular region
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Table 7 | Acetylcholine.

Region Measurement Cochlear ablation Intense sound Carboplatin

Short Mid Long Short Mid Long Short Mid Long

AVCN Synthesis +19R (14)b and

+91R* (60)r
+54R* (14)b −4R (14)b +252H* (7)b +28H (7b) and −23H (10)b

Receptors +6R (15)s +28R* (15)s +67R* (15)s

PVCN Synthesis +37R* (14)b +54R* (14)b +40R* (14)b +27H (7)b +27H (7)b −32C†,b

Receptors −15R* (15)s +18R (15)s +70R*(15)s

DCN deep Synthesis +8R (14)b +25R (14)b +7R (14)b +37H (7)b +36H (7)b and −21H (10)b +9C†,b

Receptors +7R (15)s +20R*(15)s +22R*(15)s

DCN superficial Synthesis −3R (14)b +15R (14)b −9R (14)b +35H (7)b +16H (7b) and −11H (10)b +62C†,b

Receptors +3R (15)s +8R (15)s +11R*(15)s

CN granular Synthesis −24R (14)b +49R* (14)b −5R (14)b +38H* (7)b +28H (7)b and +38H* (10)b −46C†,b

Receptors +1R (15)s +11R*(15)s +27R*(15)s

LSO Synthesis −25R* (14)b −5R (14)b −37R* (14)b +40H* (10)b

VNTB Synthesis +19R (14)b −19R (14)b −22R* (14)b +32H (10)b

IC dorsal Synthesis +10H (10)b

IC ventral Synthesis −12H (10)b

IC lateral Synthesis 0H (10)b

Aud Ctx layer I Synthesis +1H (10)b

Aud Ctx layer II Synthesis −7H (10)b

Aud Ctx layer III Synthesis +2H (10)b

Aud Ctx layer IV Synthesis −6H (10)b

Aud Ctx layer V Synthesis +1H (10)b

Aud Ctx layer VI Synthesis +3H (10)b

See Box 1 for table notes.

(11, 12) and consistent increases in more central regions. Increases
of taurine after cochlear damage in regions densely innervated by
the auditory nerve could, as with glutamine, be related to glial
hypertrophy in regions where auditory nerve fibers are degenerat-
ing, since taurine concentrations are relatively high in glia (42,
56), but this would not account for increases in more central
auditory regions. Intense sound led at long times to slight-to-
moderate decreases of taurine levels in all regions of the hamster
central auditory system (8, 9). These changes in taurine lev-
els were almost always opposite to those for aspartate. Because
of taurine’s association with GABA and glycine neurotransmis-
sion (57–59), decreased taurine levels could be associated with
decreased inhibitory activity in the central auditory system, which
could result in tinnitus. Previous animal studies have found that a
decreased blood taurine concentration is associated with hearing
loss (101) and that taurine administration can decrease behavioral
evidence of tinnitus (102).

ACETYLCHOLINE
In the CN after cochlear ablation, the synthetic capacity for acetyl-
choline (choline acetyltransferase activity) increased at mid times,
but it returned toward control levels in most regions at long times
(Table 7). Muscarinic acetylcholine receptors increased in CN
regions at mid and long times after cochlear ablation. Synthetic
capacity for acetylcholine increased in all CN regions through
2 months after intense sound, but the increase was not maintained

through 5 months except in the granular region. Some of these
changes may correlate with formation of new synapses after
acoustic trauma (73). The sustained increase of choline acetyl-
transferase activity in the CN granular region (7, 10), as well
as an increase in muscarinic acetylcholine receptor sensitivity in
the superficial DCN (103), could be consistent with formation of
new cholinergic synapses or upregulation of existing cholinergic
synapses upon granule cells. Since many granule cells form exci-
tatory glutamatergic synapses with fusiform and cartwheel cells in
the superficial DCN (36, 104), increased cholinergic activity, lead-
ing to increased granule cell activity, could change the balance of
excitatory and inhibitory input to DCN fusiform cells and thereby
alter their activity (10, 105–107). Increased spontaneous activity
of DCN fusiform cells after acoustic trauma has been associated
with tinnitus (99, 100).

Acetylcholine synthetic capacity in the LSO and the ventral
nucleus of the trapezoid body (VNTB) decreased after cochlear
ablation, perhaps as a retrograde effect of olivocochlear termi-
nal destruction (14), but it increased at 5 months after intense
sound exposure. Since these two regions give rise to the cholin-
ergic olivocochlear bundle (108) and olivo-CN connections that
terminate in CN granular regions (109), the increased choline
acetyltransferase activities in the LSO and VNTB at long times
after intense sound exposure, together with the increased activ-
ities in the CN granular region, may suggest an upregulation of
olivo-CN projections.
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Lee and Godfrey Central auditory neurotransmitter chemistry

FIGURE 2 | Maps of glutamate levels in the posteroventral cochlear
nucleus (PVCN) of a control chinchilla (Chin Z) and of a chinchilla treated
29 days earlier with 100 mg/kg carboplatin by intraperitoneal injection
(Chin I). The loss of cochlear inner (IHC) and outer (OHC) hair cells is plotted

in the diagram at the top vs. distance from the cochlear apex. Glutamate
levels are color coded for Chin Z. For Chin I, the glutamate levels are
expressed as percentages of those for comparable locations in Chin Z. For
detailed methods, see Godfrey et al. (12).

SEROTONIN AND NOREPINEPHRINE
Relatively, little work has been published concerning changes in
other neurotransmitter-related chemistry in the central auditory
system after cochlear damage. Increases in serotonin and norepi-
nephrine metabolites have been reported within 45 min after white
noise exposure in rat caudal CN (DCN+PVCN) and Aud Ctx
(110). For the serotonin metabolite, there was a 34% increase in
the CN and 22% increase in the Aud Ctx. For the norepinephrine
metabolite, there was a 121% increase in the CN, but no measur-
able change in the Aud Ctx. Since these changes occurred after very
short times at 70 dB sound pressure level but not at 90 or 110 dB,
they represent increased metabolism but not effects of cochlear
damage from acoustic trauma.

The effects of salicylate on the serotonin levels in the central
auditory system were measured by microdialysis (111). Within
few hours after systemic administration of salicylate, serotonin
levels increased by about 170% in both the IC and Aud Ctx of
rats. Another study investigated the effects of acoustic trauma
on the density of serotonergic fibers (estimated by measures of
serotonergic fiber length density using immunohistochemistry for
serotonin reuptake transporter) in the IC of mice after 3–16 weeks
(112). Decreases of 17, 10, and 14% were reported in dorsal, lat-
eral, and central regions of the IC on the affected (contralateral)

side as compared to ipsilateral. Although the measured changes in
serotonin chemistry in these studies were in opposite directions at
very different times and after different interventions, both would
lead to an imbalance of neurotransmitter chemistry in the central
auditory system, which might be associated with tinnitus. There is
some evidence that changes in serotonin neurotransmission might
have a role in tinnitus (2, 113, 114).

DISCUSSION
CLINICAL APPLICATIONS
The compiled results from available studies suggest that different
types of cochlear damage may lead to different neurotransmitter-
related chemical changes in the central auditory system, even
though they all could result in tinnitus. The changes following
ototoxic drug administration resemble those after cochlear abla-
tion, although with a slower development and smaller magnitude,
but the changes at long times after intense sound tend to be
in the opposite direction. This implies that tinnitus may result
from a variety of different, even contrasting, chemical changes.
Further, the neurochemical changes reported for several different
transmitter systems after cochlear damage suggest that imbalances
involving any of the various transmitter systems could result in
tinnitus. Perhaps, more detailed investigations would distinguish
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different types of tinnitus. It may also be useful to distinguish
between tinnitus as a symptom, which commonly occurs acutely
after peripheral insult or even spontaneously, and tinnitus as a
chronic morbidity. Although it is reasonable to hypothesize that
tinnitus may result from an increase in excitatory neurotransmitter
chemistry and/or a decrease in inhibitory neurotransmitter chem-
istry, the available data suggest that the chemical basis for tinnitus
may not depend on the direction of change in these chemistries so
much as any imbalance between them. Another factor to consider
is the magnitude of cochlear damage. Perhaps, the similarity of
chemical effects after cochlear ablation and at longer times after
carboplatin administration is related to the magnitude of inner
hair cell loss, which has been proposed as the most important fac-
tor that leads to tinnitus (115). Cochlear ablation leads to total
hair cell loss and carboplatin administration to almost total inner
hair cell loss (11, 12), whereas intense tone exposure leads to more
limited inner hair cell damage (73, 116). More detailed measure-
ments of damage magnitudes may result in a clearer understanding
of subsequent chemical changes.

A factor that confounds the application of results for animal
experiments to human hearing loss and tinnitus is the variation in
experimental results among animal species. The most consistent
effect found was the decrease in glutamate and aspartate levels and
glutamate release and uptake in the CN regions receiving major
innervation from the auditory nerve following cochlear ablation.
Even for this effect, however, if one only studied short post-damage
survival times, the surprising increase of aspartate levels at these
times in chinchillas would complicate interpretations of the data.
Collection of data for a wide range of post-damage survival times
showed that some apparent contradictions between the results for
different species result from different time courses of the chemical
changes after cochlear damage rather than major differences in the
ultimate direction of the change.

NEED FOR MORE DATA
It is evident from the tables that most available neurotransmitter-
related chemical data for the central auditory system after cochlear
damage have been obtained for the CN and IC, and there is a rela-
tive lack of data for the MG and Aud Ctx. Further study at different
levels of the central auditory system is needed. There is also a rela-
tive lack of data for effects of ototoxic drugs. Besides carboplatin,
there are over 200 medications of several types that can adversely
affect hearing (3). This underscores the need for more research on
the effects of various drugs on the neurochemistry of the central
auditory system.

FUTURE DIRECTIONS
The chemical effects of cochlear damage following intense sound
or ototoxic drugs generally appear to develop more slowly than
those following the more severe damage produced by surgical
ablation of the cochlea. It may therefore be useful to expand the
time frame for measuring chemical changes after intense sound or
ototoxic drugs in order to identify changes that underlie chronic
tinnitus. In the case of intense sound, the changes in amino acid
levels found 5 months after the exposure were more consistent for
several amino acids than those at times <2 months after exposure.

The changes in choline acetyltransferase activity (for acetylcholine
synthesis) in the CN remained significant only in the granular
region at 5 months after exposure.

Some amino acids such as aspartate and taurine may be associ-
ated with tinnitus indirectly through metabolic or functional rela-
tionships to neurotransmitters. Additional studies on such amino
acids may prove useful for understanding the neurochemical basis
of tinnitus.

Perhaps because of various experimental limitations, such as
insufficient sample size, small chemical changes in a given region
may not reach statistical significance. However, patterns of change
that are widespread over many regions might indicate function-
ally important neurochemical effects underlying tinnitus. Studies
with larger sample sizes may improve the likelihood of showing
statistically significant changes, but even data not reaching statis-
tical significance may still contribute to the understanding of the
chemical mechanisms associated with tinnitus.

The studies investigating the neurochemical changes underly-
ing tinnitus comprise one component of a large body of tinnitus-
related research. Progressive scientific advances in this compo-
nent may contribute toward greatly needed improvements in the
prevention, diagnosis, and management of tinnitus.
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