
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL RESEARCH ARTICLE
published: 09 December 2014
doi: 10.3389/fneur.2014.00240

Subject–motion correction in HARDI acquisitions: choices
and consequences
Shireen Elhabian1,2*,Yaniv Gur 3, Clement Vachet 1, Joseph Piven4†, Martin Styner 4,5, Ilana R. Leppert 6,
G. Bruce Pike6,7 and Guido Gerig1

1 Scientific Computing and Imaging Institute, Salt Lake City, UT, USA
2 Faculty of Computers and Information, Cairo University, Cairo, Egypt
3 IBM Almaden Research Center, San Jose, CA, USA
4 Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
5 Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
6 Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, QC, Canada
7 Department of Radiology, University of Calgary, Calgary, AB, Canada

Edited by:
Maxime Descoteaux, Université de
Sherbrooke, Canada

Reviewed by:
Christophe Lenglet, University of
Minnesota, USA
Maxime Descoteaux, Université de
Sherbrooke, Canada
Emmanuel Caruyer, University of
Pennsylvania, USA
Jesus Omar Ocegueda Gonzalez,
Centro de Investigacion en
Matematicas, Mexico

*Correspondence:
Shireen Elhabian, Scientific
Computing and Imaging Institute, 72
Central Campus Drive, Salt Lake City,
UT, 84112, USA
e-mail: shireen@sci.utah.edu
†for IBIS

Diffusion-weighted imaging (DWI) is known to be prone to artifacts related to motion orig-
inating from subject movement, cardiac pulsation, and breathing, but also to mechanical
issues such as table vibrations. Given the necessity for rigorous quality control and motion
correction, users are often left to use simple heuristics to select correction schemes, which
involves simple qualitative viewing of the set of DWI data, or the selection of transforma-
tion parameter thresholds for detection of motion outliers.The scientific community offers
strong theoretical and experimental work on noise reduction and orientation distribution
function (ODF) reconstruction techniques for HARDI data, where post-acquisition motion
correction is widely performed, e.g., using the open-source DTIprep software (1), FSL (the
FMRIB Software Library) (2), or TORTOISE (3). Nonetheless, effects and consequences of
the selection of motion correction schemes on the final analysis, and the eventual risk of
introducing confounding factors when comparing populations, are much less known and far
beyond simple intuitive guessing. Hence, standard users lack clear guidelines and recom-
mendations in practical settings.This paper reports a comprehensive evaluation framework
to systematically assess the outcome of different motion correction choices commonly
used by the scientific community on different DWI-derived measures. We make use of
human brain HARDI data from a well-controlled motion experiment to simulate various
degrees of motion corruption and noise contamination. Choices for correction include
exclusion/scrubbing or registration of motion corrupted directions with different choices
of interpolation, as well as the option of interpolation of all directions. The comparative
evaluation is based on a study of the impact of motion correction using four metrics that
quantify (1) similarity of fiber orientation distribution functions (fODFs), (2) deviation of local
fiber orientations, (3) global brain connectivity via graph diffusion distance (GDD), and (4)
the reproducibility of prominent and anatomically defined fiber tracts. Effects of various
motion correction choices are systematically explored and illustrated, leading to a general
conclusion of discouraging users from setting ad hoc thresholds on the estimated motion
parameters beyond which volumes are claimed to be corrupted.

Keywords: HARDI, subject motion, motion correction, fiber orientations, orientation distribution functions,
tractography comparison, impact quantification

1. INTRODUCTION
Diffusion-weighted (DW)-MRI enables probing the fiber archi-
tecture of biological tissues – in vivo – by encoding the micro-
scopic direction and speed of the diffusion of water molecules
(4), while reflecting the amount of hindrance experienced by
such molecules along the axis of the applied diffusion gradi-
ent due to barriers and obstacles imposed by micro-structures
(5). Today, diffusion tensor imaging (DTI) is the method of
choice for most neuroimaging studies, e.g., autism (6), schiz-
ophrenia (7), and Huntington’s disease (8). Nonetheless, DTI

assumes a homogeneous axon population inside a single voxel
(9) and fails at modeling more realistic heterogeneous popula-
tions. High angular resolution diffusion imaging (HARDI) (10),
on the other hand, allows the diffusion acquisition to focus on
the angular component of the DW signal using strong gradi-
ents and long diffusion times (5), while revealing the intra-voxel
orientational heterogeneity, such as crossing and merging fiber
bundles. The promising potential of HARDI-based DW-MRI in
describing fiber tracts within the human brain comes with a
price tag of a wide variety of artifacts related to the gradient
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system hardware, pulse sequence, acquisition strategy, and sub-
ject motion (11). Such artifacts render the quality of diffusion
imaging questionable and reduce the accuracy of findings when
left uncorrected (1).

1.1. MOTION ARTIFACTS
In today’s clinical DW-MRI acquisitions, the presence of the long
and strong gradient pulses have made diffusion MRI more sensi-
tive to the detrimental effects of subject motion than other MRI
techniques (9, 12, 13). During a scanning session, the degree
of a patient’s cooperation may vary: elderly people who may
become uncomfortable during large scanning sessions, patients
in pain who become restless and agitated during a scan, and unse-
dated pediatric subjects who will not cooperate long enough to
be imaged without motion artifacts. Hence, it is safe to assume
that there are always motion artifacts in any given DW-MRI
acquisition due to the increased likelihood of involuntary sub-
ject motion; especially with HARDI acquisitions, which use a
large number of gradient directions resulting in longer scan
times. A proof-of-concept of this hypothesis is presented in
section 1.

Motion artifacts range from physiological motion (e.g., car-
diac pulsation and respiration) to physical (voluntary or invol-
untary) bulk movement by the patient (14). Physiological motion
can be controlled by gating or in the sequence design (15), but
the patient bulk movement during the diffusion-encoding gra-
dient pulses leads to severe signal perturbation (16–18), which
results in a significant signal phase shift or signal loss (19).
The effects of bulk motion are twofold: slow bulk motion can
cause misalignment of diffusion data between subsequent gra-
dient applications (i.e., DWI-volumes), resulting in an underes-
timation of diffusion anisotropy (4), whereas fast bulk motion
during the application of a single diffusion gradient causes inho-
mogeneous signal dropout/attenuation artifacts in the diffusion-
weighted images. This dropout effect arises due to signal dephasing
within the voxels (13, 14), which is the very phenomenon that
gives rise to the DW-MRI contrast, leading to an overestima-
tion of diffusion anisotropy (4). Although misalignment can be
tackled by registration-based correction methods (20), the sig-
nal dropout due to intragradient motion will persist (4), where
such images are identified and excluded from further process-
ing and/or scheduled for reacquisition during the same scan (13,
14, 21–23). Left uncorrected, motion-corrupted datasets intro-
duce bias in the subsequent findings due to the induced variability
of diffusion MRI measurements, while affecting the statistical
properties of diffusion derived measures in heterogeneous brain
regions.

1.2. MOTION CORRECTION CHOICES
The identification and elimination of slow bulk motion arti-
facts in HARDI data, which are characterized by a high b-
value and low signal-to-noise (SNR) ratio, still remains a
challenge. In order to allow correction approaches to pro-
ceed with reasonable accuracy, motion occurring between dif-
fusion gradients can be treated as if it occurred all at
once (24).

Motion effects can be reduced by real-time motion control dur-
ing the acquisition (a.k.a. prospective motion correction) (25–27),
where the acquisition and the source of motion are synchronized,
so that the data are never corrupted. In addition, the development
of accelerated acquisition methods [e.g., Ref. (28)] can reduce
the duration of a scan to minimize the susceptibility of subject
motion. A comfortable padding can also be used to minimize head
motion while urging the participant to remain without movement
(11). Nonetheless padding is not always effective in studies involv-
ing infants [e.g., autism diagnosis (29)], where remaining still
in the scanner may be more challenging. Nevertheless, prospec-
tive methods for motion correction might affect the acquisition
time due to the reacquisition of motion-corrupted gradients (14).
Such methods might also require external optical tracking sys-
tems (23), free-induction decay navigators (26), or volumetric
navigators (30), which are not always available on current scan-
ners (27), coupled with the need of time-consuming calibration
steps prior to their use (14). Furthermore, rapid modification of
diffusion gradients may induce eddy current artifacts (13), and
there is no guarantee that the head will move back to the original
position.

Motion compensation can also be performed as a post-
processing step after acquisition, i.e., retrospective, to guarantee
voxel-wise correspondence between different DWIs referring to
the same anatomical structure. A common practice is to heuristi-
cally select transformation parameter thresholds for detection of
motion outliers, where registration and interpolation are applied
to gradient directions that are claimed to be corrupted. Soft-
ware packages for image-based registration of DWIs are becoming
readily available, e.g., FSL-MCFLIRT (2, 31), the Advanced Nor-
malization Tools (ANTS) (32), TORTOISE (3), and BRAINSFit
(33) employed in DTIPrep (1).

A typical retrospective motion correction algorithm involves
two stages (20): first, finding the global transformation parameters
that would transform all DWIs to the same coordinate frame, and
then, applying the estimated transformations to the diffusion data.
Solving for the transformation parameters usually involves rigidly
registering the DWIs to a reference volume representing the same
anatomical structure, but without being contaminated by motion
artifacts. Examples of such a reference include a T2-weighted
image (16), or a non-diffusion-weighted image (a.k.a baseline with
b-value= 0) due to its high SNR and lesser vulnerability to eddy
current distortion (34), where the difference in intensity profiles is
compensated for using normalized mutual information similarity
measure. Another alternative is a model-based reference volume
computed for each diffusion-weighted image based on tensor fit-
ting (35, 36). Model-based motion correction implicitly assumes
that the original position defined by the baseline volume is the
reference position to be aligned to Sakaie and Lowe (20). Recently,
it has been shown that model-based motion correction becomes
a more powerful choice for correcting higher b-value diffusion
imaging, which does not contain enough anatomical features to
be registered accurately (36).

Applying the estimated transformation parameters is per-
formed using interpolation, which computes intensities at
transformed voxel coordinates as a weighted sum of the scaled
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intensities at surrounding voxels. The diffusion gradient vectors
are also reoriented to incorporate the rotational component of
subject motion (37). Interpolation is usually carried out by an
exact fit of a continuously defined model to discrete data sam-
ples. Nonetheless, this exact fit is less appropriate when data are
noise-corrupted, since the model is forced to fit the noise too.
Although using regularized interpolation can tackle noisy data,
it is only preferable to applying denoising followed by standard
interpolation under the assumption that the signal is a station-
ary Gaussian process (38); a situation that is not applicable for
diffusion-weighted images, which are contaminated by Rician
noise. Based on the central limit theorem, the (weighted) average
of a large set of i.i.d. samples tends to follow a normal distri-
bution. Thus, interpolation between Rician distributed samples
might change the distribution toward a Gaussian PDF (39). We
can, therefore, argue that the denoising process decreases the
effect of standard interpolation on altering the underlying data
distribution.

Another retrospective approach is to cast motion correction as
an outlier rejection process, ranging from simply excluding one or
more gradients bearing strong motion artifacts beyond acceptable
levels of motion (11, 14, 40), to statistical methods for detecting
and discarding voxel-wise diffusion measurements as outliers (17,
41, 42). Usually discarding entire scans (a.k.a motion scrubbing in
functional MRI) either can be performed by visual inspection or
based on predefined thresholds on estimated motion parameters
(4). Nevertheless, removing gradients limits the ability to recon-
struct crossing fibers, especially at small separation angles, due
to the decreased number of distinct gradient directions needed
for diffusion reconstruction. Moreover, scrubbing would intro-
duce intersubject SNR and bias differences that would in turn
affect subsequent statistical analysis (1). On the other hand, local
exclusion of corrupted voxels for robust diffusion reconstruc-
tion in the presence of outliers is based on the deviation of the
observed measurements (usually after motion correction) from
the assumed diffusion model. Using these approaches for motion
correction itself would mingle the effect of being an outlier to an
assumed model with that of being corrupted due to motion. Fur-
ther, local exclusion would lead to a different number of DWIs
locally available for each voxel, complicating subsequent analy-
sis to avoid bias due to different SNR values for different brain
regions (1).

A common concern with retrospective methods in clinical
studies, whether registration-based and/or outlier-based, is that
data with different levels of motion will be subject to different
schemes of motion correction. For instance, patients may show
more motion than controls, or sedated subjects may be different
from non-sedated. Applying different motion correction schemes
could introduce a confounding factor for statistical analysis of
populations that show different motion patterns. Nonetheless,
eyeballing the acquired/preprocessed DWIs prior to proceeding
to further analysis is highly recommended.

1.3. OBJECTIVE AND CONTRIBUTIONS
The lack of a comprehensive/rigorous quality control (QC) for
HARDI datasets can result in considerable error and bias in

subsequent analyses, which may affect research studies using these
datasets. Most current software packages such as DTIPrep (1),
TORTOISE (3), and FSL (2), which offer various tools for pro-
cessing and analysis of diffusion-weighted images, are mostly
limited to DTI datasets, which are characterized by low b-values
(i.e., higher SNR) and fewer gradients (i.e., shorter acquisition
times). Nonetheless, special care is needed for HARDI datasets
due to their low SNR and longer acquisition times, which increase
the likelihood of subject motion. As a part of a thorough
pipeline for HARDI-QC, this paper addresses the motion cor-
rection aspect for slow bulk motion where users often do not
fully understand the consequences of different types of correc-
tion schemes on the final analysis, and whether those choices
may introduce confounding factors when comparing populations.
Therefore, the presented work is directed toward clear guide-
lines and recommendations to the standard users in practical
settings.

The optimal preprocessing pipeline for HARDI sequences
remains an open question and a challenge for real data. Questions
that might arise include: is there a threshold that would identify
a motion-corrupted volume? How sensitive are HARDI recon-
structions to such a predefined threshold? What is the impact of
various motion correction schemes on subsequent HARDI-based
reconstructions and tractography? So far, these questions have
received, surprisingly, little attention in various DW-MRI stud-
ies of clinical populations. This study, then, focuses on the effect
of preprocessing schemes, in particular motion correction, com-
monly deployed as a post-acquisition step, on succeeding steps. We
propose a comprehensive experimental framework (see Figure 1)
that enables making use of human brain HARDI data from a
well-controlled motion experiment to simulate various degrees
of motion/noise corruption. The comprehensiveness is related to
the systematic evaluation of the outcome of different motion cor-
rection choices commonly used by the scientific community on
different DWI-derived measures. To our knowledge, this evalua-
tion does not exist in the literature and has not been discussed in
detail.

Choices for correction include exclusion or registration of
motion corrupted directions, with different choices of interpo-
lation, as well as the option of registration/interpolation of all
directions versus corrupted directions only. The effect of denois-
ing as a preprocessing step applied prior to motion correction
is also investigated. Further, the choice of the reference vol-
ume used in the registration framework is also discussed. The
comparative evaluation covers four metrics: (1) the similarity
of fiber orientation distribution functions (fODFs) via Jensen–
Shannon divergence (JSD), (2) the deviation of multiple fiber
orientations at each voxel, (3) the global brain connectivity
via graph diffusion distance (GDD), and (4) the reproducibil-
ity of seven anatomically defined fiber pathways via Cohen’s
Kappa statistics. On the basis of our findings, we recommend
assuming that motion is inevitable, even subtle, in the acquired
scans. Motion correction, therefore, needs to be applied to all
gradient directions without relying heuristically on a threshold
that determines a gradient direction to be claimed as motion
corrupted.
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FIGURE 1 | A comprehensive experimental framework for subject motion simulation to systematically evaluate the outcome of different motion
correction choices commonly used by the scientific community on HARDI-based reconstructions and tractography. (A) A human brain HARDI data were
acquired from a well-controlled motion experiment. (a.1) Acquired DWIs were preprocessed to obtain nearly noise-free and motion-free datasets. (a.2) For
automated tractography selection and the quantification of whole brain connectivity, a subject-specific unbiased atlas was constructed via DTI-derived data
from HARDI sequences resulting in a tensor atlas, where we can define a detailed parcelation of neuroanatomical structures, and map it back to each raw scan.
(B) Noticeable motion was then simulated by randomly mixing gradients from the acquired datasets. (C) Motion correction involves four main decision variables
where each distinct combination of choices defines a correction scheme. (D) Reconstruction of a corrected or motion-free dataset entails reconstructing the
voxel-wise fiber orientation distribution functions, detecting local (voxel-wise) fiber orientation, preforming whole brain tractography, and automatically selecting
anatomical pathways. (E) The evaluation of the effect of a motion correct scheme has been investigated based on voxel-wise metrics, global brain connectivity
metric, and tract-based metric.

2. MATERIALS AND METHODS
2.1. MOTION IS INEVITABLE: PROOF-OF-CONCEPT
To back up our assumption that motion is omnipresent, we ana-
lyzed data from three healthy human phantoms (males 30–40 years
old) visiting each of the four clinical sites (Chapel Hill, Philadel-
phia, St. Louis, and Seattle) as a part of the ACE-IBIS study
[Autism Centers for Excellence, Infant Brain Imaging study (6)],
using a total of six MRI systems (two sites using both research
and hospital scanners). All study procedures were approved by
the institutional review board at each clinical site, and informed,
written consent was obtained for all participants. In addition, the
traveling phantoms sign consent forms at each of the sites, as
per their own institutional IRBs. The sites include the University
of Washington, Seattle, the Washington University in St. Louis,
the Childrens hospital of Philadelphia, and the University of

North Carolina at Chapel Hill. Each subject was scanned twice
on a 3 T Siemens Tim Trio scanner1 with a strict calibration
of image acquisition parameters. Test–retest reliability at each
site was established with two scans within 24 h. The scans were
acquired within 1 week to guarantee that there were no major brain
changes over time. The scanning environment was well controlled.
Comfortable padding was used to minimize head motion, and
patients were urged to remain without movement. Eddy cur-
rent was compensated for using a Twice Refocused Spin Echo

1The protocol used a GRAPPA parallel imaging factor of 2 and a partial Fourier
factor of 3/4, which does indeed result in non-Rician noise distributions. However,
the effect of the noise distribution is expected to be relatively small at a b values of
2000 s/mm2 [e.g., Ref. (74)] and we do not expect the difference in noise profile to
affect our conclusions in terms of the motion correction schemes.
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FIGURE 2 | Average and standard deviation of the percentage of
motion-corrupted gradient directions as a function of thresholding on
the estimated rotation angle in degrees (left) and the estimated

translation magnitude in millimeter (right) for three human phantoms
scanned twice at four clinical sites. The boxplots show the overall statistics
of estimated motion parameters.

(TRSE) protocol2, with FoV= 209 mm, 76 transversal slices, thick-
ness= 2 mm (2 mm)3 voxel resolution, matrix size= 106× 106,
TR= 11100 ms, TE= 103 ms, one baseline image with zero b-
value and 64 DWI with b-value at 2000 s/mm2, with a total scan
time of 12.5 min.

Initially, we ran automated Quality Control on the DWIs via
DTIPrep (1), which includes among other steps interlaced correla-
tion analysis for detection and removal of fast bulk motion within a
single DWI volume,where no quantitative within-gradient motion
was detected. Inspired by Sakaie and Lowe (20), FSL-MCFLIRT
(31) was then used to provide the rigid transformation matrix (i.e.,
six degrees of freedom) for each volume having the baseline image
as the reference for motion correction and normalized mutual
information as the cost function. It is worth noting that MCFLIRT
employs a global-local hybrid optimization method for robust
affine registration that is specifically tailored to brain images.
Within a multiresolution framework, four scales were used (8, 4,
2, and 1 mm, i.e., supervoxel vs. subvoxel). At each scale, volumes

2In our analysis, we opt to using a prospective approach [a Twice-Refocused Spin
Echo (TRSE) sequence] for eddy current compensation in order not to introduce
any alignment-based preprocessing before running motion correction that could
already have a confounding effect (otherwise we would work on resampled and
interpolated images before motion detection). Further, we have eye-balled the FA
map of the acquired sequences (prior to motion correction) where the prominent
edge artifact (regions of anomalous diffusion contrast resulted from misregistration
of dissimilar materials) that should be visible in case of Eddy current distortion was
almost entirely absent in the TRSE images. To further support our decision, we used
FSL-MCFLIRT (31) to provide the affine transformation matrix (i.e., 12 degrees of
freedom) to detect the scaling and skewing parameters, which might occur due to
induced eddy current where the affine transformation matrix can be written as:

M = R

sx 0 0
0 sy 0
0 0 sz

1 a b
0 1 c
0 0 1

+
tx

ty

tz


where R is the rotation matrix, sx, sy, sz ∈R are the scaling parameters, a, b, c ∈R are
the skewing parameters and t x, t y, t z ∈R are the translation parameters. Table S2
in Supplementary Material reports the average and standard deviation (along all
gradient directions per dataset) of the estimated transformation parameters where
all datasets tend to have a unit scale with minimal skewing values. These values
confirm the decision of bypassing eddy current compensation in our analysis.

were resampled after initial filtering to reduce the effect of noise.
Further, we tested motion correction based on denoised HARDI
sequences using the Joint Rician LMMSE filter (43) implemented
as part of 3D Slicer (www.slicer.org), and found that the quantified
motion with and without noise reduction was very similar.

To quantify motion, we used the magnitude of the transla-
tion vector (in millimeters) as well as the axis–angle rotation
representation (in degrees) (4). The boxplots in Figure 2 show
the rotational and translational components of the motion being
detected from a total of 24 DWI datasets, showing an average of
0.39° rotation and 0.61 mm translation. The graphs in Figure 2
illustrate the arbitrariness of a common calculation of percent-
age of motion correction to determine the number of affected
scans, here shown as a function of thresholding on the estimated
motion parameters. While this experiment attributes the estimated
rotation and translation parameters to actual subject motion, a
part of the experimentally obtained parameters may be due to
some imaging/image-processing uncertainty and also to image
differences due to anatomical properties of the object (e.g., tissue
orientation) that make the images“look”different even if they were
perfectly aligned. To backup our analysis, we conducted another
experiment where we contaminated a single DWI dataset with
two independent realizations of Rician noise such that the two
generated DWI images were perfectly aligned because they were
the exact same image. Then, we ran motion correction where all
DWI images were aligned to the same baseline, we obtain similar
motion parameters although we are registering two independent
acquisitions of the same subject. We therefore conclude that the
transformation parameter estimates from FSL-MCFLIRT (31) are
resilient to noise and may primarily caused by subject motion
during a DWI scan, or eventually also by relative motion between
subject and scans if considering artifacts due to pulse sequence
and scanner technology.

2.2. LIVING PHANTOM: ACQUISITION AND GOLD STANDARD
GENERATION

Unlike conventional MRI, where realistic phantoms exist (44),
there is no widely acceptable realistic DWI phantom for the
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assessment of different processing tasks (43, 45). Existing phan-
toms simulate crossing sections in two and three dimensions, but
they are not representative of white matter complex architecture
with multiple fiber crossing, bending, and branching. The lack
of realistic phantoms motivates us to base our analysis on living
(human) phantoms being scanned under well-controlled envi-
ronments and propose a HARDI-based QC to yield motion- and
noise-free datasets. Acquired DWIs were preprocessed (refer to
Figure 1A) to obtain nearly noise-free and motion-free datasets
according to the following pipeline, and therefore, to be used as a
gold standard for reconstruction and tractography.

2.2.1. HARDI-based quality control
The QC process starts with identifying individual volumes having
fast bulk (intra/within-gradient) motion using the signal dropout
score proposed in Ref. (14). The score was computed for each
slice in each volume, where slices with a score >1 were consid-
ered to have suspect signal dropout. Based on a zero-tolerance
strategy, any volume having at least one slice with signal dropout
was excluded from further analysis. It is worth noting that no
within-gradient motion was detected in our phantom acquisitions.
Each gradient was then independently denoised to reduce noise
using the Rician LMMSE estimator with an 11× 11 neighborhood
(46) implemented in 3D Slicer (www.slicer.org) where the noise
parameter is automatically estimated. Using DTIPrep (1), inter-
slice brightness artifacts were detected via normalized correlation
analysis between successive slices within a single DWI volume,
where corrupted gradients were excluded before being streamed
into the next steps. Further, interlaced correlation analysis (1)
was used for detection and removal of Venetian blind artifacts
(seen when motion occurs between the interleaved parts of an
individual gradient volume) and fast bulk motion within a single
DWI volume, where no quantitative within-gradient motion was
detected.

For each DW-MRI scan, iterative FSL-MCFLIRT (20) was
used to correct for intergradient subtle motion (<1° rotation
and < 0.8 mm translation), with the baseline volume as the ref-
erence for rigid alignment (i.e., six degrees of freedom with
normalized mutual information as the cost function). The cor-
responding diffusion-weighting gradient vectors were reoriented
accordingly (37). To palliate the effect of spatial intensity inhomo-
geneities, N4 correction (47) was performed where the bias field
was computed from the baseline volume and subsequently applied
to all diffusion-weighted images. For further noise reduction,
the Joint LMMSE (43) (www.slicer.org) was used to exploit
the joint information from neighboring gradients from motion-
corrected sequences. To avoid over-blurring, we used a 2× 2× 2
neighborhood with six neighboring gradients.

2.2.2. Atlas-guided parcelation
For automated tractography selection and the quantification of
whole brain connectivity, we defined a subject-specific unbiased
atlas via DTI-derived data from HARDI sequences belonging to
the same subject/phantom. This results in a tensor atlas, where
we can define a detailed parcelation of neuroanatomical struc-
tures, and map it back to each raw scan. This reduces registra-
tion variability between each phantom data when defining the

parcelation in subject spaces. The full process entails atlas creation
and parcelation definition, as detailed in the following.

2.2.2.1. Co-registration and atlas building. To define a com-
mon reference space, our framework is centered around the cre-
ation of a DTI atlas, generated as an unbiased average atlas from
the study dataset via a deformable atlas building strategy. Unbiased
atlas building is used to provide one-to-one mapping between the
image data and the template atlas, wherein the atlas is built from
the population of data as the centered image with the smallest
deformation distances. The overall registration framework, simi-
lar to what has been presented in Ref. (48), proceeds in four steps:
(1) image preprocessing via skull-stripping and tensor estimation,
(2) affine alignment, (3) unbiased diffeomorphic atlas computa-
tion via GreedyAtlas module in AtlasWerks3 software (49), and (4)
a refinement step via symmetric diffeomorphic registration using
the advanced normalization tools – ANTS (32).

Image preprocessing. A brain masking is first performed on the
baseline images using FSL-BET2 (brain extraction tool) (50) to
remove all non-brain parts of the image. BET2 uses a surface
model approach to robustly and accurately carry out the segmen-
tation. We then model tensors using the brain masks from the
initial DWI datasets by using weighted least squares estimation,
and then extract related scalar maps such as fractional anisotropy
(FA) images.

Affine alignment. The second step applies affine registration
of baseline images to a previously defined baseline template. A
multithreaded, coarse-to-fine registration scheme using mattes
mutual information metric is employed in that regard (33). The
transformations are applied to curvature FA maps. The use of
curvature FA as feature to derive registration has initially been
presented by Goodlett et al. (51). It is defined as the maximum
eigenvalue of the Hessian of the FA image, therefore measuring
image intensity curvature (second derivative) in the direction of
largest curvature,which acts like a 3D ridge detector. It is computed
by convolution of the FA image with a set of Gaussian second deriv-
atives with a fixed aperture, proportional to the size of the white
matter structures. The curvature feature image proved to be an
efficient detector of the 3D manifold skeleton of major fiber bun-
dles, which occur as tubular or sheet-like thin structures (similarly
to the TBSS software), with the strongest response at their center.
It is thus commonly used by our group when building population
atlases to optimize correspondence of fiber tract geometries, and
integrated into our freely distributed software package (48). The
curvature FA maps are thus mapped to this template space, and
then the intensity is rescaled via histogram matching.

Atlas building. We then use an unbiased deformable atlas-
building procedure (52) that applies large deformation diffeomor-
phic metric mapping transformations to these intensity rescaled
mapped curvature FA images. The procedure relates individual
datasets to the subject-specific atlas template space by means

3http://www.sci.utah.edu/software/atlaswerks.html
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of non-linear, invertible transformation. Tensor maps are trans-
formed into the atlas space with tensor reorientation by the finite
strain approach (53), taking into account both affine transforma-
tion and non-linear deformation. The transformed tensor images
are finally averaged using the Riemannian framework proposed in
Fletcher and Joshi (54), resulting in a three dimensional average
tensor atlas.

Atlas refinement. An additional step is performed by direct sym-
metric diffeomorphic registration of initial FA images to the
previously created DTI-FA atlas via the Advanced Normalization
Tools – ANTS (32). In our experience, this dual stage procedure has
been shown to produce a sharper atlas with improved registration
accuracy, most likely attributable to the use of local normalized
cross-correlation as the image similarity metric. Final affine trans-
formation and deformation fields are then available from subject
space to atlas space.

2.2.2.2. White matter parcelation. We used the publicly avail-
able JHU-DTI-SS (a.k.a. “Eve”) atlas described in Oishi et al. (55).
Defined as a single subject template, it includes both structural
(T1w, T2w) and DTI images with white matter map parcela-
tions, defining 176 hand-segmented core and peripheral regions
of interest (ROIs). A multithreaded, coarse-to-fine diffeomorphic
registration scheme using the cross-correlation metric via ANTS
is employed on FA images between the Eve atlas and the subject-
specific atlas. The computed deformation field is then applied to
the Eve white matter label map. We can then map the parcelation,
now defined in our subject atlas space, back to raw data in the ini-
tial image space, via the use of previously computed displacement
fields. On a specific note, we concatenated the transformations
from Eve atlas space to our initial images in order to directly
map the parcelation and avoid the use of multiple interpolations.
The white matter parcelation map is then defined both in the
subject-specific atlas space and in each individual subject space.

2.3. SUBJECT MOTION: BETWEEN SIMULATION AND CORRECTION
2.3.1. Human motion simulation
As a pilot study, one human phantom was asked to be res-
canned with his head tilted to simulate noticeable motion. The
two datasets, after being QCed (see 1), were then used to con-
struct motion-corrupted sequences (see Figure 1B). Based on
the alignment of the baseline images of the two scans (origi-
nal and tilted) using FSL-MCFLIRT, about 12° of rotation and
7 mm of translation were detected, whereas <1° of rotation
and 0.8 mm of translation were found when aligning individual
DWIs to their corresponding baseline image. It is worth not-
ing that the quantified motion between the acquired datasets
(i.e., untilted versus tilted brains) can be classified as severe sub-
ject motion (36). We then arbitrarily considered the first out
of the two scans as the “motion-free” sequence and used it as
a reference for performance evaluation of different motion cor-
rection schemes. A random percentage of DW images (10, 30,
50, 70, and 90%, each with five distinct random sets of gradi-
ent directions) drawn from the second scan (tilted brain) were
mixed with the first scan to construct 25 motion-corrupted
datasets. Noisy sequences were generated by simulating Rician

noise based on seven levels of SNRs from 4 to 20 (56), yielding
175 (5 experiments× 5 corruption percentages× 7 SNR levels)
sequences.

2.3.2. Motion correction schemes
Correction for subject motion involves four main decision vari-
ables (see Figure 1C), where each distinct combination of choices
defines a motion correction scheme. The first variable is which
reference volume is to be used in the alignment process. Two
options are available (20): baseline-based [e.g., Ref. (16)] and
model-based [e.g., Ref. (35, 36)]. In this context, we use the FMAM
(Fit Model to All Measurements) method (35) where target images
for registration were generated by first fitting the diffusion ten-
sor to the DWIs, followed by diffusion simulation to provide
target images of similar contrast to the DWIs. Notice that with
>50% motion corrupted, model-based reconstruction infers the
spatial position/orientation from the gradients corresponding to
the tilted brain due to its majority (i.e., gradients of the untilted
brain are considered the motion-corrupted directions). Therefore,
with model-based correction for sequences having more than 50%
corrupted directions, the tilted brain was used as a reference for
performance evaluation.

The second variable denotes whether the correction is per-
formed based on raw or denoised DWIs, where the denoising
process should not take into account joint information between
diffusion gradients due to motion corruption. In our experi-
ments, we denoised motion-corrupted sequences using the Rician
LMMSE estimator (46), where each gradient was independently
denoised.

The third variable entails the mode of correction, i.e.,
registration-based versus outlier-based. The first choice explores
two options: (1) only aligning and interpolating the corrupted
gradient directions to mimic the situation where a predefined
motion parameter threshold is used to claim whether a DWI vol-
ume is motion-corrupted, (2) assuming there is always motion,
forcing the alignment and interpolation of all DWI volumes.
Note that both options involve the reorientation of the diffu-
sion gradient vectors corresponding to the corrupted volumes
(37) to incorporate the rotational component of subject motion.
In the second choice, i.e., outlier-based, we mimic the motion
scrubbing approach, where we exclude the affected gradient
directions from subsequent computations (i.e., diffusion pro-
file reconstruction and tractography). Eventually, the interpola-
tion step in the registration-based choices introduces the fourth
variable where we study the impact of using trilinear and sinc
interpolants.

It is important to stress that, in our motion simulation par-
adigm (i.e., randomly mixing DW volumes from a tilted-brain
dataset), the identity of the motion-corrupted directions is known
a priori without any use of parameters. This prior information
is used via the outlier-based correction, as well as the interpolate
corrupted directions choices. Nonetheless, in practice, this a pri-
ori information corresponds to heuristically set thresholds on the
estimated motion parameters beyond which volumes are claimed
to be corrupted/outliers. For example, a rotation threshold of 0.5°
and a translation threshold of about one voxel spacing are set by
default in DTIprep (1).
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2.4. RECONSTRUCTION AND TRACTOGRAPHY
The reconstruction and whole brain tractography were computed
for the motion corrected sequences as well as the motion-free
sequences [gold standard generated in Section 2, followed by auto-
matic tractography selection for seven major fiber bundles (see
Figure 1D)].

We employed the constrained spherical deconvolution (CSD)
technique (57) to reconstruct fiber orientation distributions func-
tions (fODFs) from the DWI data using the diffusion imaging
Python (DiPy) library (58). The fiber response function was esti-
mated from the corpus callosum region, defined by the white
matter parcelation (see 2), where it is known to have single fibers.
In particular, we used an ROI at the center of the corpus callosum
and of a radius that would include all its voxels. The response func-
tion was estimated in that region from the voxels with FA higher
than 0.7.

Part of our analysis is based on comparing brain connectivity
graphs, which are represented as weighted graphs and computed
from fiber tractography results. Whole brain tractography was
performed using the EuDX deterministic tracking technique (59),
which is implemented in the DiPy library (58), using random seed-
ing inside the brain region and a turning-angle threshold of 30°
between two connected voxels [as suggested by Parizel et al. (60)
to provide sufficient fiber density while minimizing the number
of spurious tracts].

To extract brain connectivity graphs from the fiber trac-
tography results, we used the 176 core and peripheral ROIs
defined in the white matter parcelation (see 2). Let Nij denote
the total number of streamlines connecting the i-th and j-th

ROIs, each with length l
ij
k ∀k ∈ [1, Nij ], and the edge weights

wij computed as follows (61): wij =
1

Nij

∑Nij

k=1
1

l
ij
k

. The normal-

ization by the tracts length gives a higher connection strength
to short tracts to compensate for the signal attenuation as a
function of tract length. It is worth noting that the concept of
using the connection strength or other measures to weight the
graph edges was previously discussed in several papers [e.g., Ref.
(62, 63)].

For tract-based analysis, an automatic tractography selection
method was performed to select a subset of detected tracts from
the whole brain tractography result corresponding to a specific
white matter structure. Starting from the Eve-atlas-based white
matter parcelation map defined in the subject space (see 2), the
pass-through and not-pass-through volumes of seven fundamen-
tal fiber bundles (left and right hemispheres) were defined. To
remove fibers that do not belong to the pathway of interest, we
used the geometrical constraints specific for different fiber bun-
dles as defined in Ref.(64), where the anatomical characteristics
of these fiber bundles are defined in Ref. (65). We report the
matching results from seven major fiber bundles: corpus callosum
(CC), cingulum of the cingulate gyrus (CG), corticospinal tract
(CST), fornix (FX), inferior fronto-occipital tract (IFO), inferior
longitudinal fasciculus (ILF), and uncinate fasciculus (UNC).

2.5. MOTION CORRECTION CONSEQUENCES: EVALUATION METRICS
The influence of various motion correction choices on subse-
quent reconstruction and tractography is evaluated according

to voxel-based, global connectivity-based as well as tract-based
metrics (see Figure 1E), detailed as follows.

2.5.1. Voxel-based metrics
In order to measure similarities between the original motion-free
fODFs and the fODFs corresponding to the motion corrected
images, we use the Jensen–Shannon divergence (JSD), which has
been used to quantify differences between ODFs in various stud-
ies, e.g., Ref. (66, 67). Given two probability distributions P and
Q, the JSD metric is defined as follows:

JSD(P ‖ Q) =
1

2
[DKL(P ‖ M )+ DKL(Q ‖ M )] , (1)

where M = (P +Q)/2 and DKL is the Kullback–Leibler diver-
gence. In our case, P and Q are represented as discrete distri-
butions; therefore, the KL divergence takes the following form:
DKL(P ‖ Q) =

∑
i Pi log Pi

Qi
, where i is the discrete sample index.

The JSD is for PDFs, but we compute it for normalized fODFs. We
believe that it is a good measure since it reveals subtle changes in
PDFs so we can also keep track of changes in fiber volumes as well
as orientations.

In addition to comparing fODFs, we are interested in quantify-
ing local deviations in fiber orientations due to motion correction.
Since brain connectivity maps are inferred by tracking local fiber
orientations extracted from fODFs, distortions in those directions
may lead to unreliable brain connectivity maps. Therefore, it is
important to study the impact of motion correction on fiber
orientations by directly comparing the local fiber orientations
before and after correction. To that end, we use the mean angular
deviation measure θ defined as follows:

θk
i,j =

180

π

∣∣∣cos−1(vk
i .vk

j )

∣∣∣ , θ =
1

N

N∑
k=1

θk
i,j , (2)

where N is the number of fibers compared, and vk
i and vk

j cor-

respond to the orientations of fiber k, with and without motion
correction. Before averaging the deviations, we match the fibers,
such that fiber j has the closest direction to fiber i. If the number
of fibers is different, we compare the fibers that are present in both
voxels. For example, if we have three fibers after motion correc-
tion, whereas before correction there were only two, we compare
the two closest fiber directions. The fiber orientations were com-
puted using the DiPy peak extraction tool (with 0.4 relative peak
threshold and 20° minimum separation angle). We allowed up to
five orientations in each voxel (N = 5). Since general image trans-
formation does not necessarily preserve the original ordering of
the fiber orientations, we first match the fibers based on the angular
distance between each pair before computing the mean deviation.

2.5.2. Global connectivity-based metric
Once the brain connectivity graphs were generated for the differ-
ent sequences, we compared them by means of the graph diffusion
distance (GDD) metric, which has been proposed in Ref. (68). The
GDD is a novel distance measure for comparing weighted graphs,
which takes into account the graph structure in addition to the
edge weights, compared to the Frobenius norm, which is sensitive
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only to the edge weights. For an explanation of the differences
between the GDD and the Frobenius norm, see the Barbell graph
example in Ref. (68).

The GDD is based on the diffusion maps framework (69). Let
A1 and A2 be weighted adjacency matrices for N vertices, that
is, A1 and A2 are symmetric, non-negative, N ×N real matri-
ces with zeros along the principle diagonal. The (unnormalized)
graph Laplacian operator is defined by Ln=Dn−An (for n= 1,
2), where Dn is a diagonal degree matrix for the adjacency An, i.e.,
(Dn)i,i =

∑N
j=1 (An)i,j .

Given adjacency matrices A1 and A2, the columns of the Lapla-
cian exponential kernels, exp(-tL1) and exp(-tL2), describe the
different diffusion patterns centered at each vertex generated by
diffusion up to time t under the two sets of weighted edges. Mea-
suring the sum of squared differences between these patterns,
summed over all the vertices, yields

ξ2
gdd(A1, A2; t ) =

∑
i,j

((exp(−t L1))i,j − (exp(−t L2))i,j)
2

= || exp(−t L1)− exp(−t L2)||
2
F (3)

where ||·||F is the matrix Frobenius norm. This defines a family
of distance measures ξ, depending on the information propaga-
tion time t. The graph diffusion distance is given by ξ at the time
of maximal difference, i.e., dgdd(A1, A2)=maxt ξgdd(A1, A2; t ).
Here, we compute dgdd(A1, A2) by first diagonalizing L1 and L2

and using the exponential mapping. Then, Equation (3) allows the
computation of ξ(A1, A2; t ) for any fixed t. Finally, we optimize
over t by a line search to give dgdd(A1,A2).

2.5.3. Tract-based metric
The spatial matching between motion-free and motion-corrected
tracts was examined using Cohen’s Kappa statistic (70). The
streamlines for a specific fiber tract (e.g., CST, IFO.) are first con-
verted to a binary volume with the same dimension and spacing
of the raw DWI, where voxels that were occupied by at least one
streamline were assigned a value 1. The two tracking results to
be matched were then superimposed to identify: (1) voxels that
did not contain streamlines in either result (NN), (2) voxels that
contain streamlines in both results (PP) and (3) voxel that contain
streamlines in one of the results (PN or NP)4. The Kappa statistic
measures the level of agreement of the tracking results and cor-
rects for agreement expected by chance. Hence, Kappa is computed
based on the probability of agreement P(a) and the probability of
expected agreement due to chance P(e) as (71),

κ =
P(a)− P(e)

1− P(e)
, (4)

where,

P(a) =
NN + PP

PP + PN + NP + NN
,

P(e) =
(NP + PP)(PN + PP)+ (NP + NN )(PN + NN )

(PP + PN + NP + NN )2 .

4P denotes positive and N denotes negative

3. RESULTS
The fODFs and the whole brain tractography were computed for
the 3,150 motion corrected sequences (175 datasets× 18 correc-
tion schemes), as well as the motion-free sequences, followed by
automatic tractography selection for seven major fiberbundles.

3.1. VOXEL-BASED METRICS
The average JSD metric was computed using the fODF reconstruc-
tion from the“motion-free”dataset, not corrupted by mixing DWI
directions from the tilted-brain scan, as a reference (i.e., presenting
only subtle motion inherent to a scan). We differentiated between
regions where multiple fibers were detected versus single fiber
regions. Figure 3 shows the average JSD values for single and mul-
tiple fiber regions as a function of motion corrupted percentage for
different SNR levels and as a function of SNR levels for different
motion corrupted percentages. Figure 4 illustrates sample recon-
structions from motion-free versus motion-corrected datasets for
different corrupted percentages and different motion correction
choices. Table 1 shows the effect of the denoising process prior to
applying motion correction on the average JSD values for single
and multiple fiber regions as a function of SNR levels for different
motion corrupted percentages. Figure 5 shows the average devia-
tion of local fiber orientations (for the first two dominant detected
fibers per voxel) as a function of motion corrupted percentage, as
well as SNR levels.

3.2. GLOBAL CONNECTIVITY METRIC
Figure 6 shows the average graph diffusion distance (GDD) met-
ric as function of both the corrupted directions percentage and
the SNR levels. The metric compares the weighted connectivity
graphs from the whole brain tractography of the “motion-free”
dataset to that of the motion-corrected datasets. It is worth not-
ing that the tractography of the tilted brain dataset is used as a
reference for model-based corrections when the corrupted per-
centage exceeds 50%. Figure 7 visualizes the brain connectivity
being represented circularly using the Circos software (72) where
the parcelated structures (refer to Table S1 in Supplementary
Material for their full names) are displayed on a connectogram
representing left and right hemispheres symmetrically positioned
along the vertical axis. The weighted connectivity matrix com-
puted as described in Section 4 was normalized to attain a unit
maximum. Each entry in the normalized connectivity matrix cor-
responds to an interregion link with thickness proportional to the
entry weight. To avoid dense visualization, all entries with weight
<0.15 were discarded.

3.3. TRACT-BASED METRIC
Table 2 shows the average Cohen’s Kappa statistic computed for
corpus callosum (CC), corticospinal tract (CST), and inferior
fronto-occipital tract (IFO) (where other pathways showed simi-
lar trend) based on automatic tractography selection using whole
brain tractography of raw datasets (denoised datasets showed sim-
ilar trends due to the robust fODF estimation, yet their graphs were
omitted due to space limitation). Figures 8–12 show sample trac-
tography selections for the aforementioned tracts from the untilted
motion-free dataset as well as selections from motion-corrected
datasets with different corrupted gradient directions. Correction
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FIGURE 3 |The average Jensen–Shannon divergence (JSD) values
(lower is better) for reconstructions based on raw datasets
(denoised ones share similar performance) as (A) a function of
motion corrupted percentage for different SNR levels and (B) a
function of SNR levels for different motion corrupted percentage.
The first and third columns show JSDs single fiber regions while the

second and fourth columns show such values for reconstructions based
on multiple fiber regions. Notice the impact of motion scrubbing
(removing gradient directions), which becomes more significant with
more motion-corrupted directions when compared to registration-based
correction. Further the impact of motion scrubbing is rendered evident
for 10% corrupted gradients.

FIGURE 4 | Sample fODFs reconstruction from untilted and tilted
motion-free datasets as well as reconstruction from
motion-corrected datasets with 10, 30, and 70% corrupted gradient

directions. Correction choices shown include outlier-based (i.e., motion
scrubbing) and registration-based (using baseline and model-based
reference volumes).
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Table 1 |The effect of denoising on the average ± standard deviation of Jensen–Shannon divergence (JSD) values for single fiber regions and

multiple fiber regions as a function of SNR levels for different motion corrupted percentages.

Corrupted directions percentage SNR levels

BASELINE-BASED MOTION CORRECTION (SINGLE FIBER REGIONS)

30% 4 8 10 12 14 16 20

Interpolate corrupted directions

(trilinear): raw

0.360240±

0.045598

0.233751±

0.057661

0.206071±

0.056631

0.185168±

0.053253

0.168574±

0.050516

0.155135±

0.047892

0.135391±

0.043761

Interpolate ALL directions (trilinear):

raw

0.334243±

0.059883

0.215623±

0.062502

0.194581±

0.060456

0.176716±

0.055924

0.162974±

0.052476

0.150333±

0.050609

0.133550 ±

0.046793

Interpolate corrupted directions

(trilinear): denoised

0.352849±

0.040460

0.231980±

0.055656

0.202870±

0.054822

0.184626±

0.052840

0.167100±

0.049906

0.153834±

0.047516

0.135224±

0.043508

Interpolate ALL directions (trilinear):

denoised

0.329328 ±

0.059218

0.211255 ±

0.061444

0.190899 ±

0.058799

0.175393 ±

0.055475

0.161398 ±

0.051984

0.150292 ±

0.050625

0.133699±

0.046593

70% 4 8 10 12 14 16 20

Interpolate corrupted directions

(trilinear): raw

0.410600±

0.031331

0.318959±

0.050478

0.286541±

0.055425

0.252046±

0.057168

0.230605±

0.055139

0.214138±

0.053860

0.190215 ±

0.048155

Interpolate ALL directions (trilinear):

raw

0.402799±

0.036878

0.314221±

0.054400

0.284747±

0.059198

0.252745±

0.059908

0.233456±

0.057853

0.216581±

0.056865

0.192958±

0.051800

Interpolate corrupted directions

(trilinear): denoised

0.402564±

0.029625

0.313242±

0.049651

0.284339±

0.052764

0.250802 ±

0.056173

0.231370 ±

0.054575

0.208578 ±

0.052739

0.190779±

0.047920

Ine interpolate ALL directions

(trilinear): denoised

0.398054 ±

0.038274

0.310018 ±

0.054334

0.282856 ±

0.057399

0.251609±

0.058948

0.234186±

0.057342

0.210697±

0.055260

0.194545±

0.051417

BASELINE-BASED MOTION CORRECTION (MULTIPLE FIBER REGIONS)

30% 4 8 10 12 14 16 20

Interpolate corrupted directions

(trilinear): raw

0.429747±

0.014377

0.374981±

0.028244

0.357056±

0.032396

0.335591±

0.035592

0.319182±

0.036475

0.304666±

0.037237

0.281099±

0.037361

Interpolate ALL directions (trilinear):

raw

0.420579±

0.017062

0.365135±

0.029617

0.349272±

0.032369

0.330066±

0.034023

0.316609±

0.034180

0.300648±

0.035244

0.278706 ±

0.034553

Interpolate corrupted directions

(trilinear): denoised

0.408211 ±

0.013658

0.361212±

0.027941

0.345386±

0.032180

0.328742±

0.035251

0.314137±

0.036364

0.300747±

0.036693

0.279468±

0.036236

Interpolate ALL directions (trilinear):

denoised

0.415004±

0.016909

0.357705 ±

0.029817

0.342500 ±

0.032743

0.325475 ±

0.033581

0.312227 ±

0.034740

0.300567 ±

0.034321

0.279097±

0.033992

70% 4 8 10 12 14 16 20

Interpolate corrupted directions

(trilinear): raw

0.441668±

0.009944

0.406974±

0.020601

0.394218±

0.025143

0.371914±

0.028719

0.359955±

0.030159

0.349868±

0.030453

0.326731±

0.028539

Interpolate ALL directions (trilinear):

raw

0.438858±

0.010475

0.400544±

0.019045

0.387314±

0.024494

0.369097±

0.027007

0.358079±

0.028551

0.348511±

0.028087

0.327357±

0.026651

Interpolate corrupted directions

(trilinear): denoised

0.428357 ±

0.009559

0.398647±

0.020752

0.387550±

0.024170

0.364179 ±

0.028253

0.353670±

0.029828

0.342159 ±

0.029064

0.324294 ±

0.027985

Interpolate ALL directions (trilinear):

denoised

0.434734±

0.010609

0.396470 ±

0.019646

0.385026 ±

0.023381

0.364260±

0.026451

0.353628 ±

0.027830

0.343153±

0.026418

0.326491±

0.025983

MODEL-BASED MOTION CORRECTION (SINGLE FIBER REGIONS)

30% 4 8 10 12 14 16 20

Interpolate corrupted directions

(trilinear): raw

0.362824±

0.044584

0.234789±

0.057672

0.202436±

0.054992

0.185053±

0.052774

0.168921±

0.051011

0.154412±

0.048760

0.137016 ±

0.044368

Interpolate ALL directions (trilinear):

raw

0.341529±

0.055268

0.216935±

0.061572

0.190353±

0.057184

0.177338±

0.053845

0.164345±

0.051940

0.151763 ±

0.049245

0.137129±

0.044860

Interpolate corrupted directions

(trilinear): denoised

0.355832±

0.038952

0.233300±

0.055329

0.200942±

0.053886

0.183426±

0.051732

0.168669±

0.050471

0.156186±

0.048501

0.137568±

0.044271

Interpolate ALL directions (trilinear):

denoised

0.337800 ±

0.054166

0.214965 ±

0.060579

0.188046 ±

0.056021

0.174993 ±

0.053265

0.163170 ±

0.051443

0.153666±

0.049561

0.139043±

0.045272

(Continued)
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Elhabian et al. Motion correction: choices and consequences

Table 1 | Continued

Corrupted directions percentage SNR levels

70% 4 8 10 12 14 16 20

Interpolate corrupted directions

(trilinear): raw

0.437995±

0.020398

0.401102±

0.027875

0.395116±

0.029187

0.392917±

0.028751

0.394547±

0.029421

0.394157±

0.029765

0.393072±

0.029627

Interpolate ALL directions (trilinear):

raw

0.424515±

0.023969

0.389511±

0.029832

0.385682±

0.030147

0.385935±

0.029025

0.389897±

0.030270

0.390043±

0.030282

0.389524±

0.030102

Interpolate corrupted directions

(trilinear): denoised

0.433672±

0.019802

0.392704±

0.026322

0.385278±

0.027166

0.382104±

0.026334

0.382479±

0.027435

0.383047±

0.028099

0.382639±

0.027850

Interpolate ALL directions (trilinear):

denoised

0.423772 ±

0.023811

0.386144 ±

0.029342

0.380362 ±

0.029573

0.378202 ±

0.028394

0.380366 ±

0.029042

0.381810 ±

0.029858

0.382169 ±

0.029354

MODEL-BASED MOTION CORRECTION (MULTIPLE FIBER REGIONS)

30% 4 8 10 12 14 16 20

Interpolate corrupted directions

(trilinear): raw

0.431485±

0.013919

0.374890±

0.027681

0.355161±

0.030889

0.340584±

0.034561

0.322469±

0.035754

0.306188±

0.036843

0.282984±

0.037859

Interpolate ALL directions (trilinear):

raw

0.424731±

0.016649

0.366541±

0.029399

0.348776±

0.031170

0.336014±

0.033028

0.319378±

0.034755

0.303846±

0.035464

0.283342±

0.035411

Interpolate corrupted directions

(trilinear): denoised

0.409946 ±

0.012715

0.361122±

0.027406

0.344173±

0.030754

0.331062±

0.034374

0.316224±

0.035922

0.302532±

0.036504

0.281484 ±

0.036670

Interpolate ALL directions (trilinear):

denoised

0.420245±

0.016382

0.360538 ±

0.029426

0.342159 ±

0.030712

0.328595 ±

0.032733

0.314057 ±

0.034207

0.300968 ±

0.035322

0.283460±

0.034162

70% 4 8 10 12 14 16 20

Interpolate corrupted directions

(trilinear): raw

0.452994±

0.010220

0.417146±

0.015161

0.410814±

0.016068

0.406033±

0.016404

0.408391±

0.017131

0.407360±

0.017038

0.402509±

0.019258

Interpolate ALL directions (trilinear):

raw

0.441239±

0.011757

0.402898±

0.020790

0.398061±

0.020777

0.397453±

0.019135

0.401401±

0.018495

0.401485±

0.017602

0.395939±

0.018965

Interpolate corrupted directions

(trilinear): denoised

0.448519±

0.009997

0.407138±

0.014850

0.399052±

0.015820

0.393196±

0.015699

0.393496±

0.016721

0.393950±

0.016122

0.389538±

0.017035

Interpolate ALL directions (trilinear):

denoised

0.440633 ±

0.011008

0.399459 ±

0.020710

0.390507 ±

0.021431

0.385709 ±

0.020485

0.387375 ±

0.020483

0.389474 ±

0.019294

0.384891 ±

0.019050

Bold indicates the motion correction scenarios with minimal effect on the JSD metric in case of denoised datasets.

choices shown include outlier-based (i.e., motion scrubbing) and
registration-based (using baseline and model-based reference vol-
umes). Also pass-through (in green) and not-pass-through (in
red) volumes (i.e., isosurfaces) are shown. Their definitions along
with the geometric constraints employed to remove fibers, which
do not belong to the pathway of interest, can be found in Ref. (64).

4. DISCUSSION
In this section, we discuss the impact of different motion
correction choices using local as well as global metrics.

4.1. VOXEL-BASED RESULTS
Heterogeneous regions are more affected by motion correction,
showing larger average JSD in general when compared to the sin-
gle fiber regions, regardless of the correction mode, interpolation
scheme, or reference volume employed (see Figure 3).

The impact of motion scrubbing (removing gradient direc-
tions) becomes more pronounced with more motion-corrupted
directions when compared to registration-based correction (see
Figure 3A). Meanwhile, the JSD values indicate minimal

deformations in fODFs reconstructed for baseline-based correc-
tion at high SNR levels compared to model-based correction,
whereas both choices show comparable average JSD values at
low SNR levels. This complies with the conclusions presented in
Ref. (20).

Forcing the correction and interpolation of all gradient direc-
tions shows comparable performance compared to the correction
and interpolation of only the corrupted directions (see Figure 3A).
This observation discourages the choice of heuristic parameters
on motion parameters beyond which directions are claimed to be
corrupted and interpolated. Further, interpolation of all directions
causes less impact on the reconstructed fODFs at low corrupted
percentages (<50%). We can assume, therefore, that motion is
omnipresent and can be corrected for by the alignment and
interpolation of all gradient directions.

On the interpolation aspect of correction, the sampling theory
suggests the sinc kernel as the ideal interpolation kernel; nonethe-
less, this gives rise to the Gibbs phenomena (i.e., ringing) due
to kernel truncation. This explains the smaller fODF deformation
when using trilinear interpolation compared to sinc interpolation.
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Elhabian et al. Motion correction: choices and consequences

FIGURE 5 |The average fiber orientation deviation (lower is better) for
reconstructions based on raw datasets (denoised ones share similar
performance) as (A) a function of motion corrupted percentage for
different SNR levels and (B) a function of SNR levels for different motion
corrupted percentage. The first and third columns show orientation deviation

for the first detected fiber having the largest volume fraction while the
second and fourth columns show such values for the second detected fiber
having the second largest volume fraction. Notice that local fiber orientations
are more affected by motion scrubbing as SNR decreases and/or corrupted
directions increase.

Trilinear interpolation, which is much faster, is probably sufficient
for motion correction.

In Figure 3B, one can observe the comparable impact of
different motion correction choices at low motion corruption
percentages (<30%). Whereas with higher motion corruption,
a situation that is encountered in studies including infants, for
example, motion scrubbing shows a significant impact on the
reconstructed fODFs even at high SNR levels. This effect is more
pronounced in regions with crossing fibers where the ability to
resolve fiber crossings is deteriorated especially as the separation
angle of the fibers decreases.

Further, baseline-based motion corrections show minimal JSD
values with higher corruption levels (> 50%) when compared to
model-based corrections, regardless of the interpolation scheme
employed. The difference in performance between baseline-based
and model-based becomes more significant as the SNR level
increases.

The denoising process yields smaller JSD values for low
SNR levels (<12) (see Table 1), while providing comparable
performance for baseline-based and model-based motion correc-
tion choices. The slight decrease of JSD values for denoised datasets
compared to the raw ones is due to the fODF reconstruction
processes where we use the constrained spherical deconvolution
(CSD) technique (57). In an iterative manner, the deconvolution

process in CSD applies a non-negativity constraint on the esti-
mated fODFs as negative fiber orientation densities are phys-
ically impossible. This process provides fODFs estimates that
preserve the angular resolution while being robust to noise.
Yet, as a word of caution, the denoising process, when applied
to motion-corrupted datasets, should not take into considera-
tion the joint information from diffusion gradients since voxel-
wise correspondence between different diffusion volumes is not
guaranteed.

In Figure 4, one can observe the significant impact of motion
scrubbing (i.e., outlier-based correction) on the reconstructed
fODFs for mildly corrupted datasets (e.g., 30% corrupted direc-
tions). Further, it can be noticed that with >50% motion cor-
ruption, model-based reconstruction infers the spatial position
from the gradients corresponding to the tilted brain due to its
majority (i.e., gradients of the untilted brain are considered the
motion-corrupted directions).

Due to the insufficient number of gradients and unbalanced
sampling of the q-space, the impact of motion scrubbing on the
estimated fiber orientations becomes evident as SNR decreases
and/or corrupted directions increase (see Figure 5).

Although interpolating all directions versus corrupted direc-
tions reports comparable orientation deviation with lower impact
on fractionally corrupted datasets (<50%), we still favor forcing
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Elhabian et al. Motion correction: choices and consequences

FIGURE 6 |The average graph diffusion distance (GDD) (lower is better) for
the whole brain tractography derived from the raw datasets (denoised
ones share similar performance) as (A) a function of the corrupted
directions percentage for different SNR levels and (B) a function of SNR

levels for different motion corrupted percentages. Notice the different
behavior displayed by motion scrubbing for ≥50% corrupted directions, which
due to having more short tracts connecting nearby region of interests while
being assigned to larger weights in the graph construction step.

such a process to all directions to avoid the ad hoc process of
thresholding motion parameters.

Nonetheless, one can notice the peaked performance of the ori-
entation deviation at 50% corrupted directions for model-based
motion correction choices. The explanation of this phenomenon is
based on the fact that, with >50% of the gradients being corrupted
(i.e., corresponding to the tilted brain), the formed reference vol-
umes would instead infer its anatomical structure from the tilted
brain. For highly corrupted datasets, the gradients corresponding
to the untilted brains become the corrupted directions (i.e., a 70%
corruption will have a performance similar to the 30% case).

Model-based corrections display higher impact on the JSD of
the reconstructed fODFs at higher levels of motion corruption, but

such corrections have a smaller impact on the fiber orientation
deviations especially when interpolating all directions (trilinear
interpolant). This change of JSD metric implies an increase in the
overall fODF volume when compared to the reconstructions from
the motion-free dataset, yet the fODFs maintain the voxel-wise
fiber crossing structure. This observation is more pronounced for
fibers with the largest fiber volume fraction.

4.2. GLOBAL CONNECTIVITY-BASED RESULTS
Whereas there is a slight performance difference between GDD val-
ues computed based on raw datasets versus those from denoised
dataset, thanks to the fODF reconstruction that is robust to noise
contamination, one may observe consistent findings when GDD is
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Elhabian et al. Motion correction: choices and consequences

FIGURE 7 | Sample reconstructed connectomic profile (i.e.,
connectogram) from untilted and tilted motion-free datasets as well as
connectograms from motion-corrected datasets with 10, 30, and 70%
corrupted gradient directions. Correction choices shown include

outlier-based (i.e., motion scrubbing) and registration-based (using baseline
and model-based reference volumes). Notice the tendency of motion
scrubbing to add more links between nearby ROIs at corruption percentages,
implying the detection of more short tracts.

compared to the JSD metric. In particular, the global brain connec-
tivity is least affected by the motion correction step when forcing
the alignment and interpolation of all gradient directions without
setting a predefined threshold to claim corrupted volumes. There
is a significant difference between GDD values obtained from tri-
linear interpolation compared to sinc interpolation. This implies
that the impact of sinc interpolation on the fODFs, being encoded
by the JSD metric, yields global brain connectivity that is different
from the “motion-free”-based brain connectivity.

Whereas the effect of motion correction is evident at higher
corrupted percentages (except for motion scrubbing), one can
notice the effect of noise where the impact of motion correc-
tion becomes more significant at low SNRs (<12), while different
correction choices (except motion scrubbing) render slight perfor-
mance difference at high SNRs (>12). Moreover, being consistent
with different SNR levels, the baseline-based correction choices
yield connectivity graphs with minimal deviations (smaller GDD)
compared to their corresponding model-based choices.

On the contrary, motion scrubbing displays a different behav-
ior. The GDD values from the scrubbed datasets, though max-
imal compared to the other correction choices, are decreasing
with higher SNR levels for <50% corrupted directions, but this
behavior is soon changed to the opposition direction for ≥50%
corrupted directions (see Figure 6B). This change of behavior is
perceivable in Figure 6A where the GDD values are maximal at
50% corruption percentage for high SNR levels (>12), whereas
such a peak occurs even at low corrupted percentages (e.g., 30%)
for low SNRs (<12). This phenomenon can be explained as fol-
lows: with high percentage of motion-contaminated gradients,
the scrubbing (outlier-based) option tends to produce an inad-
equate set of gradients for accurate fODF estimation due to the
exclusion of too many gradients. This unbalanced sampling of
the q-space, henceforth, biases the CSD process to converge to an
incorrect solution, producing inaccurate fiber orientation, and in
turn imprecise brain connectivity. Hence, the increase of the GDD
values with higher SNRs beyond 30% corrupted directions is due
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Elhabian et al. Motion correction: choices and consequences

Table 2 |The average Cohen’s Kappa statistic (higher is better) of different anatomically defined fiber pathways (other pathways show similar

trend) based on automatic tractography selection based on whole brain tractography of raw datasets (denoised ones share similar

performance) for different corrupted directions percentages.

SNR levels

CORPUS CALLOSUM (CC)

10% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.337569 0.512323 0.549884 0.583176 0.608084 0.623132 0.653595

Baseline reference: interpolate corrupted directions (trilinear) 0.371873 0.527897 0.560684 0.597392 0.610865 0.625269 0.641443

Baseline reference: interpolate ALL directions (trilinear) 0.430934 0.565719 0.604035 0.612666 0.623576 0.645637 0.650286

Model-based reference: interpolate corrupted directions (trilinear) 0.372998 0.533756 0.56661 0.597997 0.610078 0.625306 0.645364

Model-based reference: interpolate ALL directions (trilinear) 0.432495 0.56421 0.590059 0.616106 0.628666 0.643482 0.648159

30% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.121185 0.240279 0.295196 0.342217 0.367067 0.397206 0.426858

Baseline reference: interpolate corrupted directions (trilinear) 0.344391 0.480168 0.510159 0.517193 0.519918 0.529172 0.536126

Baseline reference: interpolate ALL directions (trilinear) 0.397277 0.508548 0.520689 0.522688 0.528747 0.52865 0.531048

Model-based reference: interpolate corrupted directions (trilinear) 0.34037 0.483498 0.511051 0.522758 0.53595 0.536208 0.54493

Model-based reference: interpolate ALL directions (trilinear) 0.391228 0.510303 0.522294 0.531674 0.541776 0.538634 0.546074

50% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.195245 0.234216 0.24072 0.239568 0.234356 0.228969 0.212593

Baseline reference: interpolate corrupted directions (trilinear) 0.32114 0.43416 0.463943 0.456179 0.456507 0.455066 0.441334

Baseline reference: interpolate ALL directions (trilinear) 0.354402 0.447591 0.476502 0.460336 0.464282 0.455952 0.435115

Model-based reference: interpolate corrupted directions (trilinear) 0.308208 0.424219 0.454309 0.455936 0.456871 0.465054 0.477503

Model-based reference: interpolate ALL directions (trilinear) 0.344133 0.443797 0.459322 0.459972 0.462699 0.46546 0.47007

70% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.178267 0.178831 0.178042 0.163248 0.164247 0.158891 0.152246

Baseline reference: interpolate corrupted directions (trilinear) 0.314508 0.391142 0.408141 0.417553 0.420105 0.412033 0.405891

Baseline reference: interpolate ALL directions (trilinear) 0.327764 0.395117 0.405833 0.415301 0.421643 0.402026 0.401629

Model-based reference: interpolate corrupted directions (trilinear) 0.290382 0.405799 0.440177 0.452235 0.479685 0.479166 0.504993

Model-based reference: interpolate ALL directions (trilinear) 0.330574 0.428458 0.455009 0.46612 0.482178 0.478169 0.496215

CORTICOSPINALTRACT (CST)

10% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.255609 0.511582 0.59193 0.647802 0.681451 0.708302 0.733556

Baseline reference: interpolate corrupted directions (trilinear) 0.288567 0.568014 0.636962 0.674537 0.700027 0.714401 0.741004

Baseline reference: interpolate ALL directions (trilinear) 0.383782 0.673544 0.709478 0.732921 0.735943 0.74033 0.753895

Model-based reference: interpolate corrupted directions (trilinear) 0.290589 0.561405 0.636853 0.673316 0.699448 0.713441 0.739494

Model-based reference: interpolate ALL directions (trilinear) 0.377735 0.663838 0.703892 0.723948 0.732407 0.741558 0.751347

30% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.08445 0.181213 0.223927 0.250415 0.278556 0.304034 0.338546

Baseline reference: interpolate corrupted directions (trilinear) 0.282041 0.52623 0.598869 0.626852 0.636781 0.643479 0.651485

Baseline reference: interpolate ALL directions (trilinear) 0.366403 0.61723 0.665015 0.67397 0.663454 0.668005 0.671065

Model-based reference: interpolate corrupted directions (trilinear) 0.273331 0.521025 0.603001 0.639991 0.658976 0.671995 0.67978

Model-based reference: interpolate ALL directions (trilinear) 0.347568 0.612903 0.655906 0.678086 0.6801 0.692068 0.686448

50% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.167928 0.215559 0.227706 0.231256 0.238757 0.233776 0.237475

Baseline reference: interpolate corrupted directions (trilinear) 0.274988 0.47285 0.528849 0.56997 0.578886 0.581467 0.58602

Baseline reference: interpolate ALL directions (trilinear) 0.329036 0.540045 0.567838 0.60573 0.596126 0.594135 0.599463

Model-based reference: interpolate corrupted directions (trilinear) 0.25215 0.466852 0.518179 0.553814 0.56339 0.584337 0.596757

Model-based reference: interpolate ALL directions (trilinear) 0.300971 0.519456 0.551479 0.574403 0.578095 0.603384 0.609796

(Continued)
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Elhabian et al. Motion correction: choices and consequences

Table 2 | Continued

SNR levels

70% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.209264 0.213673 0.214178 0.214527 0.219481 0.206522 0.210003

Baseline reference: interpolate corrupted directions (trilinear) 0.268415 0.449839 0.495255 0.54836 0.560483 0.565741 0.553228

Baseline reference: interpolate ALL directions (trilinear) 0.30485 0.486243 0.531024 0.563493 0.569974 0.578043 0.561712

Model-based reference: interpolate corrupted directions (trilinear) 0.237249 0.43595 0.511829 0.537773 0.579497 0.591882 0.617357

Model-based reference: interpolate ALL directions (trilinear) 0.304681 0.493711 0.554253 0.575569 0.605093 0.610975 0.62865

INFERIOR FRONTO-OCCIPITALTRACT (IFO)

10% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.021174 0.164388 0.253179 0.360941 0.432971 0.522092 0.538292

Baseline reference: interpolate corrupted directions (trilinear) 0.036125 0.248734 0.350268 0.41586 0.467664 0.496367 0.525266

Baseline reference: interpolate ALL directions (trilinear) 0.066164 0.404309 0.453207 0.49633 0.497915 0.542272 0.55883

Model-based reference: interpolate corrupted directions (trilinear) 0.036877 0.241989 0.355478 0.41203 0.450946 0.497335 0.530589

Model-based reference: interpolate ALL directions (trilinear) 0.061719 0.397744 0.476713 0.481677 0.484301 0.532199 0.553205

30% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.017605 0.032846 0.036941 0.054356 0.069675 0.096068 0.120592

Baseline reference: interpolate corrupted directions (trilinear) 0.021015 0.193547 0.30352 0.358774 0.391792 0.417395 0.448851

Baseline reference: interpolate ALL directions (trilinear) 0.040243 0.286059 0.375406 0.407854 0.415109 0.449185 0.45364

Model-based reference: interpolate corrupted directions (trilinear) 0.019676 0.190149 0.298156 0.374981 0.394936 0.440116 0.450691

Model-based reference: interpolate ALL directions (trilinear) 0.036533 0.269425 0.356155 0.41894 0.417197 0.448939 0.457867

50% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.079802 0.096081 0.088847 0.08342 0.084004 0.078977 0.074762

Baseline reference: interpolate corrupted directions (trilinear) 0.023615 0.173538 0.255646 0.303376 0.355478 0.370352 0.389862

Baseline reference: interpolate ALL directions (trilinear) 0.037031 0.21137 0.287878 0.332891 0.361154 0.383244 0.388926

Model-based reference: interpolate corrupted directions (trilinear) 0.017528 0.155743 0.226579 0.260404 0.306267 0.343361 0.363517

Model-based reference: interpolate ALL directions (trilinear) 0.031326 0.187443 0.250407 0.282972 0.310855 0.353314 0.350486

70% 4 8 10 12 14 16 20

Baseline reference: motion scrubbing 0.103989 0.111274 0.105098 0.103238 0.107333 0.11481 0.110321

Baseline reference: interpolate corrupted directions (trilinear) 0.02605 0.137873 0.203676 0.292856 0.312459 0.329589 0.36963

Baseline reference: interpolate ALL directions (trilinear) 0.034815 0.169664 0.252561 0.300767 0.314673 0.347346 0.371886

Model-based reference: interpolate corrupted directions (trilinear) 0.021983 0.185256 0.299656 0.364072 0.433785 0.458342 0.477853

Model-based reference: interpolate ALL directions (trilinear) 0.043441 0.249726 0.354267 0.409827 0.471097 0.479884 0.485465

Bold indicates the motion correction scenarios which yield maximal agreement of different fiber pathways to those obtained from motion-free sequence.

to having more short tracts connecting nearby region of interests
while being assigned to larger weights in the graph construction
step (see 4).

In Figure 7, one can observe the motion scrubbing behavior
where the links become denser with higher corrupted percentages,
implying the detection of more short tracts connecting nearby
ROIs. On the other hand, the baseline-based choice reveals compa-
rable connectograms to the motion-free ones while model-based
counterpart tends to add more shorter tracts.

4.3. TRACT-BASED RESULTS
Being consistent with the results from the other metrics, motion
scrubbing shows a significant decrease in the degree of tract
agreement when increasing the percentage of motion corrup-
tion, which in turn leads to discarding more gradient directions.

With <50% corrupted directions, the tract agreement degree
increases with higher SNR levels, yet such a trend changes with
≥50% where shorter or no tracts being detected, which deviates
from being anatomically realistic; see, for example, the top row
of Figures 8–12 where tracts can be even missed even at 70%
corruption. The CST and IFO tracts are good examples of long
tracts that are not recovered by motion scrubbing beyond 10%
motion corruption, see Figures 10 and 11. Nonetheless, the max-
imal agreement is achieved when aligning and interpolating all
gradient directions to correct for motion regardless of the refer-
ence volume used in the registration process (i.e., baseline versus
model-based). It can be observed in Figures 8–12 that model-
based motion correction is able to recover longer tracts at high
corruption percentages compared to the baseline-based motion
correction.
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FIGURE 8 | Sample tractography selection for the corpus callosum (CC)
from the untilted motion-free dataset as well as selections from
motion-corrected datasets with 10, 30, and 70% corrupted gradient
directions. Correction choices shown include outlier-based (i.e., motion

scrubbing) and registration-based (using baseline and model-based reference
volumes). One can observe the short tracts being detected by motion
scrubbing at high corruption percentages due to the exclusion of too many
gradient directions.

FIGURE 9 | Sample tractography selection for the cingulum of the
cingulate gyrus (CG) from the untilted motion-free dataset as well as
selections from motion-corrected datasets with 10, 30, and 70%
corrupted gradient directions. Correction choices shown include

outlier-based (i.e., motion scrubbing) and registration-based (using baseline
and model-based reference volumes). Notice the inability of motion
scrubbing to detect an anatomically realized CG at high corrupted
percentages.
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FIGURE 10 | Sample tractography selection for the corticospinal
tract (CST) from the untilted motion-free dataset as well as
selections from motion-corrected datasets with 10, 30, and 70%
corrupted gradient directions. Correction choices shown include

outlier-based (i.e., motion scrubbing) and registration-based (using
baseline and model-based reference volumes). Note that motion
scrubbing cannot recover long tracts such as CST beyond 10%
motion corruption.

FIGURE 11 | Sample tractography selection for the inferior
fronto-occipital tract (IFO) from the untilted motion-free dataset as
well as selections from motion-corrected datasets with 10, 30, and
70% corrupted gradient directions. Correction choices shown include
outlier-based (i.e., motion scrubbing) and registration-based (using

baseline and model-based reference volumes). Note that motion
scrubbing cannot recover long tracts such as IFO beyond 10% motion
corruption. Further, motion-based motion correction tends to recover
longer tracts at high motion corruption compared to baseline-based
correction.
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FIGURE 12 | Sample tractography selection for the uncinate
fasciculus (UNC) from the untilted motion-free dataset as well as
selections from motion-corrected datasets with 10, 30, and 70%
corrupted gradient directions. Correction choices shown include

outlier-based (i.e., motion scrubbing) and registration-based (using
baseline and model-based reference volumes). Notice the inaccurate
UNC tract being detected from the motion scrubbing choice at high
percentages of motion corruption.

5. CONCLUSION: GUIDELINES FOR MOTION CORRECTION
IN HARDI ACQUISITIONS

Although there is excellent theoretical work on DWI acquisition
parameters and ODF reconstruction schemes, as well as their
effects on the quality and crossing fiber resolution, standard users
lack clear guidelines and recommendations on the best ways to
approach and correct for motion in practical settings. This work
investigated motion correction using transformation and interpo-
lation of affected DWI directions versus the exclusion of subsets
of DWIs, and its impact on the reconstructed fODFs, local fiber
orientations, brain connectivity, and detection of fiber tracts. The
various effects were systematically explored and illustrated via liv-
ing phantom data, leading to the general conclusion that motion,
even subtle, exists in every acquired DW scan and special care is
needed to correct for motion. In the following, we summarize the
findings of our analysis, which might serve as guidelines for users
in practice:

– Although least recommended, motion scrubbing (removing
corrupted gradient directions) can be used in studies with well-
controlled environments and involving not-in-pain adults or
sedated subjects, where minimal subject motion is anticipated
(i.e., <10%motion corruption). Yet, this gradient removal
should not result in unbalanced sampling of the q-space since
the gradient distribution should be as uniform as possible on
the sphere.

– Voxel-wise reconstructions, tractography, and global brain con-
nectivity are least affected by the motion correction step when
forcing the alignment and interpolation of all gradient direc-
tions without setting predefined thresholds to claim corrupted
volumes.

– Using voxel-wise reconstructions that are robust to noise, the
denoising process can be considered unnecessary prior to apply-
ing motion correction. Nonetheless, if applied, the denoising
algorithms should not take into account joint information from
different diffusion gradients since voxel-wise correspondence is
not guaranteed.

– Baseline-based correction choices can be used in studies involv-
ing voxel-wise scalars, which depend on the volume of the
reconstructed ODFs, especially with highly motion-corrupted
datasets.

– Model-based correction choices, on the other hand, are rec-
ommended for studies requiring the recovery and analysis
of long tracts, e.g., CST and IFO, especially with highly
motion-corrupted datasets.

– Trilinear interpolation, although much faster compared to sinc,
is probably sufficient for motion correction, where the global
brain connectivity is least affected.

One may wonder that using a gold standard, which was
obtained by motion correction (among other QC steps) using
some of the methods under investigation could raise questions on
reliability of the conclusions presented. Hence, in order to support
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FIGURE 13 |The average Jensen–Shannon divergence (JSD) values (first
row) and the average fiber orientation deviation (second and third row),
a function of motion corrupted percentage for reconstructions based on
gold standards generated from (A) the QCed phantom dataset and (B)

the raw phantom dataset. Note the agreement between (A) and (B) where
the impact of motion scrubbing becomes more significant with more
motion-corrupted directions when compared to registration-based correction.
This effect is also rendered evident for local fiber orientations.

the validity of the conclusions drawn from this study, we con-
ducted the same set of experiments using the raw acquired data
without performing any quality control. Figure 13 shows a sam-
ple result of the average JSD and local fiber orientation deviation
metric for reconstructions based on gold standards generated from
the QCed phantom datasets as well as the raw phantom datasets.
Being consistent with the conclusions drawn from the reconstruc-
tions based on the QCed datasets, regions with crossing fibers are
more affected by motion correction, showing larger average JSD
in general when compared to the single fiber regions. The impact
of motion scrubbing becomes more evident with more motion-
corrupted directions when compared to the registration-based
correction. Moreover, the peaked performance of the orientation
deviation at 50% corrupted directions for model-based motion
correction is also maintained. Further, forcing the interpolation of
all gradients directions would have minimal impact on the recon-
structions when compared to the choice of interpolating motion
corrupted directions via setting a predefined threshold beyond
which a direction is claimed to be corrupted.

5.1. LIMITATIONS AND FUTURE WORK
The primary message of this paper is that care should be taken in
deciding the processing pipeline for any DW-MRI (esp. HARDI)
at hand, this involves, for example, the acquisition protocol (i.e.,
less redundant gradients would discourage the choice of motion

scrubbing) and the participating subjects (i.e., elderly in pain,
infants, unsedated subjects versus healthy adults where variable
motion severity levels are anticipated). Nonetheless, the presented
analysis attains some limitations, which can be outlined as follows:

• One-subject analysis: as a controlled motion experiment, we
could use a scan session of subjects with repeated scans where the
second shows bulk motion relative to the first one. The existing
phantom data contain repeated scans taken in different sessions
within 24 h and hence they have to be seen as independent scans
for the same subject. As a pilot study, we therefore asked one
healthy volunteer to be scanned twice in a single scan session
while tilting the head between the two scans. This enables us to
mix gradients between the two scans from the same subject; this
cannot be done with the existing repeated independent scans.
We understand that reporting our results with more than a pair
of datasets (tilted and untilted brain) would support our analy-
sis, and we will collect more scans with this experimental design
in our future annual phantom scan sessions. Nonetheless, we
think that this experiment, even with its limitations, contributes
to establish an experimental framework that would guide the sci-
entific community in systematically evaluating the outcomes of
different preprocessing steps. In the future, we will prospectively
plan to obtain more of such datasets, also including navigator
shots for estimation of rotation, to extend this analysis.
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• Anatomical geometric correction: echo-planner imaging (EPI)
distortion, in contrast to Eddy current that affects only diffusion-
weighted images, would affect all images in the acquired
sequence regardless of their level of diffusion sensitization.
Hence, EPI distortion correction would involve acquiring addi-
tional data for either B0 mapping or a dedicated T1 or T2-
weighted structural target. That’s a primary reason behind ignor-
ing EPI correction in most MRI processing pipelines (73). With
the availability of such additional data, EPI correction would
involve non-linear spatial warping that employ interpolation,
a decision variable under investigation of the presented work.
Hence, we favored to bypass this step in order not to inter-
mingle interpolation due to motion correction and that of EPI
correction. However, we think that the analysis/correction of
inter-gradient spatial distortions, and its effect on ODF recon-
struction, is an important issue, which we together with the
scientific community need to address.

• Better gold standard generation: the living phantoms were
healthy volunteers who were aware of the whole process and
were keen to remain without motion. Nonetheless, the investi-
gation of prospective navigators is a promising idea for future
work to provide different types of ground truth data and to get
motion estimates directly from the scanner rather than only via
post-processing.
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