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The dopamine (DA) precursor L-DOPA has been the most effective treatment for Parkin-
son’s disease (PD) for over 40 years. However, the response to this treatment changes
with disease progression, and most patients develop dyskinesias (abnormal involuntary
movements) and motor fluctuations within a few years of L-DOPA therapy. There is wide
consensus that these motor complications depend on both pre- and post-synaptic dis-
turbances of nigrostriatal DA transmission. Several presynaptic mechanisms converge to
generate large DA swings in the brain concomitant with the peaks-and-troughs of plasma
L-DOPA levels, while post-synaptic changes engender abnormal functional responses in
dopaminoceptive neurons.While this general picture is well-accepted, the relative contribu-
tion of different factors remains a matter of debate. A particularly animated debate has been
growing around putative players on the presynaptic side of the cascade.To what extent do
presynaptic disturbances in DA transmission depend on deficiency/dysfunction of the DA
transporter, aberrant release of DA from serotonin neurons, or gliovascular mechanisms?
And does noradrenaline (which is synthetized from DA) play a role? This review article will
summarize key findings, controversies, and pending questions regarding the presynaptic
mechanisms of L-DOPA-induced dyskinesia. Intriguingly, the debate around these mecha-
nisms has spurred research into previously unexplored facets of brain plasticity that have
far-reaching implications to the treatment of neuropsychiatric disease.

Keywords: neuroplasticity, neuropharmacology, neuropsychiatry, neurovascular unit, movement disorders, dysto-
nia, basal ganglia, monoamines

Parkinson’s Disease (PD) is defined by a set of motor signs and
symptoms that are caused by dopamine (DA) deficiency and
respond well to dopaminergic therapies. Accordingly, functional
imaging studies have established a close link between the onset
and severity of PD motor features and the loss of dopaminergic
markers in the putamen (1, 2). Oral administration of the DA
precursor, l-DOPA has provided the backbone of PD treatment
for over 40 years [recently reviewed in Ref. (3, 4)]. However, this
treatment leads to complications.

After a few years of l-DOPA pharmacotherapy, most PD
patients will exhibit a shorter motor response to each med-
ication dose (“wearing-off fluctuation”), often associated with
choreiform abnormal involuntary movements (AIMs) that appear
when plasma and brain levels of l-DOPA are high (“peak-dose
dyskinesias”) (Figure 1). More complex response patterns may
also occur, for example, dyskinesias appearing when plasma l-
DOPA levels rise or decline after each dose (“diphasic dyskine-
sia”), or abrupt fluctuations between a good antiparkinsonian
response and a severe parkinsonian motor state (“unpredictable
on–off fluctuations”) [reviewed in Ref. (3, 5)]. It has recently been
established that oral l-DOPA therapy produces non-motor com-
plications too, particularly, fluctuations in mood and cognitive
performance (3, 6).

Factors associated with a higher incidence and/or early devel-
opment of l-DOPA-induced dyskinesia (LID) include, l-DOPA
dosage, severity and duration of PD (7, 8, 9), and a young age

at PD onset [reviewed in Ref. (8, 9)]. Some autosomal recessive
forms of PD also entail a high risk of LID (10), possibly because
they share many features with young-onset idiopathic PD, in par-
ticular, a severe loss of DA neurons with relative preservation of
non-dopaminergic systems and slow progression of Lewy-related
brain pathology (11, 12). The reasons underlying a high risk for
LID in young-onset PD patients have not been resolved, and sev-
eral valid hypotheses have been put forward, including a faster DA
turnover (13) or a larger potential for neuroplasticity in a younger
brain (14). Moreover, the relative integrity of non-dopaminergic
systems in younger subjects may contribute to a higher risk for
LID. These systems may include corticostriatal and/or serotonergic
projections, as will be discussed in this article.

“PRE- OR POST-SYNAPTIC MECHANISMS?” A BRIEF
HISTORICAL PERSPECTIVE
In the most typical cases, dyskinesias and motor fluctuations are
temporally related to rises and declines in plasma l-DOPA levels
(Figure 1). In advanced stages of PD, the same dosage of l-DOPA
that is required to relieve parkinsonian features may also induce
AIMs [reviewed in Ref. (3, 15) and schematically illustrated in
Figure 1].

Whether this altered response pattern depends on presynap-
tic or post-synaptic changes in nigrostriatal DA transmission has
been a matter of major debate. The presynaptic hypothesis, which
prevailed in the 80s, held that the progressive degeneration of
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Cenci Presynaptic mechanisms of PD dyskinesias

FIGURE 1 |The pattern of motor response to L-DOPA changes during
the progression of PD. This drawing illustrates how the therapeutic
window of L-DOPA narrows during the progression of PD [based on (172,
173)]. While oral L-DOPA therapy achieves a stable symptomatic control
during the first years, it causes motor fluctuations and dyskinesias in more
advanced disease stages. Dyskinesias are most commonly associated with
high plasma levels of L-DOPA (peak-dose LID), as shown here. The blue
sinuous line represents peaks-and-troughs in plasma L-DOPA levels
concomitant with oral L-DOPA therapy. The empty area at the centre
represents the range of L-DOPA concentrations that induce relief of PD
motor features without causing dyskinesia.

nigral neurons causes a loss of DA storage capacity in nigrostriatal
nerve terminals (16). Under these conditions, l-DOPA would be
immediately converted to DA by a variety of cells in the brain, and
rapidly eliminated. Peak-dose LID and wearing-off fluctuations
would thus be the clinical counterparts of swift rises and declines
in central DA levels, respectively [reviewed in Ref. (17)].

During the 90s, the presynaptic hypothesis appeared to decrease
in popularity as many investigators turned one’s attention to
the post-synaptic consequences of DA depletion. The attention
shift was prompted by studies in 6-hydroxydopamine (6-OHDA)-
lesioned rats, which revealed striking effects of chronic l-DOPA
treatment on the expression of GABA-biosynthetic enzymes, neu-
ropeptides, and opioid precursors in striatal neurons (18). In addi-
tion, studies in PD patients revealed that the therapeutic window
of apomorphine, a direct DA agonist, narrowed with the progres-
sion from a DOPA-naive to a DOPA-treated dyskinetic state (19).
Because apomorphine acts independently of presynaptic nigros-
triatal terminals, these results were used to suggest that altered
signal-transduction mechanisms in striatal neurons are the main
culprit of motor complications to PD therapy (19).

Presynaptic factors were brought back into the limelight by
human positron emission tomography (PET) studies using the
reversible D2 receptor ligand, [11C] raclopride to estimate DA
release. This approach takes advantage of a competition between
endogenous DA and [11C] raclopride for binding to D2 receptors.
Increased DA levels in the striatum are thus seen as a reduction
in [11C] raclopride binding potential compared to baseline val-
ues. Using this technique, De la Fuente Fernandez and colleagues
showed that standard oral doses of l-DOPA caused larger swings

in striatal DA levels in PD patients experiencing motor compli-
cations compared to patients with a stable response to treatment
(20, 21). Moreover, Piccini and collaborators found a positive lin-
ear relationship between putaminal changes in [11C] raclopride
binding and AIM scores “on” l-DOPA (22). These human stud-
ies provided a strong support to the presynaptic hypothesis of
LID, and prompted a new wave of clinical and preclinical research
aimed at shedding light on the mechanisms involved.

During the past 10 years, different groups of investigators have
continued to debate on whether or not presynaptic factors can
by themselves drive the development of LID (23, 24), and experi-
mental evidence has been put forward to either support or reject
this standpoint [cf., e.g., Ref. (25, 26)]. Because a disruption
of presynaptic DA homeostasis will certainly have post-synaptic
consequences (27) (Figure 2), this debate may appear artificially
contentious at first glance. However, it is becoming clear that the
relative weight of presynaptic versus post-synaptic mechanisms in
generating the involuntary movements will condition the response
to antidyskinetic interventions (28).

This review article will summarize both the terms of the debate
and the valuable research that has stemmed from it. Thanks to
this research, conspicuous progress has been made toward under-
standing specific players on the “presynaptic side” of the cascade
(summarized in Figures 2 and 3).

NIGROSTRIATAL DA DENERVATION AND L-DOPA DOSAGE
ARE CRITICAL TO LID
Clinical observations suggest that the loss of nigrostriatal DA neu-
rons plays an important role in the development of LID (8, 9, 29).
But PD has a complex pathology, and it is difficult to demonstrate
the causal link between dopaminergic denervation and LID in
human studies. This type of information can however be inferred
from experimental models of the movement disorder.

In all the most common animal models of PD–LID, the loss
of nigrostriatal neurons is obtained using specific neurotoxins.
6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) have been the most commonly used
toxins in rodents and non-human primate species, respectively.
In all the current animal models, the AIMs induced by l-
DOPA mimic the peak-dose variant of human LID [reviewed in
Ref. (30)].

Non-human primate studies examining the relationship
between LID and extent of nigrostriatal DA lesion have been sparse
and, at first glance, conflicting. A seminal study in MPTP-lesioned
macaques reported that therapeutic doses of l-DOPA produced
dyskinesia only in monkeys having ≥95% striatal DA loss (31).
Accordingly, a study in MPTP-lesioned marmosets reported that
only animals with >85% striatal DA loss developed choreoa-
thetoid dyskinesias with therapeutic doses of l-DOPA, and that
the most severely parkinsonian animals displayed the most severe
LID (32). However, studies in squirrel monkeys reported choreoa-
thetoid dyskinesias in animals with partial striatal DA denerva-
tion (33), and even in intact animals treated with a therapeutic
l-DOPA regimen (15 mg/kg twice daily for 2 weeks) (34). Fur-
thermore, intact macaque monkeys were reported to develop
choreoathetoid dyskinesias if treated with very high doses of l-
DOPA (80 mg/kg/day for 13 weeks) (35). Thus, the impact of
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Cenci Presynaptic mechanisms of PD dyskinesias

FIGURE 2 | L-DOPA-induced dyskinesia depends on both pre- and
postsynaptic disturbances of DA transmission that are modulated by
non-dopaminergic transmitter systems. The term “presynaptic” refers to
all factors that contribute to generating fluctuating levels of L-DOPA and DA
in the brain (blue boxes). The term post-synaptic refers to mechanisms
that occur at the level of dopaminoceptive cells (yellow boxes).

Non-dopaminergic modulatory systems are shown in white boxes. It is not
well understood how these systems modulate different levels of the
pathophysiological cascade (hence the question marks). DAR, dopamine
receptors. Studies supporting this pathophysiological cascade have been
reviewed in Ref. (3, 27, 174, 175). An updated review on the presynaptic
factors is presented in this article.

nigrostriatal DA denervation on the susceptibility to LID differs
between non-human primate species, some of which can develop
involuntary movements even in the absence of dopaminergic
denervation, if given sufficiently high doses of l-DOPA.

The largest rodent study addressing the relationship between
nigrostriatal DA lesion and LID severity is the one by Winkler and
colleagues (36). In this study, rats sustained partial or complete
lesions of the nigrostriatal pathway, and were then treated with l-
DOPA at a low therapeutic dose (6 mg/kg/day) for 4 weeks. Only
rats with >80% loss of striatal dopamine transporter (DAT) or
nigral DA neurons developed dyskinetic behaviors, and involun-
tary movements of maximal severity occurred only in the sub-
group exhibiting >90% loss of dopaminergic markers (36). How-
ever, some of the completely DA-denervated animals remained
free from dyskinetic behaviors throughout the l-DOPA treatment
period (Figure 4). Thus, although a large nigrostriatal DA lesion
was necessary for l-DOPA to induce involuntary movements,
the severe dopaminergic denervation was not by itself sufficient
(36). A similar conclusion was reached by Bezard and collabora-
tors in a study using MPTP-lesioned macaques (37). It should be
added, however, that high doses of l-DOPA will induce dyskine-
sia in all animals exhibiting >90% loss of dopaminergic markers
throughout the caudate-putamen, although the actual doses will
vary depending on species [c.f. ≥25 mg/kg/day in the rat (38, 39)
versus ≥3 mg/kg/day in mice (40, 41)].

In summary, the bulk of experimental data indicate that, if l-
DOPA is given at a therapeutic dosage, involuntary movements

develop only when the loss of DA afferents to the motor striatum
exceeds a threshold level of 80–85%. Despite these large lesions,
some animals will however remain free from LID during the
chronic treatment. Intriguingly, these experimental observations
are in keeping with the clinical experience, whereby a propor-
tion of PD patients never develop dyskinesias during their lifetime
exposure to l-DOPA (9). Autoradiographic studies of DAT bind-
ing in the post-mortem striatum have not detected a difference
between dyskinetic and non-dyskinetic PD cases (42, 43), indi-
cating that a severe dopaminergic denervation is not sufficient
for some patients to develop LID. Thus, although presynaptic
DA depletion predicts the risk of LID (29), the susceptibility to
this therapy complication must also depend on additional fac-
tors. These factors are likely to include some of the mechanisms
discussed in the following sections.

PRESYNAPTIC CONSEQUENCES OF NIGROSTRIATAL DA
DENERVATION
The degeneration of nigrostriatal DA neurons in PD implies a
severe depletion of the presynaptic compartment that physiologi-
cally converts l-DOPA to DA, releases DA in a regulated fashion,
and clears DA from the extracellular space via high-affinity reup-
take (Figure 3). The nigrostriatal system has a high capacity to
mount compensatory mechanisms after partial lesions through,
e.g., increased DA turnover, sprouting of residual DA terminals,
and downregulation of the DAT [reviewed in Ref. (15, 44)].
Accordingly, parkinsonian motor symptoms have been estimated
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Cenci Presynaptic mechanisms of PD dyskinesias

FIGURE 3 |The two sides of a dopaminergic synapse. The drawing
illustrates components of the nigrostriatal dopaminergic synapse that are
discussed in this article. The presynaptic nigrostriatal terminal releases DA
(blue circles), and regulates extracellular DA levels through several
mechanisms: DA reuptake from the extracellular fluid (via the DAT), DA
transport into synaptic vesicles (via VMAT-2), DA synthesis (which is
subjected to autoregulatory control via presynaptic D2 receptors), and DA
metabolism (via MAO-B and COMT). The post-synaptic neuron responds to
DA via two main types of receptors. The D1 receptor is coupled to Golf and
activates c-AMP-dependent intracellular signaling pathways. The D2
receptor is coupled to Gi and inhibits the same pathways. AADC, aromatic
L-amino acid decarboxylase; AC, adenylate cyclase; COMT,
catechol-O-methyl-transferase; DAT, dopamine transporter; MAO-B,
monoamine oxidase B; TH, tyrosine hydroxylase; VMAT-2, vesicular
monoamine transporter 2.

to appear only after a loss of 50% nigral DA neurons and 70%
striatal DA contents [reviewed in Ref. (15)]. Similar phenomena
have been observed in 6-OHDA-lesioned rodents, where the
compensatory capacity of the nigrostriatal system appears to break
down only after a >70% loss of nigral DA neurons (45, 46).

The breakdown of presynaptic DA homeostasis predisposes
to large fluctuations in central levels of DA upon treatment

FIGURE 4 | A large nigrostriatal DA lesion is necessary but not
sufficient for therapeutic L-DOPA doses to induce dyskinesia. Rats
sustained unilateral nigrostriatal DA lesions of varying severity, and were
then treated with L-DOPA (6 mg/kg/day) for 4 weeks. Diagrams plot the
animals cumulative Abnormal Involuntary Movement (AIM) scores (y axis)
on presynaptic markers of DA neuron integrity, that is, tyrosine hydroxylase-
positive cells in the substantia nigra (SN) or striatal innervation density,
estimated with DAT radioligand binding using [3H]-BTCP. Data collected on
the side ipsilateral to the lesion are expressed as a percentage of the values
on the contralateral (ctrl) intact side. With either measure, AIM scores were
found to occur only in animals that had lost more than 80% of presynaptic
dopaminergic markers, and maximally severe AIMs occurred only when this
loss exceeded 90%. Note however that some of the completely
DA-denervated animals did not develop any dyskinesia. The dataset is
derived from Ref. (36).

with l-DOPA. In a seminal microdialysis study, Abercrombie
and collaborators showed that a peripheral injection of l-DOPA
results in significantly higher extracellular DA levels in rats with
large 6-OHDA lesions compared to intact animals (47). The l-
DOPA-induced increase in striatal extracellular DA concentrations
(∆DA) was 30- to 80-fold larger in 6-OHDA-lesioned animals
compared to intact controls (the striking difference being partly
dependent on the lower baseline DA concentrations in lesioned
animals) (47). This study also established a causal relationship
between ∆DA and the lesion-induced loss of DAT. Indeed, com-
bined treatment of intact rats with l-DOPA and nomifensine, a
DAT inhibitor, produced increases in extracellular DA approach-
ing the magnitude of those in 6-OHDA-lesioned animals (47).
More recent studies have confirmed the crucial importance of
DAT deficiency in determining large increases in extracellular DA
“on”l-DOPA (48). However, these studies have also indicated that,
when the nigrostriatal lesion is very severe, the magnitude of such
increases depends on factors other than DAT deficiency. Thus,
animals with less than 90% DA denervation exhibit a significant
negative correlation between ∆DA and striatal DAT binding lev-
els. However, in rats with >90% denervation, DAT levels no longer
predict ∆DA (48). What factors may then condition the magnitude
of ∆DA in animals with severe nigrostriatal DA lesions?

In addition to the loss of DAT, a severe degeneration of the
nigrostriatal pathway inevitably entails a shift in the routes of l-
DOPA metabolism from nigrostriatal DA neurons to other sites
(15). The conversion of l-DOPA to DA is a one-step enzymatic
reaction catalyzed by aromatic L-amino acid decarboxylase
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Cenci Presynaptic mechanisms of PD dyskinesias

(AADC, also called DOPA decarboxylase, DDC) (Figure 3). This
enzyme is expressed by catecholaminergic neurons (49), but also
by astrocytes (50) and blood vessel-associated cells (51).

A seldom appreciated fact is that AADC and 5-hydroxytry
ptophan decarboxylase (which synthetizes 5-hydroxytryptamine,
serotonin) are the same enzyme (see, e.g., http://omim.org/entry/
107930). Serotonin neurons therefore express relatively high levels
of AADC, and they also express vesicular monoamine trans-
porter 2 (VMAT-2), which packages DA into synaptic vesicles
and protects it from rapid cytosolic degradation [reviewed in
Ref. (15)] (cf. Figure 3). Although AADC and VMAT-2 also are
expressed by noradrenergic neurons, these are unlikely to pro-
vide a major source of DA upon l-DOPA treatment, because
the DA formed from l-DOPA in these neurons is rapidly con-
verted to noradrenaline (NA) by the enzyme, dopamine-beta-
hydroxylase.

Thus, serotonin neurons can both synthetize DA from l-DOPA,
store the formed DA in synaptic vesicles, and release it in an
activity-dependent manner. During the past few years, an abun-
dant literature has documented that serotonin neurons indeed
provide a source of DA release in l-DOPA-treated parkinson-
ian subjects. An intense debate has grown around the extent of
this phenomenon and its significance to the occurrence of LID,
as will be detailed in the following sections of this review. But
before approaching this topic, we need to briefly consider the
post-synaptic consequences of DA denervation, which are likely
to be crucial to the development of LID.

POST-SYNAPTIC CONSEQUENCES OF NIGROSTRIATAL DA
DENERVATION
Although this article focuses on the presynaptic mechanisms of
LID, it is important to keep in mind that a loss of nigrostriatal
DA input also entails profound adaptations at the post-synaptic
level (Figure 2). In particular, DA-denervating lesions cause pro-
nounced molecular, physiological, and morphological changes in
striatal neurons, as demonstrated by a large body of experimental
literature, briefly reviewed below.

Already in the 70s, a deafferentation-induced supersensitivity
of post-synaptic DA receptors was hypothesized to play a role in
the development of LID (52). Today we know that this supersen-
sitivity depends on complex changes in the signal-transduction
properties of DA receptors. The changes include, an increased
coupling efficiency of both D1 and D2 receptors to their cor-
responding G proteins, a large activation of downstream intra-
cellular signaling molecules, changes in DA receptor trafficking,
and also a striking activation of non-canonical signaling path-
ways [reviewed in Ref. (52–54)]. Gerfen and collaborators were
the first to propose that the denervation-induced supersensitivity
of D1 receptors leads to an activation of intracellular pathways
that are not recruited under physiological conditions (55). In their
seminal study (55), treatment of 6-OHDA-lesioned rats with D1
receptor agonists was found to cause a pronounced striatal activa-
tion of extracellular signal regulated kinases 1 and 2 (ERK1/2), a
pathway traditionally associated with the stimulation of tyrosine-
kinase or glutamate receptors, not Gs/olf-coupled receptors (cf.
Figure 2). A link between l-DOPA-induced ERK1/2 activation and
the development of dyskinetic behaviors was later demonstrated

in both rodent (40, 56–58) and non-human primate models of
LID (40).

In addition to altered DA receptor-mediated signaling, an
abnormal corticostriatal synaptic plasticity (59) and structural
changes of striatal neurons associated with the progression of PD
(60) predispose to a dyskinetic response to therapy. Post-mortem
investigations of striatal tissue from PD patients have revealed
conspicuous loss of spines and dendritic atrophy in medium-
sized spiny neurons (61, 62). Similar phenomena have been found
to occur in both rodent and non-human primate models of PD
(63, 64). The results so far available indicate that treatment with
l-DOPA does not normalize the dendritic structure of striatal
neurons, but instead superimposes a new layer of changes that are
associated with the development of dyskinetic behaviors (65–67).

It has been hypothesized that striatal dendritic atrophy has a
major impact on the response to PD treatment favoring the emer-
gence of complications because, “expecting a normal reaction to
dopaminergic drugs under these circumstances is like expecting a
four-cylinder car engine to turn over normally on three cylinders”
(68). Further investigations are however needed to clarify the pre-
cise contribution of an altered striatal dendritic morphology to
the genesis of LID (69).

L-DOPA-INDUCED DA RELEASE IN THE DYSKINETIC BRAIN
PET imaging studies in PD patients have established a link between
l-DOPA-induced motor complications and large fluctuations in
striatal DA levels (20). In a seminal study using [11C] raclo-
pride PET, De La Fuente Fernandez and coworkers compared the
dynamics of striatal DA release between PD patients affected by
LID and patients with a stable response to therapy (20). One hour
after l-DOPA administration, dyskinetic patients exhibited signif-
icantly greater changes in striatal DA levels than did stable l-DOPA
responders (21). Similar results were obtained by Piccini’s group,
who also established a positive correlation between changes in stri-
atal DA levels and severity of peak-dose LID (22). One limitation
of these human studies is that the absolute extracellular concen-
trations of DA, hence their impact on changes in [11C] raclopride
binding, were not accessible to investigation. This concern is rel-
evant because the dyskinetic PD patients in these studies had a
longer disease duration than did stable l-DOPA responders (21,
22). A longer disease duration may potentially lead to lower striatal
DA levels at baseline.

Microdialysis studies in rodent models of LID have been
very useful in clarifying the relationship between dyskinesia and
absolute striatal DA concentrations “on” and “off” l-DOPA. In a
seminal study, Meissner and colleagues compared striatal extra-
cellular DA levels in 6-OHDA-lesioned rats exposed to a prior
course of treatment with l-DOPA or saline (70). l-DOPA was
given at a high dose (50 mg/kg/day per 10 days), which induced
AIMs in all of the treated animals. A striking result of this study
is that the same peripheral dose of l-DOPA elicited a larger
increase in striatal extracellular DA levels in l-DOPA-primed ani-
mals compared to saline-treated ones (70). Other microdialysis
studies were performed in 6-OHDA-lesioned rats that had been
chronically treated with a lower dose of l-DOPA (6 mg/kg/day),
upon which some of the animals remained free from AIMs. These
studies reported larger striatal levels of l-DOPA (71) or DA (72,
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Cenci Presynaptic mechanisms of PD dyskinesias

73) in dyskinetic animals compared to non-dyskinetic cases. The
most pronounced between-group difference in striatal DA levels
occurred at the peak of the l-DOPA-induced surge, i.e., 40–60 min
after l-DOPA administration. DA concentrations did not how-
ever differ between dyskinetic and non-dyskinetic animals either at
baseline or at later time points post drug dosing (72, 73). Although
dyskinetic animals showed a larger increase above baseline (∆DA),
their absolute DA concentrations never exceeded the values mea-
sured in intact control animals (72). Interestingly, a similar pattern
of group differences was observed in the substantia nigra, which
was monitored simultaneously with the striatum in one study (72).

Taken together, these results show that both ∆DA and absolute
DA concentrations at the peak of the l-DOPA effect are larger in
animals affected by involuntary movements compared to non-
dyskinetic cases, despite similar baseline DA levels. The larger
∆DA values in dyskinetic rats are in keeping with the results of
[11C] raclopride-PET studies in dyskinetic PD patients, though
apparently at variance with other experimental data. In partic-
ular, a recent microdialysis study in the macaque model of LID
has failed to detect a significant increase in striatal extracellular
DA levels after l-DOPA administration, whereas striatal levels of
DOPA showed a robust increase (74). According to the authors
interpretation, these data indicate that a low DOPA decarboxy-
lase activity in parkinsonian primates limits the production of DA
from exogenous l-DOPA, differently from the situation encoun-
tered in 6-OHDA-lesioned rodents (74). These unexpected results
prompt the interim reflection that the rat model of LID is more
suitable than the macaque one to reproduce the presynaptic dis-
turbances seen in the human condition. Indeed, [11C] raclopride
binding is displaced by DA, and not by l-DOPA itself.

SEROTONIN NEURONS AS AN ABERRANT SOURCE OF DA
RELEASE “ON” L-DOPA
The first report implicating serotonin neuron as a source of DA
release “on” l-DOPA was provided by Tanaka and colleagues (75).
These authors compared extracellular DA levels in the striatum
of 6-OHDA-lesioned rats that had sustained or not an additional
chemical lesion of serotonin neurons. Rats in the double-lesion
group exhibited a dramatic 80% reduction in l-DOPA-induced
DA efflux (75). Another important early study used a similar
approach to show that a serotonin lesion completely suppressed
the induction of both rotational behavior and striatal c-Fos expres-
sion by l-DOPA in 6-OHDA-lesioned rats (76). The authors of
these studies suggested that the action of l-DOPA in PD critically
depends on its conversion to DA in serotonin neurons.

As explained above, serotonin neurons are endowed with the
enzymes that convert l-DOPA to DA, and package this DA into
synaptic vesicles. A double-labeling immunofluorescence study in
rats treated with l-DOPA has indeed revealed immunoreactiv-
ity for DA in serotonin-positive dorsal raphe neurons and their
striatal projections (77).

It is therefore hardly surprising that serotonin neurons become
an important source of l-DOPA-derived DA release in a situation
where nigrostriatal neurons are severely damaged. A relationship
between LID severity, on one hand, and morphological or autora-
diographic measures of striatal serotonin innervation, on the other
hand, has been detected in both rat and non-human primate

models of PD by several studies (78–81). These results fit well
with our observation that chronically l-DOPA-treated rats with
larger ∆DA values“on”l-DOPA show higher striatal levels of sero-
tonin and its metabolite at baseline, suggestive of a denser 5-HT
innervation (72).

Supporting the notion that 5-HT neurons release DA “on” l-
DOPA, several studies in 6-OHDA-lesioned rats have shown that
l-DOPA-induced peak DA efflux can be blunted by agonists of the
serotonin autoreceptors, 5-HT1a and 5-HT1b (72, 82, 83). Ago-
nists at these receptors dampen the activity of serotonin neurons,
measured as either firing rate or neurotransmitter release (84). 5-
HT1a and 5-HT1b receptor agonists have marked antidyskinetic
effects in both rodent and non-human primate models of LID
[reviewed in Ref. (3, 85)]. However, doses of 5-HT1a/b agonists
that improve LID do not improve dyskinesias that are induced by
apomorphine (86) or D1 receptor agonists (28). This pattern of
effects indicates that low-medium doses of 5-HT1a and 5-HT1b
agonists [cf. doses in (28, 72, 86)] interfere with presynaptic mech-
anisms of dyskinesia that are exclusively recruited by l-DOPA,
not by dopaminergic agents acting directly on DA receptors. The
efficacy of 5-HT1a and 5-HT1b agonists in reducing LID further
indicates that DA release from serotonin neurons plays a causal role
in LID. A compelling demonstration of this concept was provided
by Carta and collaborators using selective lesions of 5-HT neurons
(86). These lesions completely suppressed l-DOPA-induced AIMs
in previously dyskinetic rats (86). Other studies applied a chemical
lesion of 5-HT neurons to 6-OHDA-lesioned rats before treat-
ing them with l-DOPA, and demonstrated a positive association
between the levels of residual striatal 5-HT innervation and the
severity of dyskinetic movements induced by the treatment (87).

Why would DA release from 5-HT neurons be so prone to
induce LID? Serotonin neurons lack presynaptic mechanisms that
can sense and regulate their DA release, such as DA autorecep-
tors and DAT [reviewed in Ref. (15)]. Thus, in situations where
both baseline DA levels and DAT activity are severely reduced
(which is the case in advanced PD), DA release from serotonin
neurons is bound to produce large swings in DA levels. Moreover,
DA efflux from 5-HT neurons will be ectopic in terms of both
subcellular release sites and anatomical distribution. Accordingly,
an elegant microdialysis study in 6-OHDA-lesioned rats reported
very large increases in DA levels “on” l-DOPA in many brain
structures (including hippocampus and prefrontal cortex), and
the increases were totally abolished by a complete lesion of sero-
tonin neurons (88). These large extrastriatal DA surges induced by
l-DOPA most likely contribute to the development of both motor
and non-motor complications to therapy (89). With respect to
LID, a recent study in the rat has linked the stimulation of cortical
D1 receptors to the expression of involuntary movements through
a local generation of high-frequency oscillatory activities (90).

DEBATE ON THE INVOLVEMENT OF 5-HT NEURONS IN LID
Although the studies reviewed above are quite consistent, the con-
cept that 5-HT neurons provide a major source of DA release in
LID has met some resistance. Here follows a summary of common
objections presented to us in the form of scientific correspon-
dence. First, it is pointed out that the role of 5-HT neurons in
LID has been studied in animals with relatively intact serotonin
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projections, which would be unlike the situation in the advanced
stages of PD. Second, it is pointed out that a degree of striatal DA
denervation as dramatic as in these animals would occur only in
the very terminal stages of PD, implying that there would always
be some nigrostriatal fibers ready to release DA in dyskinetic PD
patients. Third, the comment has been put forward that astrocytes
represent a much more abundant compartment than 5-HT pro-
jections to take up l-DOPA and convert it to DA in the striatum.
All these objections are warranted, but also quite addressable with
data available in the published literature.

As to the first point, post-mortem biochemical studies of 5-HT
markers in PD have revealed that the loss of serotonergic innerva-
tion is more severe in the caudate than the putamen. In the latter
structure, detectable levels of serotonergic markers persist until
the terminal stages of PD (91). Accordingly, PET imaging studies
in patients with advanced PD have detected only 30% reduction
in putaminal serotonin transporter (SERT) binding (92), whereas,
dopaminergic markers may be reduced by over 75% in the same
structure (93). Post-mortem autoradiographic studies of SERT
and DAT binding activities in the PD putamen are in keeping
with the PET imaging investigations (42, 43, 80, 94). Furthermore,
a post-mortem autoradiographic study has revealed larger SERT
binding density in the post-commissural putamen in PD cases
with LID compared to non-dyskinetic subjects (80).

Regarding the extent of DA denervation in the human disease,
a recent pathological study has reported a virtual absence of DA
fiber markers in the posterior putamen already at 4–5 years from
PD diagnosis (95). Thus, the levels of DA denervation occurring
in the dorsolateral striatum in animal models of LID are compa-
rable to those in the post-commissural putamen (the motor part
of the striatum) in mid-advanced stages of PD. And these are the
stages where motor complications to therapy start to appear (cf.
Figure 1).

As to the role of non-neuronal cells in handling l-DOPA,
while this phenomenon certainly deserves further investigation
(see below), it should be pointed out that neither glia nor vessel-
associated cells have a capacity for vesicular storage and release of
neurotransmitters. This is an important point, because microdial-
ysis studies in 6-OHDA-lesioned rats have shown that l-DOPA-
induced DA release is significantly reduced by reserpine, a VMAT
blocker (96), and also by tetrodotoxin (TTX) (72, 97), a sodium
channel blocker inhibiting the generation of action potentials.
Thus, the bulk of DA efflux “on” l-DOPA has a neuronal ori-
gin even in animals with complete nigrostriatal DA lesions. Some
authors have proposed that striatal interneurons expressing TH
may provide a source of DA production and l-DOPA conversion
in PD (98–100). However, it is as yet unclear whether these neurons
can actually release DA [cf. (101)], and the expression of AADC in
these cells appears to be very low, at least in rodents (41).

A proof-of-concept that 5-HT neurons release DA in patients
affected by LID has been recently provided by Politis and cowork-
ers using PET imaging techniques (102). In this study, dyskinetic
PD patients were compared to patients with a stable response to
therapy (“stable responders”) using both a SERT ligand ([11C]-
DASB PET) and [11C] raclopride. In agreement with previous
studies (see above), a standard dose of l-DOPA induced a larger
displacement of [11C] raclopride binding in the dyskinetic group.
Interestingly, the magnitude of [11C] raclopride displacement

was positively correlated with the striatal levels of [11C] DASB
binding, suggesting a relationship between peak DA efflux “on”
l-DOPA and the density of striatal 5-HT innervation. Further
to these observations, the authors evaluated the effects of bus-
pirone, a compound with 5-HT1a agonistic activity, on the change
in [11C] raclopride binding induced by l-DOPA administration.
Intriguingly, buspirone reduced the magnitude of raclopride dis-
placement only in dyskinetic PD patients, while having no effect
at all in the stable responders. Furthermore, dyskinetic patients
exhibiting a greater response to buspirone displayed a larger sig-
nal on the [11C] DASB PET scans, indicating larger striatal levels
of serotonergic terminals. Finally, a strong positive correlation
between AIM ratings and [11C] DASB binding density was found
in the group of patients with peak-dose LID of mild-moderate
severity (102). The authors concluded that striatal serotonergic
terminals contribute to LID in human PD via aberrant process-
ing of exogenous l-DOPA and release of DA as false neuro-
transmitter, quite in agreement with the results obtained in rat
studies (102).

DEBATE ON THE PLASTICITY OF THE SEROTONIN SYSTEM IN
LID AND ITS ANIMAL MODELS
The serotonin system is highly vulnerable to age-related degener-
ative changes, but also highly plastic (103–105). Functional and
structural adaptations of the serotonin projections may therefore
impact on their role in LID.

In many toxin-based animal models of PD, the neurotoxic
lesion induces partial damage of ascending 5-HT projections,
followed by a long-term compensatory sprouting of 5-HT axon
fibers (81, 106–108). Furthermore, chronic dyskinesiogenic treat-
ment with l-DOPA has a growth-promoting effect on serotonin
axon terminals (78, 80, 81), which is likely dependent on the
treatment-induced upregulation of BDNF (80). The treatment-
induced sprouting of 5-HT axon terminals requires a previous
severe DA denervation of the affected region, as well as a par-
tial lesion of 5-HT afferents, as it does not seem to occur when
LID is produced in animal models of PD having intact serotonin
projections [cf. (109)].

The striking plasticity of the 5-HT system in animal models
of PD–LID has raised concerns that the importance of this sys-
tem may be overestimated in the experimental models relative
to the human disease, because serotonin neurons are expected to
degenerate, not to grow new axon terminals, in PD. However, in
the study by Politis and coworkers (102), the dyskinetic patients
with longest disease duration exhibited a remarkably preserved
serotonin terminal function. Thus, striatal levels of [11C]-DASB
binding did not differ between the severely dyskinetic patients and
the subjects with a stable response to therapy, who had a signifi-
cantly shorter disease duration (102). These results are at variance
with the expected loss of [11C]-DASB binding during the pro-
gression of PD (92), and may in fact suggest that serotonin axon
terminals mount a long-term sprouting response in human LID,
analogous to that seen in the animal models. Further support to
this interpretation comes from an autoradiographic study of SERT
radioligand binding density in the human post-mortem putamen
and pallidum, showing larger SERT binding levels in PD patients
with clinical records of LID compared to non-dyskinetic cases (80).
In this study, a linear correlation was found between SERT binding
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Cenci Presynaptic mechanisms of PD dyskinesias

density and number of SERT-immunoreactive axonal varicosities,
at least in the pallidum (80).

At variance with the evidence above, some recent studies in
6-OHDA-lesioned rats have suggested that chronic l-DOPA treat-
ment may have deleterious effects on serotonin neurons. In one
study, animals were treated with l-DOPA (12 mg/kg/day) for
28 days, after which tissue levels of DA and serotonin were mea-
sured in several brain regions at various intervals following the
last l-DOPA dose (89). A reduced ratio between serotonin and
DA concentrations occurred for up to 4 h post l-DOPA adminis-
tration in all the structures examined. The authors concluded that
l-DOPA treatment had increased DA levels while reducing 5-HT
levels in all brain regions (89). These results may reflect the fact
that DA displaces 5-HT from synaptic vesicles within serotonin
axon terminals (77, 86). If serotonin is displaced from the vesicles,
its degradation will be faster and its tissue contents reduced, at least
for a few hours following the administration of l-DOPA. However,
Eskow Jaunarajs and colleagues proposed that long-term l-DOPA
therapy may be directly detrimental to serotonin neurons through
mechanisms involving oxidative stress, an idea supported by some
observations in vitro (89). Endorsing the above interpretation,
a microdialysis study performed in rats previously treated with
l-DOPA (12 mg/kg/day for 10 days) reported a lower magnitude
of l-DOPA-induced DA efflux in several brain regions compared
to that measured in acutely l-DOPA-treated animals (110). The
authors concluded that chronic l-DOPA therapy negatively affects
the functionality of serotonin neurons, at least if high drug doses
are used (110). These results are, however, at variance with those
reported by other studies using high doses of l-DOPA (70).

While the debate on the degeneration and plasticity of 5-HT
neurons in PD–LID is still ongoing, there is agreement that 5-HT
receptors in the brain show pronounced functional adaptations. In
particular, increases in striatal and cortical levels of 5-HT1a and
5-HT1b receptors, as well as their adaptor proteins (111), have
been reported by several studies performed in animal models of
PD and LID [partially reviewed in Ref. (112)]. Further studies are
needed to verify the occurrence of these adaptations in the human
disease, and to clarify their functional consequences. For exam-
ple, it is likely that these receptor adaptations may impact on the
responsiveness to antidyskinetic treatments targeting 5-HT1a and
5-HT1b receptors.

GLIOVASCULAR MECHANISMS
In addition to high DA levels, dyskinetic animals show a large
increase in the extracellular levels of l-DOPA following peripheral
drug administration (71, 74, 113). A study in non-human primates
has even suggested that l-DOPA does not need to be converted to
DA in order to elicit AIMs (74).

The concentrations of l-DOPA in the brain extracellu-
lar fluid reflect the balance between drug entry and drug
uptake/metabolism by brain cells. There are no indications that the
uptake of l-DOPA by brain cells is impaired in dyskinetic animals,
and it is therefore warranted to ask whether its entry could be
increased. l-DOPA enters the brain from the blood stream via the
L-type amino acid transporter system present in endothelial cells
of the blood–brain barrier (BBB) (114, 115). Thus, the passage of
l-DOPA from blood to brain will depend on the same variables

FIGURE 5 | Brain endothelial cells and pericytes produce dopamine
following systemic administration of L-DOPA. In the 60s, a group of
Swedish pharmacologists led by E. Rosengren discovered that brain
endothelial cells and pericytes are a significant site of dopamine production
following treatment with L-DOPA. This photomicrograph represents a
section of rat cerebellum processed for the Falck–Hillarp catecholamine
histofluorescence method to visualize DA-containing cells. The rat had
received an injection of L-DOPA (50 mg/kg, combined with the
monoamine-B inhibitor nialamide) shortly before being killed. The authors
commented, “It was evident that the fluorescent material occurred
throughout the capillary walls giving almost a three-dimensional
appearance of the capillary tubes. Fluorescence of high intensity (was
found) in cytoplasm and nucleus of both endothelial cells and pericytes”
[Reproduced with permission from Ref. (51)].

that regulate the extraction of any substance, that is: (1) capillary
permeability, (2) the capillary surface area, and (3) the regional
blood flow (116). In the case of l-DOPA, a fourth variable should
be considered, namely, the possibility of an active drug metabolism
at the capillary level.

Already in the 60s, studies based on the Falck–Hillarp cat-
echolamine histofluorescence method had indicated that brain
capillaries critically regulate the entry of l-DOPA into the brain
parenchyma (51). Endothelial cells and pericytes were revealed to
be the first site of l-DOPA uptake, conversion, and metabolism in
the brain (Figure 5), and were found to express very high levels of
both AADC and monoamine oxidase B (51). It was thus proposed
that cells lining cerebral microvessels form an enzymatic barrier to
the entry of l-DOPA (51). Further to these studies, it was recently
reported that l-DOPA accumulates not only in the microvessels,
but also in astrocyte cell bodies and astrocytic endfeet surrounding
cerebral microvessels (117).

Endothelial cells, pericytes, and perivascular astrocytes form
a functional unit that controls both capillary permeability and
regional cerebral blood flow (rCBF) [reviewed in Ref. (118,
119)]. Both of these parameters are dynamically regulated in
the brain to match the metabolic activity of neurons, and
this process (termed “neurovascular coupling”) is modulated by
monoaminergic afferents that innervate cerebral arterioles and
microvessels (120–124).

Interestingly, while regional glucose metabolism (which is
mainly driven by neuronal activity) and rCBF are well-matched
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in PD patients during the “off” medication state, the administra-
tion of l-DOPA greatly increases rCBF without elevating glucose
metabolism in a brain network that includes putamen, pallidum,
and midbrain–pons (125). In this brain network, the dissociation
between flow and metabolism is particularly striking in patients
affected by LID (125). These findings suggest that l-DOPA exerts
hemodynamic effects that are independent of its modulation of
neuronal metabolic activity, thus superseding physiological mech-
anisms of neurovascular coupling in the affected brain regions. A
similar phenomenon occurs in the rat model of LID, which fea-
tures a large increase in rCBF “on” l-DOPA in many parts of the
basal ganglia, often in the absence of large concomitant changes in
glucose metabolism (126).

The flow-metabolism dissociation response is a particularly
intriguing phenomenon as it may signal a previously overlooked
effect of l-DOPA on gliovascular cells (126). Moreover, this phe-
nomenon may result in higher extracellular levels of l-DOPA in
dyskinetic subjects (125, 126), impacting on the presynaptic mech-
anisms of LID. The underlying mechanisms are however unclear.
Evidence of flow-metabolism dissociation has thus far been found
only in specific regions, and the observed regional pattern cannot
be readily explained by regional differences in either DA efflux
“on” l-DOPA (88) or gliovascular expression of DA receptors (43,
120, 122, 127). Some interesting mechanistic suggestions have
however emerged from studies performed in the rat model of
LID. In 6-OHDA-lesioned rats treated with l-DOPA, regions with
large increases in blood flow “on medication” exhibit endothelial
proliferation and angiogenic activity when the treatment is given
chronically (126). Furthermore, some of these regions exhibited
an increased microvascular density and upregulation of angio-
genesis markers in a post-mortem study of basal ganglia tissue
from dyskinetic PD patients (43). These findings suggest that the
large increases in rCBF “on” l-DOPA and the angiogenic response
to the chronic treatment are interrelated phenomena, which are
critically regulated by gliovascular cells in the affected brain
regions (126). Investigating this hypothesis is likely to yield impor-
tant insights into previously overlooked neurovascular effects of
l-DOPA, uncovering novel therapeutic targets.

CHANGES IN BBB PERMEABILITY: THE FINDINGS AND THE
DEBATE
As mentioned above, capillary permeability is one of the fac-
tors determining the central availability of l-DOPA. The BBB
is a selective diffusion barrier that relies on specialized proper-
ties of the brain’s capillary endothelium, such as the presence of
tight cell–cell junctions, low levels of pinocytotic activity, and the
expression of selective transporter proteins at the plasma mem-
brane [reviewed in Ref. (128)]. Several independent studies suggest
that the functionality of the BBB becomes impaired during the
progression of PD (129–131). For example, the ratio between
albumin concentrations in cerebrospinal fluid (CSF) and plasma is
increased in PD patients with advanced disease compared to age-
matched controls (131). Interestingly, higher albumin ratio values
were measured in patients receiving DA replacement therapy
compared with untreated subjects (131).

It has been suggested that the neuroinflammation associated
with neurodegeneration leads to an increased BBB permeability

due to the vascular effects of proinflammatory cytokines [see Dis-
cussion in Ref. (132), and references therein]. However, while
neuroinflammation is a widespread finding in PD (133), the per-
meability problem appears to depend on focal areas of BBB dys-
function within the striatum and the midbrain. These areas show
signs of angiogenic activity (43, 126, 132, 134). Several studies in
both parkinsonian animals and human PD have indeed detected
endothelial proliferation and other markers of active angiogen-
esis within the substantia nigra and the striatum (43, 134–137).
Because active angiogenesis entails a transient increase in vessel
permeability, it will inevitably lead to a localized leakage of the
BBB when it occurs in the brain (138). Accordingly, studies in rat
models of PD have revealed localized leakage of BBB tracer mole-
cules (132) or downregulation of BBB proteins (139) precisely on
vessels having angiogenic features.

When treatment with l-DOPA produces dyskinesias, it may
aggravate the BBB dysfunction associated with PD, or even induce
a new pattern of dysfunction. In the rat model of LID, dysk-
inetic animals exhibit endothelial proliferation, increased BBB
permeability, and upregulation of vascular endothelial growth fac-
tor (VEGF) in the lateral striatum and the basal ganglia output
nuclei (the substantia nigra pars reticulata and the entopedun-
cular nucleus, i.e., rodent equivalent of the GPi) (43, 139–141).
These phenomena only occur on the DA-denervated side of the
brain, and they are positively associated with the development of
LID (139, 141). l-DOPA induces this angiogenic activity via stim-
ulation of D1 receptors and activation of ERK1/2 signaling (140).
Treatments that antagonize VEGF attenuate the gradual increase
in dyskinesia severity during a chronic course of l-DOPA adminis-
tration (43, 141), while inhibiting the angiogenic activity and BBB
dysfunction induced by l-DOPA in the basal ganglia (43). Along
with human pathological observations (43, 137), these findings
suggest that a treatment-induced, VEGF-dependent angiogenic
activity in the basal ganglia contributes to an aggravation and
chronicization of LID in the advanced stages of PD (43).

The pathophysiological implications of these findings are, how-
ever, poorly understood. We have proposed that the increased BBB
permeability associated with angiogenesis may contribute to an
increased entry of l-DOPA in the affected regions (i.e., the motor
part of the striatum and the basal ganglia output nuclei) (139).
Supporting this proposition, dyskinetic animals were found to
exhibit increased striatal and nigral uptake of an intravenous tracer
molecule (which normally does not cross the BBB) having a mole-
cular weight similar to l-DOPA (126). Importantly, leakage of this
tracer into the striatal parenchyma was detected at significant levels
at 60 min, but not 24 h after the administration of l-DOPA (126).
This observation is interesting because it suggests an association
between increased rCBF“on”l-DOPA and BBB hyperpermeability
in dyskinetic subjects (126). In other words, the high rCBF asso-
ciated with LID (125, 126) would cause BBB leakage at the level
of immature microvessels, which form in the striatum and its out-
put nuclei because of the combined effect of DA denervation and
chronic l-DOPA treatment (126). In keeping with this suggestion,
an increased perfusion has been shown to enhance tight-junction
opening between endothelial cells in other models of brain disease
involving angiogenesis or microvascular pathology (142). Further
investigations are needed to clarify the relative importance of an
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increased BBB permeability in producing high extracellular levels
of l-DOPA in LID.

The suggestion that BBB permeability is enhanced in LID has
raised some debate (143). It is often argued that the peripheral
DOPA decarboxylase inhibitors included in standard l-DOPA
preparations [i.e., carbidopa or benserazide, reviewed in Ref. (3,
4)] are unlikely to enter the brain. If they did, the treatment
would not engender an increase in central levels of DA, whereas
raclopride–PET studies unequivocally demonstrate striatal DA
release after the administration of l-DOPA to PD patients. How-
ever, studies in both intact and 6-OHDA-lesioned rats indicate that
peripheral DOPA decarboxylase inhibitors significantly reduce
central AADC activity only at doses much higher than those given
to patients (144, 145). More importantly, doses of benserazide
reducing striatal AADC activity by over 50% did not have any
effect on either basal DA levels or l-DOPA-induced DA release
in the striatum (145, 146). To achieve a significant effect on the
above parameters, benserazide had to be administered at the dose
of 50 mg/kg, which reduced striatal AADC activity by ≥80% (145,
146). Such a dose is manifold larger than the highest benserazide
dosage to which a PD patient will ever be exposed. In a study using
6-OHDA-lesioned rats, not even 50 mg/kg benserazide had any
significant effect on the increase in extracellular DA levels induced
by l-DOPA, affecting only the time to reach the peak (145).

ROLE OF NORADRENALINE NEURONS
Dopamine is the immediate precursor of NA along the cat-
echolamine biosynthetic pathway, and extracellular NA levels
increase in the DA-denervated striatum after a peripheral injec-
tion of l-DOPA. Interestingly, this increase is significantly larger
when the treatment induces involuntary movements (73). An ele-
vation in striatal NA levels has been suggested to contribute to
LID because local infusions of NA in the DA-denervated stria-
tum induce AIMs in the rat (73, 147). Based on these findings,
one would expect LID to be improved by lesions of central NA
projections. Quite in contrast with this prediction, most stud-
ies addressing the impact of noradrenergic denervation on LID
have reported a worsening of dyskinesia, which was due either
to an increased peak severity (148, 149) or to an increased dura-
tion of the involuntary movements (150). Other studies have not,
however, detected a significant worsening of LID, even when the
noradrenergic denervation resulted in a worsening of motor and
cognitive deficits (151, 152). These apparent discrepancies are
likely to depend on technical differences regarding NA lesion pro-
cedures and/or types of 6-OHDA models used in different studies.
In this regard, it is useful to know that injections of 6-OHDA
in the medial forebrain bundle (MFB) damage also ascending NA
fibers, an effect that cannot be completely prevented by pretreating
animals with blockers of NA uptake, such as desipramine (unpub-
lished data by the Cenci’s lab). Thus, a large 6-OHDA lesion in the
MFB may occlude the effect of a subsequent NA lesion, even more
so if the latter is applied using toxins that damage NA projections
but leave their cell bodies intact (150).

Despite the above discrepancies, a large amount of data point
to an involvement of the NA system in the motor complications of
PD therapy. This system is highly vulnerable to the neurodegen-
erative process in PD (153) and to the neurotoxins that are used

to create PD models in animals [reviewed in Ref. (30)]. Moreover,
treatment with l-DOPA appears to modulate the activity of brain
NA neurons, as indicated by changes in NA cell firing in the locus
coeruleus region, and by an increased NA efflux in their projection
targets (73, 150). That the NA system in causally involved in LID is
suggested not only by the results of lesion studies in the rat (148–
150), but also by a vast pharmacological literature investigating
the effects of NA receptor modulators.

Several studies in rat and primate models of PD have indeed
shown that modulators of NA receptors improve LID. Many
studies have evaluated antagonists of α2B/C-adrenoceptors, and
found that they reduce the severity of l-DOPA-induced AIMs,
and that they also can prolong the anti-akinetic effect of single
l-DOPA doses (154–158). One potential underlying mechanism
may involve a reduction of peak extracellular levels of both DOPA
and DA, which the α2C adrenoceptor antagonist idazoxan has been
shown to achieve at a dose that significantly reduces the severity of
LID (113). The mechanisms by which central NA neurons mod-
ulate the effects of l-DOPA remain, however, poorly understood.
Given that the NA system has widespread modulatory functions
in the brain, these mechanisms are bound to be very complex.
Relevant to the presynaptic mechanisms of LID are the modula-
tory effects of NA on several afferent striatal systems, including
5-HT and DA axon terminals (159–161), and the key role of locus
coeruleus neurons in regulating both cerebral blood flow and
capillary permeability (124, 162), and in maintaining the integrity
of the BBB (163).

CONCLUDING REMARKS
l-DOPA remains the most effective treatment for PD and under-
standing how this drug is handled by, and in turn affects, a
parkinsonian brain, is an undisputed research priority, not least
for the sake of developing better treatment options.

In the past few years, research on the presynaptic mechanisms
of LID has generated results of great translational importance,
but also scientific controversy. In this article, I have reviewed both
the findings and the controversies, while highlighting important
aspects that call for further investigations.

Some of the concepts presented in this article are,however,quite
uncontroversial and have already inspired a clinical development
of new treatments. Thus, the concept that large swings in striatal
DA levels are the culprit behind motor fluctuations and dyskine-
sia has prompted the development of new methods of continuous
l-DOPA delivery, which are now available in several countries
[reviewed in Ref. (3)]. While these therapies have a proven effi-
cacy against the motor fluctuations (164), the extent to which
they can eliminate already established dyskinesias remains to be
demonstrated.

The concept that LID depends on DA release from sero-
tonin neurons has raised both interest and discussion. That 5-
HT neurons can produce and release DA “on” l-DOPA is now
widely accepted. A debate, however, persists regarding the relative
importance of this phenomenon. PD dyskinesias are conceivably
more complex than the models of peak-dose LID obtained in
animals with “clean” nigrostriatal lesions. For example, in the
advanced stages of PD, the involuntary movements may exhibit
a variable and unpredictable relationship with the timing of drug
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administration, and they may be induced by dopaminergic agents
that do not release any DA in the brain. A point of recent dis-
cussion pertains to the role of DA release from 5-HT neurons
in inducing involuntary movements as opposed to “good” anti-
akinetic effects. Two recent studies (165, 166) have suggested that
DA release from serotonin neurons not only generates dyskinesia
but may also mediate the therapeutic benefit of l-DOPA. An impli-
cation of these findings is that antidyskinetic treatments based on
the stimulation of 5-HT1A/B receptors (dampening transmitter
release from 5-HT neurons) may have an unfavorable risk-benefit
profile in the advanced stages of PD, when most l-DOPA-derived
DA release is likely to come from 5-HT neurons, at least in the
motor regions of the striatum. Accordingly, large clinical trials
of 5-HT1A receptor agonists in LID appear to have faced some
difficulties in defining a suitable therapeutic window for the inves-
tigational drugs [reviewed in Ref. (3)]. It should be noted, however,
that the 5-HT1A ligands so far evaluated in PD patients had partial
agonist activity and many off-target effects. To really appreciate
the potential of this strategy, it will therefore be important to test
more potent and selective compounds.

During the past few years, we have learned that l-DOPA phar-
macotherapy affects not only neurons, but also microvascular (43,
125, 126, 141) and glial compartments (43, 117, 167) within the
basal ganglia and the midbrain. Findings obtained in rat models of
LID have revealed a previously unappreciated plastic potential of
basal ganglia microvessels, sparking a new interest in the effects
of dopaminergic medications on the neurovascular unit. This
topic clearly deserves further investigation. An emerging research
is uncovering orchestrated actions of gliovascular cells, immune
cells, and neurons in the maladaptive plasticity associated with
brain diseases and their treatments (168–171). Investigating the
interactions between neuronal and gliovascular compartments is
therefore required to fully understand the long-lasting plasticity
at the basis of LID. Such an understanding will make it pos-
sible to devise new preventive strategies. Ultimately, preventive
interventions may represent the best approach to this medical
problem because, once established, LID is probably impossible
to completely eliminate with add-on pharmacological treatments.
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